UNIVERSITAT POLITECNICA
DE CATALUNYA

Sampling C-obstacles border using a filtered
deterministic sequence

Jan Rosell, Alexander Pérez.

10C- Divisio de Robotica

10C-DT-P-2008-10
Setembre 2008

Institut d’Organitzacié i Control

de Sistemes Industrials

Sampling C-obstacles border using a filtered
deterministic sequence

Jan Rosell and Alexander Pérez

Abstract

This paper is focused on the sampling process for path planners based on probabilistic roadmaps. The paper
first analyzes three sampling sources: the random sequence and two deterministic sequences, Halton and s4(k),
and compares them in terms of dispersion, computational efficiency (including the finding of nearest neighbors),
and sampling probabilities. Then, based on this analysis and on the recognized success of the Gaussian sampling
strategy, the paper proposes a new efficient sampling strategy based on deterministic sampling that also samples
more densely near the C-obstacles. The proposal is evaluated and compared with the original Gaussian strategy
in both 2D and 3D configuration spaces, giving promising results.

I. INTRODUCTION

The sampling-based approach to path planning consists in the generation of collision-free samples
of configuration space (C-space) and in their interconnection with free paths, forming either roadmaps
(PRM [1]) or trees (RRT [2]). PRM planners are conceived as multi-query planners, while RRT planners
are developed to rapidly solve a single-query problem. These methods are giving very good results, being
its success mainly due to its sampling-based nature, i.e. they do not require the explicit characterization
of the obstacles of C-space and its efficiency relies on the sample set. Therefore, the generation of
samples is one of the crucial factors in the performance of sampling-based planers.

Sampling-based methods based on probabilistic sampling are demonstrated to be probabilistic com-
plete, e.g. for the basic PRM method the number of samples necessary to achieve a probability of
failure below a given threshold has been determined [3]. For difficult path-planning problems, however,
like those involving narrow passages, this number might be quite large and, therefore, importance
sampling methods have been introduced. Those strategies increase the density of sampling in some
areas of C-space, thus facilitating the finding of a solution using a reasonable amount of samples. A
good classification of importance sampling methods can be found in [4], that divide them by the type
of strategy followed: those that bias samples using workspace information (e.g. [5], [6]); those that
over-sample the C-space but quickly filter any not-promising configuration (e.g. [7], [8]); those that bias
the sampling using the information gathered during the construction of the roadmap or tree (e.g. [9],
[10]); and those that deform (dilate) the free C-space to make it more expansive to easily capture its
connectivity (e.g. [11], [12]).

Sampling-based methods usually rely on the use of a random number generation source, although
the use of deterministic sampling sequences has also been proposed [13]. Deterministic sampling has
proven slightly better results than random sampling in roadmap planners for few degrees of freedom
tasks [4], [14]. For motion planing purposes, the desired feature of deterministic sampling sequences is
to provide a good incremental and uniform coverage of C-space. The Halton sequence [15] is a low-
discrepancy sequence that satisfies this requirement. Nevertheless, another useful property is to have a
lattice structure to easily allow the determination the neighborhood relations. This can be fulfilled by
methods based on multisresolution grids [16], [17]. When this lattice structure is not provided, efficient
nearest neighbor searching must be adopted to decrease the computational cost of this much required
operation [18].

This work was partially supported by the CICYT projects DP12005-00112 and DPI2007-63665.
The authors are with the Institute of Industrial and Control Engineering - Technical University of Catalonia, Barcelona, Spain
jan.rosell@upc.edu

Rendom Samples : Samples= 100 Dimension=2 Halton Samples: Samples= 100 Dimension= 2 SDK Samples: Samples= 100 Dimension= 2

09 = . ‘o 1 ook e, . 4 09
08 : " : 4 osf. .- . “ osf -
07| 4 : 2 - 07 " * ¢ & - 4 07

ot " g ¢ s @ 8 08f . . . 2 4 1 08

04 Fe u A ¥ . 2 4 08 : 5 ¢ 1 04
(L1 S : : s ! 03 . : " % e 03f ¢

02 v - 02F - 5 . ¢ 4 [F1

01 § 4 01 3 3 : o ¥y = 01

0 01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 08 07 08 09 1 0 01 02 03 04 05 06 07 08 08 1
X Ads X Avis X Avis

Fig. 1. 100 samples generated using random (left), Halton (middle) and sq(k) (right) sequences.

II. MOTIVATION, OBJECTIVES AND OVERVIEW

Deterministic sampling has given relative good results in comparison with random sampling when
basic sampling-based planners are used (i.e. using uniform distributions), but this advantage diminishes
when non-uniform sampling is considered, like the Gaussian sampling strategy, being the selection of
a non-uniform sampling the relevant issue rather than the sampling source [4]. However, no sampling
strategy has yet taken full profit of the use of a deterministic sampling source. Therefore, the aim of
this paper is the proposal of an efficient non-uniform sampling strategy based on deterministic sampling
that, like the Gaussian sampling strategy, sample more densely near the C-obstacles.

The paper is structured as follows. Section III makes a comparative study of sampling sources
based on dispersion, computational efficiency (including the finding of nearest neighbors), and sampling
probabilities. Section IV then proposes the new sampling strategy inspired by the Gaussian sampling
strategy and based on the previous study, that is evaluated in Section V. Finally Section VI discusses
the results and the contributions of the paper.

III. ANALYSIS OF SAMPLING SOURCES
A. The sampling sources under study

The following three sampling sources are considered to sample a d-dimensional unitary hypercube
representing the C-space: the random sequence and the deterministic sequences of Halton [15] and
sa(k) [17].

