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Abstract. We consider the spread of an infectious disease on a heterogeneous metapopulation
defined by any (correlated or uncorrelated) network. The infection evolves under transmission,
recovery and migration mechanisms. We study some spectral properties of a connectivity matrix
arising from the continuous-time equations of the model. In particular we show that the classi-
cal sufficient condition of instability for the disease-free equilibrium, well known for the partic-
ular case of uncorrelated networks, works also for the general case. We give also an alternative
condition that yields a more accurate estimation of the epidemic threshold for correlated (either
assortative or dissortative) networks.
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1. Introduction
While the classical Susceptible-Infected-Removed (SIR) and Susceptible-Infected-Susceptible (SIS)
epidemic models were based on the assumption of completely well-mixed populations, recent
works have revealed the importance of considering some contact structure among populations at a
geographical level (heterogeneous metapopulations). See for instance [8, 10, 11, 14, 16, 18, 21].

More precisely, one considers ensembles of local populations with a complex spatial arrange-
ment which are pairwise connected by migration flows. So the formalism of complex networks
arises [5, 6, 7, 15, 19, 22, 23]. In this paper we will deal with the following situation: the whole
population is distributed inside a network of N nodes and L non-directed links. Without loss of
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generality we will assume that this network is connected, so that there is at least one path con-
necting any pair of nodes. Each node (or “patch”) can be thought as a local population containing
two types of individuals: S (susceptible) and I (infected). Within each patch, transmission and
recovery occur between individuals of different type. Simultaneously, migratory flows take place
among linked patches at constant rates. By assumption our model does not contain demography
and, therefore, is only applicable to mild and fast epidemics on constant populations: the epidemic
does not affect mortality and runs its course in a time small in comparison to the mean life of the
affected individuals.

In order to pose the continuous-time equations governing the dynamics of the corresponding
SIS model it is enough to characterize the network in terms of the following two probability distri-
butions: p(k), defined as the probability that a randomly chosen node has degree k, and P (k|k′),
defined as the conditional probability that a link has an end of degree k when the opposite end is
known to have degree k′. At this point we recall the well known consistency condition [4]:

kP (k′|k)p(k) = k′P (k|k′)p(k′). (1.1)

It has been shown [22] that, for a suitable continuous-time formulation of the equations for
the spread of infectious diseases in metapopulations, the transmission, recovery and migration
processes have to take place simultaneously. Also, as usual [6, 7], the description of the epidemic
spread is made in terms of the average number of susceptible and infected individuals per node of
degree k at time t, which here will be respectively denoted by ρS,k(t) and ρI,k(t). At this point let
us introduce the following notation. Let ρk(t) := ρS,k(t)+ρI,k(t) be the mean population per node
of degree k. Also, for i = S, I , let ρi(t) be the average number, at time t, of individuals of type i
per node. That is,

ρi(t) :=
∑

k

p(k)ρi,k(t).

Thus the mean population per node at time t is ρ(t) := ρS(t) + ρI(t).
The spread of the infection within a local population takes place under the assumption of a

homogeneous mixing and evolves under the rules of the classical SIS model

I
µ−→ S

I + S
β−→ 2I

(1.2)

Here µ ≥ 0 is the recovery rate and β ≥ 0 is the transmission rate across an infective contact.
At the same time, migration of individuals S and I occurs between linked patches with constant
coefficients DS ≥ 0 and DI ≥ 0 respectively. We assume that each migrant individual moving
from a node of degree k randomly chooses one of the k links departing from the patch.

Now we are ready to explain the aim of this paper. Following [22] (see also [15]), in Section 2.
we will derive the continuous-time equations governing the dynamics of the corresponding disease
propagation. We will not assume a particular functional form for the number of contacts randomly
established by each susceptible individual among the local population. Instead, we will deal with
a general positive, non-decreasing function C(x) that can potentially be any of the classical laws
of infection [17, 24]. Once the equations are posed, we will see that a natural connectivity matrix
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arises from them. This matrix, denoted by C, is directly related to the statistical characterization
of the network. More precisely, C is defined in such a way that the entry placed at row k, column
k′ is Ckk′ = P (k′|k)k/k′. In the same section we show that there exists a unique disease-free
equilibrium. This is a well known fact for some particular forms of C(x) (see Theorem 2 of [23])
and the proof can be trivially extended to the general case. In Section 3. we study some spectral
properties of the connectivity matrix. Essentially we prove that C is similar to the stochastic matrix
given by the conditional probabilities P (i|j), and that generically all its eigenvalues are real and
contained in (−1, 1]. We also discuss the primitivity of C in terms of some combinatorial features of
the network. In Section 4. we prove that all the eigenvalues of the Jacobian matrix at the disease-
free equilibrium are real. We also get a condition for the disease-free equilibrium to become
unstable. This condition reads as (Theorem 13)

C

(
ρ0kmax
〈k〉

)
>
µ+DI

β
, (1.3)

where 〈k〉 =
∑

k kp(k) is the mean degree of the network, kmax is the maximum degree of a
node and ρ0 is the initial mean population per node. It is worth noting that this result extends
a well known estimation of the epidemic threshold previously obtained in the particular case of
uncorrelated networks (Corollary 9 of [23]). As an example, taking C(x) := xα for 0 < α ≤ 1 (a
generalized unlimited or density-dependent transmission) the inequality can be read as

β >

(
〈k〉

ρ0kmax

)α
(µ+DI)

so giving an estimate of the critical epidemic transmissibility βc. Observe that for very big net-
works the quotient 〈k〉/ρ0kmax is small. So this condition implies, in practice, the lack of an
epidemic threshold for large networks with a fixed mean degree and nodes with large enough
maximum connectivity. In contrast, this is not the case for mid-size networks (with, say, several
hundreds of nodes). For such objects it makes sense to investigate the goodness of the previous
estimation. Observe that the inequality (1.3) does not take into account the degree correlations, in
the sense that it does not depend on the conditional probabilities P (k|k′). Since the degree corre-
lations are expected to play a central role in the disease propagation, the estimate cannot be good
in general. We prove (Theorem 14) a slight refinement of the previous estimation. It states that a
condition for the disease-free equilibrium to become unstable is that, for some degree k,

C

(
ρ0k

〈k〉

)
>
µ+DI(1− P (k|k))

β
. (1.4)

In Section 5. we compare the bounds of βc obtained respectively from Theorems 13 and 14 for
several networks with a fixed degree distribution when the Pearson correlation coefficient ranges
from values close to −1 (dissortative network) to values close to 1 (assortative network). In each
case we also compute numerically the theoretical critical value of βc, showing that for highly
correlated networks the estimate given by Theorem 14 is much better.
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2. General equations and the disease-free equilibrium
Consider a local population of S susceptible and I infected individuals. Set x = S + I . The
number of potentially infective contacts is given by C ×S × I

x
, where C is the number of contacts

randomly established by each susceptible individual among the whole local population and I/x
is the probability that one of such contacts is of type S ↔ I . We will assume that in general
C is not a constant, but can take several functional forms C(x) according to any of the classical
laws of infection [17, 24]. Among them, C(x) = 1 (limited or frequency-dependent transmission),
C(x) = axα with a > 0 and 0 < α ≤ 1 (a generalized unlimited or density-dependent transmission
[1, 17]), or C(x) = ax/(b+ x) with a, b > 0 (saturating contact rate transmission [9]). Wherever
possible, we will work with a general positive, non-decreasing function C(x).

According to the derivation in [22] of the continuous-time formulation for the progress of
diseases on metapopulations, the equations governing the dynamics of the disease propagation are

d ρS,k
dt

= ρI,k

(
µ− βC(ρk)

ρS,k
ρk

)
−DSρS,k(1− P (k|k)) + kDS

∑

k′ 6=k

P (k′|k) 1
k′
ρS,k′ (2.1)

d ρI,k
dt

= ρI,k

(
βC(ρk)

ρS,k
ρk
− µ

)
−DIρI,k(1− P (k|k)) + kDI

∑

k′ 6=k

P (k′|k) 1
k′
ρI,k′ (2.2)

which can be rearranged as

d ρS,k
dt

= ρI,k

(
µ− βC(ρk)

ρS,k
ρk

)
−DSρS,k + kDS

∑

k′

P (k′|k) 1
k′
ρS,k′

d ρI,k
dt

= ρI,k

(
βC(ρk)

ρS,k
ρk
− µ

)
−DIρI,k + kDI

∑

k′

P (k′|k) 1
k′
ρI,k′

where, for the sake of simplicity, we have dropped the time argument from the the equations.
Observe that we have a system of 2n differential equations, where n is the number of degrees
present in the network. From now on we will use the following standing notation. The degrees
present in the network will be denoted by

kmin = k1 < k2 < . . . < kn = kmax.