The random sequence: This sequence is usually obtained using a pseudo-random number generator
with long period and good statistical acceptance; for the present study the one provided by [19] is used.
A sample of the random sequence is:

(1,2, ...,24) with x; =rand{[0,1)} and j =1..d (1)

The Halton sequence: This deterministic sequence is a d-dimensional generalization of the van der
Corput sequence. It is constructed as follows. Let py, po, ..., pg be d distinct primes, k& be the index
of the sequence and ag + pa; + p*as + ... with a; € {0,1,...,p} be the base p representation of k.
Then, the kth sample of the Halton sequence is':

. ap ai as
(Tp17/rp27“'7rpd) with Tpi(k):E+])—?+Z?—?+... 2)
The sq(k) sequence: This sequence introduced in [17] is a deterministic sampling sequence based on

a multi-grid cell decomposition with an efficient cell coding and on the use of the digital construction
method, first proposed in [16].

'Implementation available from http://people.scs.fsu.edu/~ burkardt.

Let M be the maximum partition level (i.e. M-cells have sides of size 27). The s4(k) sequence is
a sequence of M-cells; the samples are random configurations within those M -cells. Then, the code of
the kth sample is obtained as follows?:

sa(k) = (T, - w™ 3)

10

11) VM is the binary d x M index matrix

where T, is a d X d binary matrix, e.g. Ty, =

corresponding to an M-cell with code k, e.g. V& = (8 é (1)) - see Fig.4 (left)-, and W' is a dx M

matrix of weights, with w]; =20~V forie1...dand je1...M, e.g. W" = é g Zl))g .
Let (w}, ... w)") be the indices of the cell with code s4(k). Then the coordinates of the kth sample
are randomly chosen within the cell:
z; = rand{[w} 27" (wM +1)27")} Vjel...d “4)

When £k is greater than 2?M the sequence repeats the cell codes generated, but the samples are different
since the configuration coordinates are randomly chosen.
In the implementation done for the present study, a random initial value has been introduced:

sh(k) = sq((k +7)%2) with r = rand{[0,27"™ — 1)} 5)

% being the modulo operator.
To illustrate the three sequences considered, Fig. 1 shows the first 100 samples obtained for each of
them.

B. Study of dispersion

This section compares the uniformity obtained by the different sampling sources under study. Dis-
persion is the uniformity measure that best suits path planning purposes since it is a metrics-based
criterion that measures the radius of the largest empty hypersphere that can be inscribed in the space
being sampled [14]. Let X = [0, 1]d C R? be such space and P be the set of samples taken from X.
Then, dispersion for P is defined as:

§(P, p) = supmin p(q,p) (6)
qeX peP
being p any metrics on X.

An analytical expression of the dispersion can be obtained as the function that best fits the normalized
and approximate values of dispersion. It is done as follows. First, an approximate value of dispersion
is computed (after the generation of each sample in the sequence) by considering a set () of control
points of a fine regular grid:

(P, p) = supmin p(q, p) (7)
qeQ peP
p being the Euclidean distance.

Then, in order to make equivalent the values of dispersion for different dimensional spaces, the
obtained dispersion is normalized by a factor v/d. Also, in order to take into account that the higher d
the more samples are needed to obtain the same dispersion, a fixed set of N normalized samples are
considered, i.e. those with index: (int)(i(¥/?), i = 1..N, (e.g. the 4th normalized sample corresponds
to the 4th and to the 8th samples of the sequences s»(k) and s3(k), respectively).

“The operation A - B represents the scalar product of matrices A and B, and AB is the standard binary matrix multiplication between
matrices A and B.

0,6

o
=)

persion
spersion
IS)
ES n
1 1
persion
o o
S o

normalized_dis|
normalized_dis
normalized_dis|

o
w
1
o
w

o
N

0,2+

L e e I LI B e e e 0.1 e o e e e I B e e LA A i e
25 50 75 100 25 50 75 100

normalized_samples normalized_samples

Lo b b L a1 baagr a1 g

=}
i

R R
10 20 30 40 50 60 70 80 90 10
normalized_samples

Fig. 2. Analytical curves that fit the dispersion approximated by Eq. (7): sq¢(k) (left), Halton (middle) and random (right).

T T
25 50 75 100
Normalized_samples

— T T 0
5 50 75 100 250 500 750 1,000 250 500 750 1,000

Fig. 3. Dispersion for the random (blue), Halton (green) and sq(k) (red) sequences for d = 2 (left), d = 3 (middle-left), d = 6
(middle-right). Right: Normalized dispersion ratios.

Results of the computed normalized dispersion for d = 2 and d = 3 are simultaneously shown in
Fig. 2 for the s4(k), Halton and random sequences. Setting N = 100, the number of samples required
are 100 and 1000 for d = 2 and d = 3, respectively. These values are used to fit the following functions
(shown in blue in the figures):

1 —

foar(t) = m(0.6036—0.40526(0.78621)) -
1 —

fran(t) = W(0.4582—O.32106(11L.00761)) o
1

fra(t) = m(o.mm—0.3474e<—1~3474t>) (10)

For its uses in a given d-dimensional space, these expressions are denormalized, f,, = Vd Frupe(t¥9)
with type = {sdk,ran,hal}. As an example, Fig. 3 shows, for different dimensional C-spaces, the
dispersion measured and the denormalized analytical approximations of the three sequences.

The ratios fsax/fran and fra/fran show that both Halton and s;(k) are better than the random
sequence, being the s,(k) the best one, obtaining a reduction of up to 40% with respect to the random
sequence (Fig. 3b).

C. Computational efficiency

This section compares the computational efficiency of the random and the s4(k) sequences when
generating a set of samples and connecting each of them with its K nearest neighbors. The Halton
sequence is omitted since the cost of generating samples is higher than in the random case and the
same nearest neighbor computation procedure would be used.

y M=3

42|43 | 46| 47| 58|59 | 62| 63 421431 261 471880 591 621 63!
| ‘

40 |41 |44 | 45|56 |57 | 60| 61
34|35 38| 39|50|51| 54| 55

32|33 |36 |37|48(49 |52 | 53
14| 15| 26| 27| 30| 31

12| 13| 24| 25| 28| 29
18 (19| 22| 23

o P N WA OO ~
=
o
-
[
o R, N WA O O
| |

01 2 3 4 5 6 7

7
5 |16 17| 20| 21
3

6
4
2 4 5 6 7

X

Fig. 4. Cell coding (left); Neighbor box (right).