At this point it is convenient to perform a change of notation to have the state variables of the
equations indexed from 1 to n. Set Si := ρS,ki and Ii := ρI,ki for 1 ≤ i ≤ n. With this notation,
the previous equations read as

d

dt
Si(t) = Ii

(
µ− βC(Si + Ii)

Si
Si + Ii

)
−DSSi + kiDS

∑

j

P (kj|ki)
1

kj
Sj (2.3)

d

dt
Ii(t) = Ii

(
βC(Si + Ii)

Si
Si + Ii

− µ
)
−DIIi + kiDI

∑

j

P (kj|ki)
1

kj
Ij (2.4)
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We recall [15] that multiplying equations (2.3) and (2.4) by p(ki), summing over all i, and
using (1.1) yields that the mean population per node ρ(t) remains constant. From now on, this
constant will be denoted by ρ0.

For any matrix M , the entry placed at row i, column j will be denoted by Mij . Following [15],
we define the elements of the connectivity matrix C as

Cij =
ki
kj
P (kj|ki).

Observe that C is an n× n nonnegative matrix. We recall that a square matrix M with nonneg-
ative entries is called reducible if there exists a permutation matrix P such that

P−1MP =

(
M11 0
M21 M22

)
(2.5)

where M11 and M22 are square matrices of sizes l × l and m × m (l,m ≥ 1) respectively and 0
stands for the l ×m matrix whose entries are all 0. If there does not exist such P then the matrix
M is called irreducible.

The spectral radius of a square matrix M will be denoted by σ(M). We recall that it is defined
as the maximum of the moduli of the eigenvalues of M .

The following result states some basic properties of the connectivity matrix.

Lemma 1. Let C be the connectivity matrix. Then:

a) C is irreducible.

b) The vector v = (k1, . . . , kn) is an eigenvector of C of eigenvalue 1.

c) σ(C) = 1, σ(C) is a simple eigenvalue of C, and any nonnegative eigenvector of C is a
multiple of v.

Proof. To prove (a), assume that C is reducible, so that C can be written as
(
C11 0
C21 C22

)

for some square matrices C11 and C22 of sizes l× l and m×m (l,m ≥ 1) respectively. This means
that there exists a proper subsetX = {j1, . . . , jl} of degrees such that P (k′|k) = 0 for any k′ /∈ X .
In consequence, the network is disconnected, in contradiction with the hypotheses. To prove (b)
observe that the i-th entry of C · v is

n∑

j=1

Cijkj = ki

n∑

j=1

P (kj|ki) = ki.

Finally, (c) is a consequence of (a), (b) and the Perron-Frobenius Theorem (see Theorem 8.4.4 of
[13] for instance).
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Lemma 1(c) can be used to prove that the system of differential equations given by (2.3) and
(2.4) has a unique disease-free equilibrium, that is, a steady state {S?i , I?i } for which I?i = 0 and
S?i > 0 for all 1 ≤ i ≤ n. The result is well known for some particular classes of transmission (see,
for instance, Theorem 2 of [23]) and the proof can be straightforwardly extended to our general
setting.

Theorem 2. There is only one disease-free equilibrium of the equations (2.3) and (2.4) and it is
given by S?i = ρ0ki/〈k〉, I?i = 0 for 1 ≤ i ≤ n, where 〈k〉 =

∑
k kp(k) is the mean degree of the

network.

Proof. Setting d
dt
Si(t) =

d
dt
Ii(t) = I?i = 0 yields

S?i =
∑

j

CijS?j .

A solution for this equation has to be an eigenvector of C of eigenvalue 1. By Lemma 1(c), it has
to be S?i = αki for some α and all i. To determine α, simply observe that

ρ0 =
∑

i

p(ki)S
?
i =

∑

i

p(ki)αki = α〈k〉.