For the random sequence, the procedure used to find the nearest neighbors is the one available
from [18], which is an extension of the algorithm ANN, that is based on an efficient classification of
samples within a kd-tree. The K -neighbors can be searched within a maximum user-specified distance D.
For the s4(k) sequence, on the other hand, a method is implemented that gives the K neighbors within
a given hyperbox, of side s.,. Then, for comparison purposes, the distance D has been set to the value

of the radius r that makes the volume of the hypershere equal to the hyperbox volume (V' = % =
Shox d d
D=r= —I'(d/2) (11)

AR

The computation of neighbors for the sy(k) sequence is done as follows. Consider the finding, for a
sample contained in an M-cell, of all the neighbors within a hyperbox of side sy, = L 27, like
cell 37 in Fig. 4 (right) with L = 5. Let TR and BL be, respectively, the codes of the top-right and
bottom-left corners of the hyperbox (cells 57 and 9 in Fig. 4). Then, the procedure is performed from
the list of cell codes in two steps:

1) Prune all those samples that lies within cells with codes greater than 7'RR or lower than BL (gray
areas in Fig. 4). Depending on the position of the cell, this step makes a more or less efficient
pruning (Fig. 5).

2) For the non-pruned cells in the list determine if they lie within the hyperbox by verifying its
indices (z-index between 1 and 5 and y-index between 2 and 6 in the example of Fig. 4)

Tables I and II show the execution times required for the generation of 10,000 samples and the

neighbor query for 1,000 of them (using K = 50) for C-spaces of 2, 3 and 6 dimensions, run on
a computer with Intel Core 2 Duo processor at 1.8Hz. For the random sequence, the whole set of
samples is first generated for each experiment and then neighbor queries are answered. Therefore, the
construction of the kd-tree required by the ANN-based method is only done once and the construction
time is not reported. The neighbor computation for the s,(k) sequence is, on the other hand, computed
incrementally, i.e. after the generation of each sample. It can be seen that total time is better for the
random sequence (although the difference decreases with dimension), being, on the other hand, the
incremental construction a merit of sy(k).

D. Probabilities

When considering deterministic sequences, like s4(k), one may think that the probability of sampling
a configuration of a given region in n trials can be, for some regions and some value of n, zero. This
is in fact not true if the initial sample of the sequence is selected randomly.

170|171|174|175| 186 187 190 191} 234|235/ 238(239|250| 251|254 (255 170|171|174|175| 186 187 190 191} 234|235|238(239|250|251|254(255

168/169|172|173| 184 185 188 189232|233/236(237 | 248|249|252(253 168/169|172|173| 184 185 188 189232|233/236(237|248|249|252(253

162 163 166 167| 17§ 179 182 183226|227230(231|242|243|246(247 162 163 166/ 167| 17§ 179 182 183226|227230(231|242|243|246(247
16Q 161 164 165| 176 177 180 181} 224|225/ 228|229 | 240|241|244(245 16Q 161 164 165| 176 177 180 181} 224|225/ 228|229 |240|241|244(245
138 139 142 143| 154 155 158 159202(203/206(207|218|219|222(223 138 139 142 143| 154 155 158 159202(203206(207|218|219|222(223
136 137 140 141| 157 153 156 157200201 204(205|216|217|220(221 136 137 140 141| 152 153 156 157)200{201/204(205|216|217|220(221
13(Q 131 134 135| 146 147 150 151 194(195/198(199|210|211|214(215 13(Q 131 134 135| 146 147 150 151§ 194/195/198(199|210|211|214(215
12§ 129 132 139 144 145 148 14919193|196/197|208|209|212(213 12§ 129 132 133| 144 145 148 149192/193|196|197|208|209|212(213

42 |43 | 46| 47)58 |59 | 62| 63| 104107 110111} 122 123 126 127| 42 |43 | 46| 47|58 |59 | 62| 63| 106 107 110111} 122 123 126 127|

40 |41 |44 | 4556 |57 || 60|| 61] 104105 108 109 12Q 121 124 125 40 |41 J44 | 45|56 | 57 | 60] 61] 104 108 108 109 12Q 121 124 125|
34 (35| 38| 39|50 |51 | 54| 55|98]99 (102|103 114 115118 119 34 |35] 38| 39|50|51 | 54f 55] 98|99 |102|103| 114 115118 119

32 (33|36 | 3748 |49 |52 | 53] 9697|100 101] 112 113 116 117 323336 | 37|48 |49 (52§ 53] 96 | 97 | 100 101| 112 113 116 117,

10| 11| 14| 15| 26| 27| 30| 31| 74|/ 75| 78| 79| 90|91 | 94 | 95 10|11} 14| 15| 26| 27| 30] 31| 74| 75| 78| 79| 90|91 | 94 | 95
8 | 9| 12| 13| 24| 25| 28| 29| 72| 73| 76| 77| 88| 89| 92| 93 8 | 9§ 12| 13| 24| 25| 28} 29| 72| 73| 76| 77| 88| 89| 92| 93
2 |3 |6 |7|18]19| 22| 23|66|67| 70| 71|82 (83| 86| 87 2 |3 |6 |7)18]19| 22| 23|66|67| 70| 71|82 (83| 86| 87
O |1 |4 |5 |16| 17| 20| 21|64 65/ 68| 69|80 |81 |84 |85 O |1 |4 |5 |16] 17| 20| 21| 64| 65 68| 69|80 |81 |84 |85

170[171|174(175| 186 187 190 191) 234|235/ 238239 | 250|251|254 255 170{171)174|175| 186 187 190 191 234|235/ 238|239 | 250/ 251|254(255

168/169/172|173| 184 185 188 189 232|233/236(237|248|249|252(253 168/169/172|173| 184 185 188 189 232|233|236(237 | 248|249|252(253
162 163 166 167| 178 179 182 183 226|227| 230|231 | 242|243|246(247 162 163 166 167| 17§ 179 182 183226|227|230|231 | 242|243|246(247