3. The spectrum of the connectivity matrix
In this section we look closer at the spectrum of the connectivity matrix. We start by proving that
C is similar to the stochastic matrix defined by the conditional probabilities P (i|j). From now on,
diag(a1, a2, . . . , an) will stand for a diagonal matrix D such that Dii = ai. A nonnegative square
matrix will be called row (column) stochastic if each row (column) sums to 1. The spectrum of a
square matrix M will be denoted by sp(M). The transpose of M will be denoted by MT . From
now on, P will denote the n×n matrix such that Pij = P (kj|ki). Observe that P is row stochastic
(so, P T is column stochastic). We also recall that the spectral radius of any (row or column)
stochastic matrix is 1 and that it corresponds to an eigenvalue.

Lemma 3. Let A = diag(k1, . . . , kn). Then, A−1CA = P .

Proof. Set X := CA. Then, Xij =
∑n

m=1 CimAmj = CijAjj = kiP (kj|ki). Therefore,

(A−1CA)ij =
n∑

m=1

(A−1)imXmj = (A−1)iiXij =
1

ki
kiP (kj|ki) = P (kj|ki) = Pij.

Corollary 4. sp(C) = sp(P ) = sp(P T ). In particular, 1 is a simple maximal eigenvalue of C.

6



D. Juher et al. Spectral properties of the connectivity matrix

Proof. The equalities of the spectra follow from Lemma 3. The fact that 1 is a simple eigenvalue
was stated in Lemma 1(c).

In principle, sp(C) could contain complex eigenvalues. Next we will prove that P T is similar
to a real n × n symmetric matrix. From this fact and Corollary 4 we get that the spectrum of C is
real and contained in [−1, 1] (Proposition 6).

Lemma 5. Let B = diag(v1, . . . , vn), with vi =
√
kip(ki). Then, B−1P TB is symmetric.

Proof. Let X = B−1P T and Z = XB. Then,

Xij =
n∑

l=1

(B−1)il(P
T )lj = (B−1)ii(P

T )ij =
P (ki|kj)√
kip(ki)

.

Therefore,

Zij =
n∑

l=1

XilBlj = XijBjj = P (ki|kj)

√
kjp(kj)

kip(ki)
.

Now, a straightforward computation using (1.1) shows that Zij = Zji.
As an immediate corollary of the above results we obtain

Proposition 6. All the eigenvalues of C are real and contained in [−1, 1]. In particular, 1 is a
simple maximal eigenvalue of C.

We recall that a square nonnegative matrix M is called primitive if and only if there exists
m ≥ 1 such that all entries of Mm are positive.

Remark 7. From the definition of the connectivity matrix it immediately follows that C is primitive
if and only if P is primitive (equivalently, if and only if P T is primitive).

The statement of Proposition 6 can be slightly improved by adding the extra hypothesis of
primitivity on C. This is a consequence of a well known fact (see for instance Theorem 1.7 of [3]):
for any primitive matrix M , σ(M) is greater in magnitude than any other eigenvalue. Thus we get
the following result:

Proposition 8. If C is primitive, then all the eigenvalues of C are real and can be labeled in such a
way that −1 < λ1 ≤ λ2 ≤ . . . ≤ λn−1 < λn = 1.

In fact, the primitivity condition in Proposition 8 is not restrictive. To see it, let us recall some
simple and well known facts about matrices and associated graphs (see Chapter 2 of [3]). LetM be
anm×m nonnegative matrix. ToM one can associate a directed graphG ofm vertices v1, . . . , vm
in such a way that there is a directed link from vi to vj if and only ifMij 6= 0. The adjacency matrix
of G is an m ×m matrix A such that Aij = 1 if there is a directed link from vi to vj and Aij = 0
otherwise. A simple circuit in G is a sequence of vertices vi0 , . . . , vil such that vi0 = vil , there is a
directed link in G from vij to vij+1

for 0 ≤ j < l and vi1 , . . . , vil are all distinct. In this case, l is
the length of such circuit. It is well known that M (equivalently, A) is primitive if and only if the
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1

3

2

G G̃

Figure 1: A graph G and its corresponding degree graph G̃

greatest common divisor of the lengths of all simple circuits in G is 1 (see Theorem 2.30 of [3]).
In particular, M (equivalently, A) is primitive if there is a diagonal entry different from 0. Now
observe that when A is a symmetric matrix (equivalently, when Mij = 0 if and only if Mji = 0),
the graph G can be thought as a non-directed graph, since any pair of directed links (from vi to vj
and from vj to vi) can be thought as an undirected link joining vi and vj . In this case, either some
diagonal entries of A are different from 0 or there are simple circuits of length 2 (take i 6= j such
that Aij 6= 0 and consider the simple circuit given by the triplet vi, vj, vi). Then, A and M are
primitive if there are simple circuits in G of odd length. Collecting it all, we have the following
result.