16Q 161 164 165| 176 177 180 181§ 224|225/ 228|229 | 240|241(244/245 16Q 161 164 165| 176 177 180 181} 224|225|228|229 | 240|241|244(245

138 139 142 143| 154 155 158 159202203 206|207 | 218|219(222(223 138 139 142 143| 154 155 158 159202|203|206|207 (218|219|222(223

136 137 140 141| 152 153 156 157200201 204|205 | 216|217(220(221 136 134140 141| 157 153 15¢ 157)200|201| 204|205 |216|217|220(221
13Q 131 134 135| 146 147 150 151§194195|198|199|210|211|214(215 130 133134 135| 144 147 151 151§194/195|198(199 | 210/211|214|215

128 129 132/ 133| 144 145 148 149192/193|196|197 | 208|209(212(213 128 129132 133 144 145 144 149192|193|196|197 | 208|209|212(213
42 |43 | 46| 47|58 |59 | 62| 63] 106 107 110/111] 122 123 126/ 127| 42 |43) 46| 47|58 |59 | 62] 63] 106 107 110/111] 122 123 126 127|

40 |41 |44 | 45|56 | 57 | 60| 61§ 104 105 108 109| 120 121} 124 125| 40 (41 J44 | 45|56 | 57 | 60] 61 104 108 108 109| 120 121 124 125
34 (35| 38| 39| 50|51 | 54 55|98 |99 (102103114 115118 119 34 (35| 38| 39| 50|51 | 54| 55198 |99 102|103| 114 115 11§ 119

323336 | 37|48 |49 |52 | 53] 96|97 |100101§112 113 116 117, 32 (33|36 | 37|48 |49 |52 | 53|96 |97 |100101] 112 113 116 117|
10| 11| 14| 15| 26| 27| 30f 31| 74 75| 78| 79] 90|91 |94 | 95 10| 11| 14| 15| 26| 27| 30| 31| 74| 75| 78| 79| 90|91 |94 | 95

8| 9| 12| 13| 24| 25| 28] 29| 72| 73| 76| 77] 88|89 | 92| 93 8 | 9| 12| 13| 24| 25| 28| 29| 72| 73| 76| 77| 88| 89| 92| 93
2 |3 (6 |7 |18]19| 22]23|66|67| 70| 7182 (83| 86| 87 2 |3 |6 | 71819 22| 23|66|67|70|71|82|83| 86| 87

0|1 |4 |5 [16] 17| 20| 21| 64| 65| 68| 69|80 |81 (84 |85 0 |1 |4 |5 |16| 17| 20| 21| 64| 65| 68| 69|80 |81 |84 |85

Fig. 5. Pruning in neighbor searching.

TABLE 1
COMPUTATION TIMES FOR RANDOM+ANN (ms).
| d | 2 [3 | 6 |

Generation 0.7 1.0 1.8
Neigh. search | 77.6 | 115.9 | 346.0
Total 78.3 | 116.9 | 347.8

In order to ease the computation of sampling probabilities, let consider the samples as cells of a very
fine regular grid. Let these cells be of side 27°. Then, for the random sequence, the probability to select
a cell in a single throw is:

Pran1 = ZTS (12)

and the probability to select a cell in the ith throw is:
Prani = (1 - Pran1>(i71)Pran1 (13)

TABLE II
COMPUTATION TIMES FOR s4(k) (ms).
d 2 2 2 3 3 6 6
M 5 6 7 6 7 4 5

Generation 15 15 15 31 31 31 31
Neigh. search | 125 | 125 | 141 | 187 | 188 | 359 | 359
Total 140 | 140 | 156 | 218 | 219 | 390 | 390

Finally, the probability to select an S-cell in n throws or less is:
Prany... = Z Pran, =1—(1- 2(—dS))n (14)
i=1

Consider now the s4(k) sequence, with M < S. When an M-cell is selected by the sequence, then
an S-cell within the M-cell is randomly chosen. First, the probability of selecting an M -cell in a single
throw (i.e. the probability that the cell be the first in the sequence) is:

1

Pu = o (15)

This is also the probability that the M-cell be the jth cell in the sequence (i.e. the cell located jth
positions before in the sequence was the one selected as the first in the sequence, with probability Py;).
Second, the probability to select a given S-cell within the M-cell given by the sequence is:

1

Ps = 9d(S—M)

(16)

If an S-cell is not selected, then it has to wait until the deterministic sequence covers the whole set
of M-cells to have a second chance. Therefore, the probability that an S-cell be chosen in the ith throw

1S:
Psdk,‘ — PM(l . Ps>iquo(i,2dM) PS (17)

where the function iquo(a,b) returns the integer part of the quocient between a and b. Finally, the
probability to select a cell in n throws or less is:

Pk, . = > Pea, (18)
=1

Fig. 6 shows the curves of F,,,, , and P4, , obtained with Maple considering d = 2, M = 4 and
S = 5. When M is decreased, the probabilities tend to coincide.

IV. THE SDK SAMPLING STRATEGY

As stated in Section II, the aim of this paper is to propose an efficient non-uniform sampling strategy
that, like the Gaussian sampling strategy, samples more densely near the C-obstacles. The proposal is
called SDK and is based on the deterministic sampling sequence s4(k). The following three subsections
present, respectively, some facts that have guided the proposal, its basic points and the procedure.

1.0
0.75-
> i
% i
S 0.5
o |
& .
0.25

0.0||||||||||||||||||||

1 2 3 4

10°

Throws
Fig. 6. Sampling probabilities P.qyn, ,, (red) and Psqx, ,, (green).