Lemma 9. Let A be the adjacency matrix of an undirected network G. Then, A is primitive if and
only if there are simple circuits of odd length in G.

Now we turn back to our situation, so thatG is the (undirected) population network ofN nodes,
there are n different degrees k1 < k2 < . . . < kn and C is the connectivity matrix, of size n × n.
To C we can then associate a graph G̃ of n nodes {k1, . . . , kn}, which we call the degree network.
Let A be the adjacency matrix of G. Observe that A is symmetric and that if Aij 6= 0 then Ckl 6= 0,
where k and l are the degrees of vi and vj respectively. Conversely, if Ckl 6= 0 then there exist
vertices vi and vj of respective degrees k and l which are adjacent in G. Moreover, from (1.1) it
follows that the adjacency matrix of G̃ is symmetric (equivalently, the graph G̃ is undirected). See
Figure 1 for an example. We have the following result.

Theorem 10. Let A be the adjacency matrix of an undirected network G. Let C be the connectivity
matrix. If A is primitive, then C is primitive.

Proof. Let Ã be the adjacency matrix of the corresponding degree network G̃. To see that C is
primitive it is obviously enough to see that Ã is primitive. Observe that if there are two adjacent
nodes in G with the same degree k, then Ãkk 6= 0 and, in consequence, Ã is primitive by Lemma 9.
So we are done in this case. From now on, assume that there are no adjacent nodes in G with the
same degree. By Lemma 9, there is a simple circuit x0, x1, . . . , xl = x0 in G with l ≥ 3 odd. For
0 ≤ i ≤ l, let di be the degree of the node xi inG. If all di are distinct, then d0, d1, . . . , dl is a simple
circuit of odd length in G̃. In consequence, by Lemma 9, Ã is primitive and we are done. So, let
us assume that there are at least two indices i1 < i2 < . . . < ir such that di1 = di2 = . . . = dir .
Without loss of generality we can assume that i1 = 0 and ir ≥ l−2. Now consider the intermediate
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circuits in G̃: dij , dij+1, . . . , dij+1
, for 1 ≤ j < r, together with the circuit dir , dir+1, . . . , dl = d0.

Observe that, since the sum of the lengths of such circuits is l, odd, at least one of these lengths
is odd. If the corresponding circuit in G̃ is simple, we are done by Lemma 9. Otherwise, we can
repeat the argument starting from the corresponding circuit (whose length is strictly smaller than
l).

Of course, the converse of Theorem 10 is not true. For an example, consider the graph G and
its corresponding degree graph G̃ depicted in Figure 1. For a convenient labeling of the nodes, the
respective adjacency matrices A and Ã read as

A =




0 1 0 0 0
1 0 1 0 1
0 1 0 1 0
0 0 1 0 1
0 1 0 1 0



, Ã =




0 0 1
0 1 1
1 1 0


 .

It is easy to check that A is not primitive, while Ã (and, so, the associated connectivity matrix C)
is primitive because in particular Ã22 6= 0.

Now we are ready to discuss the primitivity condition on C in Proposition 8. Typically, the
population network is a large graph randomly constructed from the configuration model. In other
words, it is a randomized realization of the particular probability distributions p(k) and P (k|k′).
Of course, with a high probability this network will have simple circuits of odd length. In conse-
quence, by Lemma 9 and Theorem 10, the associated connectivity matrix C will be primitive. Even
when the obtained network does not fulfill this condition, with a certain probability there will be
two adjacent nodes with the same degree k. In this case, independently of the primitivity of the
adjacency matrix we will have Ckk 6= 0 and, in consequence, C will also be primitive. But even
in the very unlikely case in which all these conditions fail (consider for instance an exponential
or a scale-free network G obtained by a growing mechanism [2, 12] such as the addition of new
nodes of degree 1 which leads to a tree, without circuits of odd length), if for some reason we
need the connectivity matrix to be primitive, then we can slightly modify the network by choosing
a node v and attaching to it a chain of three new consecutive nodes {w1, w2, w3} such that w1

and w2 have degree 2 and w3 has degree 1. Now observe that the associated connectivity matrix
satisfies C22 6= 0 and is, in consequence, primitive. For a large network, this minor modification
does not significantly change its statistical properties and, in consequence, at least intuitively, is
not expected to change the global behaviour of the infection spread.