A. Guides

The non-uniform sampling provided by the Gaussian strategy is very useful since configurations
with poor visibility often lie close to the boundary of the C-obstacles. The Gaussian sampling strategy
randomly selects a configuration ¢ and then, within a neighborhood of ¢ determined by a Gaussian
measure, randomly selects another configuration ¢'. If these configurations are both free or both obstacle
then they are discarded. Otherwise, the free one is added to the roadmap. In this approach, all sampled
configurations are collision-checked, and no information is kept when samples are discarded. Also, the
standard deviation o used is constant and usually determined experimentally with few initial samples. It
would be desirable to obtain the same sampling bias with less calls to the collision-detection algorithm.

Model-based approaches, like those based on locally weighted regression methods [20] or on prob-
abilistic cell decompositions [21], [22], use the information of the model to decide weather a sampled
configuration needs to be collision-checked or not, i.e. as a lazy evaluation test. This allows to reduce
the calls to the collision-detection algorithm, but requires the maintenance of a model of the whole
C-space, which can be computationally costly or not possible for many degrees of freedom. It would be
desirable to have a similar lazy evaluation method but without the need to maintain the C-space model.

The previous section has demonstrated that the deterministic sequence s4(k) provides samples with
the best dispersion, which is an interesting feature for the exploration of C-space. The computational
efficiency has shown not favorable, but the difference is affordable if, as expected, reduction of com-
putational time is obtained by the proper exploitation of the incremental construction of neighbors.

B. Proposal

The non-uniform sampling strategy proposed is based on the following points:

e The s4(k) deterministic sequence is used to provide samples over the C-space.

o K neighbors of each generated sample are computed within the minimum hyperbox (centered at
the M-cell containing the sample) such that it guarantees the finding of neighbors. This hyperbox,
called neighbor box B;, is of side sy, = L 2~ with:

[, — 9M—(in0(jlogz(k))+1 (19)

The decrease of the size of the neighbor box is like that of the dispersion (Fig. 7).

©
~
1

0.6

o
vl
trr b g i

dispersion
o
~
|

o
w

,

«----------_____________--
0.1 ——
T 1 T 1111 1T 117 17T 71T]
25 50 75 100
samples

Fig. 7. Neighbor box diagonal (in red) vs. dispersion (denormalized fsqx(t) for d = 2 in blue).

CSPACE
T

1 T =
s
0.9l - R
.
0.8~ * .--' L . '-_':. .“ .
. . . .
* o S .
07p LR L Lt e . . o
0.6 . e o . . N‘o. . . ’
.
0
£ 05 i
N
04t - B
L : sy N e TRt i
0.3 AN BT Lo
. .:»~ : . PR .
02, LI R . Loy, . . o
- . e
01t . B
o -
LA
0 le . L . I A L ‘L .\ L L
0 0.1 0.2 03 04 05 06 07 08 0.9 1

X Axis

Fig. 8. A 2D C-space sampling using 2,000 generated samples, 617 collision-checks, 376 of them resulting in free configurations (black
dots).

o A collision detection algorithm determines weather a configuration is free or not. A parameter,
called color C};, is associated to each sample s; storing the information related to its free or

obstacle nature: . . .
+1 if s; is a free configuration

C; = 0 if s; is not collision-checked (20)
—1 if s; is an obstacle configuration

o The call to the collision detection algorithm depends on the color of the neighbor samples. A
parameter, called transparency T;, is defined as the mean value of the color of the neighbors:

_ pane;

1;
K

21

3 CSPACE CSPACE

Fig. 9. Two views of a 3D example.

The transparency satisfies —1 < 7, < 1. It is close to zero if there are roughly the same number
of free and obstacle samples, and close to one of the extremes if they are mainly either free or
obstacle samples. The collision-check will be performed if the transparency lies within an interval,
called uncertainty interval U, around zero. The size of this interval will be set at two different
values depending on weather there are collision-checked neighbor samples with different color or
not (U[1] and U|0], respectively). Setting U[1] with a greater size makes greater the chance to
collision-check the sample.

C. Procedure

With the basis set on the previous subsection, the procedure of the proposed sampling strategy is as

follows:

1) Generate some initial samples until the dispersion is below a given threshold.
2) Loop until a total given number of samples is reached:

a)
b)
c)

d)
e)
f)
g)
h)
i)

Generate a sample s;

Compute the neighbor box B;

Find within B; a maximum number of K evaluated samples and store them as neighbor on
a set IV;

Add s; to the neighbor lists of the samples in N, i.e. Vs; € V;, Nj = N; U s;

Compute the transparency 7;

If there are evaluated samples in NV; with different color, then set f = 1, otherwise set f = 0
If T; € U[f] then C; = collisioncheck(s;)

Otherwise C; =0

If C; # 0 update the transparency of the samples in /N; and collision-check them if necessary

D. Results

As an example, Fig. 8 shows a 2D C-space generated using K = 4, U[0] = [-0.1,0.1], U[1] = [-1, 1]
and S = 2000, being 617 of those samples collision-checked (with 376 found free). It can be seen how
the proposed method samples more densely near the C-obstacles. Similarly, Fig. 9 shows the sampling
of a 3D C-space.

V. COMPARATIVE ANALYSIS

This section compares the proposed strategy with respect to the original Gaussian sampling strategy.
For the comparison, the Gaussian method has also been applied to the 2D example, generating as many
samples as required until a similar set of free samples is obtained (since the Gaussian strategy does not

CSPACE
1—— L e T PR CSPACE
LI c N Tiee . T T

o8t o Pe) g
07} Lot 2T]
osf - et e e .

05F L. 4

Y Axis

0.4f . LU LIl T

03f. Cero i

el . " e N

L e T Y L Lt | L 0 > . Lt e L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1
s 0 0.2 0.4 - 06 0.8 1
X Axis

Fig. 10. (Left) The 2D example of Fig. 8. (Right) The 2D example using the Gaussian sampling strategy, using 11,000 samples (generated
and collision-checked). The number of output free samples is 362.