4. An estimation of the epidemic threshold
Linearizing the system of differential equations (2.3) and (2.4) at the disease-free equilibrium one
gets that the associated Jacobian matrix is

J =

(
X Y
0 Z

)
(4.1)
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where X , Y , Z are n×n matrices, with X = DS(C− Id) and Z = diag(βC(S?i )−µ−DI)+DIC
which, by Theorem 2, equals diag(βC(ρ0ki/〈k〉) − µ − DI) + DIC. This is a standing notation
for the rest of this section. We start by using the results of the previous sections to show that the
spectrum of J is real.

Proposition 11. All the eigenvalues of the Jacobian matrix J are real.

Proof. By (4.1), the spectrum of J equals sp(X)∪sp(Z). From Proposition 6 it follows that all the
eigenvalues of C− Id (in consequence, those ofX) are real. Let us see that those of Z are also real.
Set D := diag(βC(ρ0ki/〈k〉) − µ −DI). Then, Z = D +DIC. Now set A := diag(k1, . . . , kn).
Then, A−1ZA = D +DIA

−1CA which, by Lemma 3, equals D +DIP . Therefore,

sp(Z) = sp(D +DIP ) = sp(D +DIP
T ). (4.2)

Now set B := diag(v1, . . . , vn), with vi =
√
kip(ki). From (4.2) it follows that

sp(Z) = sp(B−1(D +DIP
T )B). (4.3)

Now observe that B−1(D +DIP
T )B = D +DI(B

−1P TB) which, by Lemma 5, is a symmetric
matrix and has, in consequence, all its eigenvalues real.

Next we look closer at the spectrum of the Jacobian matrix J in order to find sufficient condi-
tions of instability for the disease-free equilibrium. The proofs of Theorems 13 and 14 are based
on the following result.

Lemma 12. LetD = diag(d1, . . . , dn) and assume that di > 0 for some i. LetM be an irreducible
nonnegative matrix and let r > 0. Then, the matrix D + rM has a positive eigenvalue.

Proof. Relabel the diagonal elements of D as ai in such a way that a1 ≤ a2 ≤ . . . ≤ an. Suppose
that a1 > 0. Then, D + rM is an irreducible nonnegative matrix. Thus, by Perron-Frobenius
Theorem, σ(D + rM) > 0 is an eigenvalue of D + rM and we are done.

Now assume that a1 < 0. Take any x > |a1| > 0. By the same argument, σ(D+xId+rM) > 0
is an eigenvalue of D+xId+rM . In consequence, λ := σ(D+xId+rM)−x is an eigenvalue of
D+rM . Let us show that λ > 0. Observe thatD+xId+rM ≥ D+xId ≥ 0 (by abuse of notation,
here the inequalities hold entrywise). In consequence, (D+ xId+ rM)m ≥ (D+ xId)m for every
m ≥ 1. Since σ(X) = limm→∞ ||Xm||1/m for any matrixX and any entrywise norm ||·||, it follows
that σ(D+xId+rM) ≥ σ(D+xId) = an+x. Therefore, λ = σ(D+xId+rM)−x ≥ an > 0.

Theorem 13. A sufficient condition for the disease-free equilibrium to become unstable is

C

(
ρ0kmax
〈k〉

)
>
µ+DI

β
.

Proof. Recall that sp(J) = sp(X) ∪ sp(Z) according to (4.1). From Proposition 6 it follows
that all the eigenvalues of C − Id (in consequence, those of X) are negative or zero. On the other
hand, since C(x) is a non-decreasing function by hypothesis, it turns out that the largest diagonal
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element of D := diag(βC(ρ0ki/〈k〉) − µ − DI) is obtained by taking ki = kmax. In addition, C
is irreducible by Lemma 1(a). Therefore, using Lemma 12 with r = DI and M = C we get that
if βC(ρ0kmax/〈k〉) − µ −DI > 0 then sp(Z) contains a positive eigenvalue and the disease-free
equilibrium is unstable.

Observe that the instability condition given by Theorem 13 is independent of the conditional
probabilities P (k|k′). In other words, it is independent from the degree correlations. Since cor-
relations in the contact network structure are expected to play some kind of role in the disease
spread, the inequality in Theorem 13 cannot be an optimal estimate of the epidemic threshold in
general. The following refinement of Theorem 13 can be a much better estimate in some cases (for
example, highly correlated mid-size networks, as discussed in the next section).

Theorem 14. A sufficient condition for the disease-free equilibrium to become unstable is that, for
some 1 ≤ i ≤ n,

C

(
ρ0ki
〈k〉

)
>
µ+DI(1− P (ki|ki))

β
.

Proof. We recover the notation used in the proof of Theorem 13. Observe that the matrix Z can
be also written as diag(βC(ρ0ki/〈k〉) − µ − DI + DIP (ki|ki)) + DIC?, where C? is the matrix
obtained from C replacing all its diagonal entries by 0. Since the irreducible character of a matrix
is not affected by its diagonal entries, C? is irreducible (and nonnegative). Thus we can use again
Lemma 12 with D = diag(βC(ρ0ki/〈k〉)− µ−DI +DIP (ki|ki)), r = DI and M = C? in order
to obtain the desired condition.

Intuitively, the term 1 − P (ki|ki) in the statement of Theorem 14 accounts for the infected
individuals diffusing from patches of degree ki to adjacent patches of degree different from ki, thus
contributing to the decrease of Ii. Observe the second term in the right hand side of equation (2.2).

5. Simulations
We will work with the contact function C(x) = xα for 0 < α ≤ 1. For every network considered
in this section, we will distribute the individuals in such a way that, at time t = 0, every node v
contains k + 10 individuals, where k is the degree of v. In consequence, ρ0 = 〈k〉 + 10. Taking
it all into account, Theorem 13 implies that the disease-free equilibrium is unstable when β > β0,
where

β0 = (µ+DI)

(
〈k〉

(〈k〉+ 10)kmax

)α
. (5.1)

On the other hand, Theorem 14 tells us that the disease-free equilibrium is unstable if β > β1,
where

β1 = min
i=1,...,n

{(
µ+DI(1− P (ki|ki))

)( 〈k〉
(〈k〉+ 10)ki

)α}
. (5.2)

Observe that β0 depends only on the degree distribution p(k), while β1 depends also on the diagonal
of the conditional probability matrix P .
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Figure 2: Critical transmission rate estimations vs. correlation in an Erdős-Renyi network, N =
500, 〈k〉 = 6, α = 0.5, µ = DI = 1.

To demonstrate the role of correlations in the estimation of the epidemic threshold given by
(5.2) we have performed a sequence of experiments as follows. We start by fixing a degree dis-
tribution p(k). Then, using the classical configuration model, we randomly generate a mid-size
network (N = 500 nodes) whose degree distribution fits to p(k). We will refer to this network,
which in general is uncorrelated, as X0. To measure the correlations present in a given network X
we will use the classical Pearson coefficient r computed from the two random variables defined by
the degrees of the nodes at both ends of randomly chosen links in X (see [20]). Values of r close
to −1 (respectively 1) account for dissortative (resp. assortative) networks, while values close to 0
correspond to uncorrelated networks. We will proceed as follows. Starting from X0, we will use
a well-known rewiring algorithm, first introduced by Xulvi-Brunet and Sokolov in [25], in order
to change correlations in X0 without modifying its degree distribution. Roughly speaking, at each
step a pair of non connected links are chosen at random and their four endpoints are cross rewired,
if necessary, in order that the new links connect the two nodes with the smaller degrees and the
two nodes with the larger degrees. In the dissortative version of the algorithm, we rewire in such
a way that one of the new links connects the node with the largest degree to the node with lowest
degree. In fact we use a slightly modified version of these algorithms to assure that the obtained
networks are always connected. We execute 5000 iterations of both algorithms, starting from X0,
to get correlated networks with degree distribution p(k) and coefficients r ranging from 0 to values
close to 1 (respectively, −1). Of course, |r| does not really attain values very close to 1 due to the
finite size effect. Every 500 iterations we compute the corresponding coefficient r and the constant
β1 as in (5.2). In addition, we compute numerically β2, defined as the value of β for which the
largest eigenvalue of the lower right diagonal block Z of the Jacobian matrix (4.1) is zero, so that

12
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β2 can be viewed as the theoretical epidemic threshold.
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Figure 3: Critical transmission rate estimations vs. correlation in an exponential network, N =
500, 〈k〉 = 4, α = 0.5, µ = DI = 1.