Distance of SDK Sequence Distance of Random Sequence
T T T T T T T T

150 180

N
o
=]

=
o
S

Frecuency
Frecuency

80
50 60

40

20

0 0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4
Distance Distance

Fig. 11. Histograms of the distances to C-obstacles for the proposed strategy (left) and for the Gaussian one (right).

place samples far away from obstacles, few samples - 1.4% - have been added with uniform sampling
in order to also have some configurations on free-space regions). Fig. 10 shows the proposed method on
the left and the Gaussian on the right. Similarity of the sampling obtained is verified by the histograms
of the distances from the samples to the C-obstacles, as shown in Fig. 11.

By comparing figures 8 and 10 it can be see that the proposed method distributes samples near the
C-obstacles more evenly than the Gaussian; the same occurs far from the obstacles where samples are
also more evenly distributed than those generated from the uniform sampling.

No collision detection algorithm has been used, but a discretized C-space has been precomputed,
giving a negligible computational cost for the collision-check queries. The following table summarizes
the results of the comparison, showing for each strategy the number of samples generated, the number
of free samples returned, the number of collision-checks performed, and the total time required.

It can be seen that, with negligible collision-check times, the proposed method is slower. Nevertheless,
compared to the Gaussian strategy, it only requires a 6% of the calls to the collision-checker. Then,
if collisions are to be computed on the workspace using a collision detection algorithm, the proposed
method outperforms the Gaussian, as shown in Fig. 12 for collision-check times of up to 1ms and the
collision-check requirements of Table III.

TABLE III
COMPARATIVE ANALYSIS.

generated | # free | # collision | Time
samples samples checks (ms)
SDK 2,000 376 617 46
Gaussian 10,140 370 10,140 16
10.01
2 45
Q
£ i
=
£
£ 5.0
8
5 i
g 4
2.5
0-0_||||||||||||||||||||
0.25 0.5 0.75 1.0

collision-check time (ms)

Fig. 12. Total sampling times (in seconds) for the sampling of the 2D example represented with respect to the time to perform a collision
check (in milliseconds): the Gaussian sampling strategy in blue, the SDK sampling strategy in red.

VI. CONCLUSIONS

Deterministic sequences have previously been used mainly with uniform sampling, giving just slightly
better results than random sampling in PRM path planners. Its use with non-uniform sampling has given
no significative improvements. No sampling strategy has yet, however, been designed to take full profit of
deterministic sequences. This paper was focused in this direction: it has presented a new and efficient
non-uniform sampling strategy, SDK, based on the deterministic sequence s,;(k). Like the Gaussian
sampling strategy, this new proposal samples more densely near the C-obstacles, but using much less
calls to the collision detection algorithms, resulting in less computational time. Also, samples near the
C-obstacles are more evenly distributed and no extra uniform sampling is required since the proposed
strategy also puts (few) samples over open-free regions.

REFERENCES

[1] L. E. Kavraki and J.-C. Latombe, “Randomized preprocessing of configuration for fast path planning,” in Proc. of the IEEE Int.
Conf. on Robotics and Automation, vol. 3, 1994, pp. 2138-2145.

[2] J.J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to single-query path planning,” in Proc. of the IEEE Int. Conf.
on Robotics and Automation, 2000, pp. 995-1001.

[3] L. E. Kavraki, M. N. Kolountzakis, and J.-C. Latombe, “Analysis of probabilistic roadmaps for path planning,” IEEE Trans. on
Robotics and Automation, vol. 14, no. 1, pp. 166 —171, Feb. 1998.

[4] D. Hsu, J.-C. Latombe, and H. Kurniawati, “On the probabilistic foundations of probabilistic roadmap planning,” Int. Journal of
Robotics Research, vol. 25, no. 7, pp. 627 — 643, 2006.

[5] J. P. van der Berg and M. H. Overmars, “Using workspace information as a guide to non-uniform sampling in probabilistic roadmap
planners,” Int. J. of Robotics Res., vol. 24 (12), pp. 1055-1071, 2005.

[6] H. Kurniawati and D. Hsu, “Workspace-based connectivity oracle: An adaptive sampling strategy for PRM planning,” in Algorithmic
Foundations of Robotics VII, S. Akella and et.al., Eds. Springer—Verlag, 2006.

(7]

(8]

(91
(10]
(1]
(12]
(13]
(14]
[15]
[16]
(17]
(18]

(19]
[20]

(21]

(22]

V. Boor, M. H. Overmars, and A. F. van der Stappen, “The Gaussian sampling strategy for probabilistic roadmap planners,” in Proc.
of the IEEE Int. Conf. on Robotics and Automation, 1999, pp. 1018-1023.

D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling narrow passages with probabilistic roadmap planners,” in Proc.
of the IEEE Int. Conf. on Robotics and Automation, 2003, pp. 4420-4426.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. K. Overmars, “Probabilistic roadmaps for path planning in high - dimensional
configuration spaces,” IEEE Trans. on Robotics and Automation, vol. 12, no. 4, pp. 566-580, August 1996.

D. Hsu, G. Sanchez-Ante, and Z. Sun, “Hybrid PRM sampling with a cost-sensitive adaptive strategy,” in Proc. of the IEEE Int.
Conf. on Robotics and Automation, 2005, pp. 3874 — 3880.

M. Saha, J. C. Latombe, Y. C. Chang, and F. Prinz, “Finding narrow passages with probabilistic roadmaps: The small-step retraction
method,” Autonomous robots, vol. 19(3), pp. 301-319, 2005.

H. L. Cheng, D. Hsu, J. C. Latombe, and G. Sanchez-Ante, “Multi-level free space dilation for sampling narrow passages in prm
planning,” in Proc. of the IEEE Int. Conf. on Robotics and Automation, 2006, pp. 1255— 1260.

M. S. Branicky, S. M. LaValle, K. Olson, and L. Yang, “Quasi-randomized path planning,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation, 2001, pp. 1481-1487.

S. M. LaValle, M. S. Branicky, and S. R. Lindemann, “On the relationship between classical grid search and probabilistic roadmaps,”
Int. Journal of Robotics Research, vol. 23, no. 7-8, pp. 673-692, 2004.