The results for a particular Erdős-Renyi network with N = 500, 〈k〉 = 6, α = 1/2, µ =
DI = 1 and ρ0 = 〈k〉 + 10 are shown in Figure 2. For this network, the degrees ki range from 1
to 17, β0 = 0.299605, the coefficients r range from −0.771773 to 0.793681 and β1 ranges from
0.230613 to 0.272136. The optimal critical transmissibility rates β2, computed numerically from
the Jacobian matrix at the disease-free equilibrium, are also shown. As can be seen the bound at
the critical transmission rate given by β1 improves significatively the one given by β0, in particular
for the highly correlated cases. The biggest improvement is obtained for dissortative networks.

The same experiment was performed with exponential networks, that is, p(k) ∼ e−k/〈k〉. In
Figure 3 we have shown a particular realization of the experiment, with N = 500, 〈k〉 = 4,
α = 1/2, µ = DI = 1 and ρ0 = 〈k〉 + 10. In this case the degrees present in the network are
{1, 2, . . . , 19, 25, 26}, β0 = 0.241106, the coefficients r range from −0.7801048 to 0.749340 and
β1 ranges from to 0.195327 to 0.227773. Again the bound given by β1 is closer to the theoretical
threshold β2 in the dissortative cases.

Finally, scale-free networks of N = 500 nodes have been generated via the classical preferen-
tial attachment mechanism [2], with 〈k〉 = 6. The corresponding results for one of such networks,
with µ = 1, α = 1/2, DI = 5 and ρ0 = 〈k〉 + 10, are shown in Figure 4. The degrees present in
the network are {3, 4, . . . , 18, 21, 23, 35, 36, 44, 46, 55, 58, 62, 63, 73, 79}, β0 = 0.415264 and the
coefficients r range from−0.353693 to 0.087138. Observe that the scale-free architecture enforces
a major restriction on the maximum possible value of the correlation coefficient. In this case, β1
ranges from 0.189496 to 0.380368. In contrast to the previous cases, here the improvement given

13



D. Juher et al. Spectral properties of the connectivity matrix

−0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Pearson coefficient r

Critical transmission rate vs. correlation in a scale−free network

 

 

β

β
0

β
1

β
2

Figure 4: Critical transmission rate estimations vs. correlation in a scale-free network, N = 500,
〈k〉 = 6, α = 0.5, µ = 1, DI = 5.

by β1 grows very quickly even for a small increase of the assortativity.

6. Conclusions
We consider the spread of an infectious disease in a heterogeneous metapopulation defined by a
general network. The infection evolves under transmission, recovery and migration mechanisms.
We also consider that in each node the infection is modeled by the classical transmission laws
with general positive non-decreasing contact functions. Two conditions that ensure the instability
of the disease-free equilibrium of the system were obtained, Equations (1.3) and (1.4). While
the first one was previously obtained for the particular case of uncorrelated networks, as far as
we know the second one is new. This last condition takes into account some of the probabilities
involved in the conditional degree distribution and, hence, it is expected to give better estimations
for the sufficient conditions of instability of the disease-free equilibrium, especially in the case of
correlated networks.

In practice, both conditions imply the lack of an epidemic threshold for large networks with a
fixed mean degree and nodes with large enough maximum connectivity. For mid-size networks,
however, both conditions (1.3) and (1.4) give bounds for the critical values of the parameters (those
that guarantee the instability of the disease-free equilibrium). We have investigated the quality of
the new condition with respect the classical one by studying the behavior of the bounds for the
critical transmission rate in a number of networks with different degree distributions and a range
of correlation coefficients. The results are in good agreement with the assertion that condition (1.4)
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gives a more accurate estimation of the epidemic threshold, especially for correlated networks.
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