J. Halton, “On the effciency of certain quasi-random sequences of points in evaluating multi-dimensional integrals,” Numer. Math.,
vol. 2, pp. 84-90, 1960.

S. R. Lindemann, A. Yershova, and S. M. LaValle, “Incremental grid sampling strategies in robotics,” in Proc. of the Sixth Int.
Workshop on the Algorithmic Foundations of Robotics, 2004, pp. 297 — 312.

J. Rosell, M. Roa, A. Pérez, and F. Garcia, “A general deterministic sequence for sampling d-dimensional configuration spaces,” J.
of Intelligent and Robotic Systems, vol. 50, no. 4, pp. 361-374, 2007.

A. Yershova and S. LaValle, “Improving motion planning algorithms by efficient nearest-neighbor searching,” IEEE Trans. on
Robotics, vol. 23(1), pp. 151 — 157, 2006.

E. S. Rabin, Al Game Programming Wisdom 2. Charles River Medis, 2004.

B. Burns and O. Brock, “Sampling-based motion planning using predictive models,” in Proc. of the IEEE Int. Conf. on Robotics
and Automation, 2005, pp. 3131-3136.

J. Rosell and P. Iiiiguez, “Path planning using harmonic functions and probabilistic cell decomposition,” in Proc. of the IEEE Int.
Conf. on Robotics and Automation, 2005, pp. 1815-1820.

L. Zhang, Y. J. Kim, and D. Manocha, “A hybrid approach for complete motion planning,” in Accepted to IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2007.

SDK Reference Manual

Generated by Doxygen 1.5.3

Jun 2008

Technical University of Catalonia

Institute of Industrial and Control Engineering

Contents

1 SDK: Deterministic Sequence 1
2 SDK Namespace Index 3
2.1 SDK Namespace List 3
3 SDK Class Index 5
3.1 SDK Class List o e 5
4 SDK Namespace Documentation 7

4.1 SDK Namespace Reference L

5 SDK Class Documentation 9
5.1 SDK:CSpace Class Reference 9
5.2 SDK::Sample Class Reference o o 12
5.3 SDK::Sequence Class Reference 15
5.4 SDK:TMat Class Reference, 17

5.5 SDK:WMat Class Reference 19

Chapter 1

SDK: Deterministic Sequence

This is a brief explanation about the S.D.K. deterministic sequence. The S.D.K. is used as a
sampler inside a particular Space in the Kautham Planner. This planner was developed in the
Institute of Industrial and Control Engineering (IOC, acronym in spanish, www.ioc.upc.edu) from
Technical University of Catalonia in Barcelona, Spain (www.upc.edu) in the PhD Programme in
Automatic Control, Robotics and Computer Vision.

This sample code is provided "as is". This piece of code is used to show the facilities and potentials
of this S.D.K. over other sampling strategies like random or halton sequences.

More information about it, can be found in:

Jan Rosell, Maximo Roa, Alexander Perez, and Fernando Garcia. A general deterministic sequence
for sampling d-dimensional configuration spaces. Journal of Intelligent and Robotic Systems,
50(4):361 - 373, December 2007. (omitted accents)

SDK: Deterministic Sequence

Generated for SDK by Doxygen

Chapter 2

SDK Namespace Index

2.1 SDK Namespace List

Here is a list of all documented namespaces with brief descriptions:

SDK (This namespace contains the deterministic sequence and other useful tools. This
namespace is defined to make a compact and reusable piece of code containing
the deterministic sequence and many other tool that describes a samplig space
(a configuration space for motion planning purpose))

SDK Namespace Index

Generated for SDK by Doxygen

Chapter 3

SDK Class Index

3.1 SDK Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

SDK::CSpace (This class represents the sampling space. It is a set that contains lists
of samples and other useful tools. This class can generates deterministic and
random samples, it can defines testing obstacles inside sampling space and it
can be asked about sample’s neighbours) L.

SDK::Sample (This class is the abstraction of a sample entity. This class contains the
code, the indexes and the coordinates of a sample and it provides some methods
to extract and to use its information in the exploration process)

SDK::Sequence (This class provides the simply and fast way to use the deterministic
sequence. This class is the minimal implementation of the deterministic sequence
algorithm. More information about it, will be found in: Jan Rosell, Maximo Roa,
Alexander Perez, and Fernando Garcia. A general deterministic sequence for
sampling d-dimensional configuration spaces. Journal of Intelligent and Robotic
Systems, 50(4):361 - 373, December 2007. (omitted accents))

SDK::TMat (This class is the abstraction of the dxd binary matrix Ty . This class
implements the square (dxd) matrix Ty that is used to find the sequence of
2¢ samples of a d-dimensional space that satisfy that the mutual distance is
maximized, i.e. the minimum distance to all the previous samples of the sequence
ismaximized)

SDK::WMat (This class is the abstraction of the dxM matrix of weights, W. This class
is the matrix that it contains the values of weigths)

SDK Class Index

Generated for SDK by Doxygen

Chapter 4

SDK Namespace Documentation

4.1 SDK Namespace Reference

This namespace contains the deterministic sequence and other useful tools. This namespace is
defined to make a compact and reusable piece of code containing the deterministic sequence
and many other tool that describes a samplig space (a configuration space for motion planning
purpose).

Classes

e class CSpace

This class represents the sampling space. It is a set that contains lists of samples and other
useful tools. This class can generates deterministic and random samples, it can defines testing
obstacles inside sampling space and it can be asked about sample’s neighbours.

e class Sample

This class is the abstraction of a sample entity. This class contains the code, the inderes and
the coordinates of a sample and it provides some methods to extract and to use its information
in the exploration process.

e class Sequence

This class provides the simply and fast way to use the deterministic sequence. This class is the
minimal implementation of the deterministic sequence algorithm. More information about it,
will be found in: Jan Rosell, Mazimo Roa, Alexander Perez, and Fernando Garcia. A general
deterministic sequence for sampling d-dimensional configuration spaces. Journal of Intelligent
and Robotic Systems, 50(4):361 - 373, December 2007. (omitted accents).

e class TMat

This class is the abstraction of the dzd binary matriz Ty . This class implements the square (dzd)
matriz Ty that is used to find the sequence of 2% samples of a d-dimensional space that satisfy
that the mutual distance is mazimized, i.e. the minimum distance to all the previous samples of
the sequence is maximized.

o class WMat

This class is the abstraction of the deM matriz of weights, W. This class is the matriz that it
contains the values of weigths.

SDK Namespace Documentation

Generated for SDK by Doxygen

Chapter 5

SDK Class Documentation

5.1 SDK::CSpace Class Reference

This class represents the sampling space. It is a set that contains lists of samples and other useful
tools. This class can generates deterministic and random samples, it can defines testing obstacles
inside sampling space and it can be asked about sample’s neighbours.

#include <cspace.h>

Collaboration diagram for SDK::CSpace:

[sok:wmat | | sok:Tmat |
% A
/ _WMat ,_tMat \
| A \
\
\ 'DetermSequence)
N ~

SDK::CSpace

Public Member Functions

e CSpace (char dimParti, char maxPartion, WMat &w, TMat &t)

It 1s the constructor of space representation. The dimensions, the mazimum sampling level, the
W and T matrices are the parameters.

long int findOrder (unsigned long code)

Returns the index of sample with code "code" in the general sampling sequence.

e bool existSample (unsigned long code)

Returns true if there exists a sample with code "code" in the general sample list.

e TMat x getTMat ()

Returns a pointer to T matric.

WDMat x getWMat ()

$class_s_d_k_1_1_sequence.html
$class_s_d_k_1_1_w_mat.html
$class_s_d_k_1_1_t_mat.html

10

SDK Class Documentation

Returns a pointer to W matriz.

void searchAllNeighs (int threshold)

This method searchs all neighs for all existing samples within a threshold distance.

void searchNeighs (Sample &smp, int threshold)

This method searchs all neighs for a particular sample within a threshold distance.

Sample x nextSample (bool random=true, bool sorted=false)

This method makes a new sample. Its parameters are two, the Random parameter that switch
between center or any other random coordinates asigned to sample, and the Sorted parameter
point out if a new generated sample is putted into a list under time or code order.

Sample x addSample (Sample &smp, bool sorted=false)

This method add a sample "smp" into the general sample list. If the Sorted parameter is false,
the sample is pushed to the end of the list, otherwise is pushed in code order.

void printSamples (string filename)

This method writes a file with filename in the run directory with oll deterministic samples.

void printRandSamples (string filename)

This method writes a file with filename in the run directory with all random samples.

void printNeighs (string filename)

This method writes a file with filename in the run directory with oll deterministic samples and
their neighs.

void printCspace (string filename)

This method writes a file with filename in the run directory with all free determinstic samples.

void printCspaceRandom (string filename)

This method writes a file with filename in the run directory with all free random samples.

void printExcel (string filename)

This is a convenient method used to write text to be pushed into an Excel spreadsheet.

int loadObstacles (string filename)

This method loads the sample codes of the c-obstacles of an artificial c-space.

double * getTimes ()

This method returns the time spent in the generation and the neighbours seach processes.

int collisionCheckRand (long int code)

This method return the collision status of a code. It is useful to know if an obstacle is in this
cell.

long exploreRandom (long numSamples, double radio)

This method makes the random ezploration of the CSpace (p. 9).

void explore (long numSamples, bool Neighs=true, int threshold=2, bool random=true,
bool sorted=false)

Generated for SDK by Doxygen

5.1 SDK::CSpace Class Reference 11

This method makes the deterministic exploration of the CSpace (p.9).

e void findingTimes (long numSamples, long numNeighs, int threshold=2, bool ran-
dom=true, bool sorted=false)

This method generate a numSamples of samples and looking for a numNeighs of neighbours, and
it measures the time elapsed.

Public Attributes

¢ Sequence x DetermSequence

Pointer to the deterministic sequence object.

Private Attributes

e char dimProblem

Dimension of a problem. Be sure that DimxM 1is less than 32.

e vector< Sample *x > samples

List of deterministic samples.

e vector< double * > randsamples

List of random samples.

e WMat x W

Pointer to W matriz.

e TMat « T

Pointer to T matriz.

e vector< int > obs3

List of c-obstacle cell codes.

e double _times [2]

Array of two times: the generation time and the neighbours search time.

¢ long numCollCheck

Number of collision checks done in the exploration procedure.

Static Private Attributes

o static LCPRNG * genl = new LCPRNG()
Pointer to object of LCPRNG class that generates random numbers.

The documentation for this class was generated from the following files:

e cspace.h
e cspace.cpp

Generated for SDK by Doxygen

12 SDK Class Documentation

5.2 SDK:Sample Class Reference

This class is the abstraction of a sample entity. This class contains the code, the indexes and the
coordinates of a sample and it provides some methods to extract and to use its information in the
exploration process.

#include <sample.h>

Collaboration diagram for SDK::Sample:

SDK::WMat

wMat
=

SDK::Sample

Public Member Functions

e Sample (unsigned long int code, char xindexes, bool random=true)

Unique constructor for a class. Inderes parameter is used for neighbours search.

e unsigned long int getCode ()

Returns the sample code.

¢ void searchNeighs (std::vector< Sample * > xcandidates, int threshold)

This method searchs the neighbours of the sample that belong to the vector of candidate samples
provided that the partition level of the sample is over a given threshold.

e vector< Sample x >:iterator getNeighs (Sample &smp)

Returns an iterator to point to neighbours vector of the sample smp.

e string print (bool extend=true)

Returns a string containing the coordinates information and if extend parameter is true, it con-
tains the code and the coordinates information in a explicit form.

e string printNeighs ()

Returns a string that contais the sample code and the codes of neighbour samples.

e char getFlagT (void) const

Returns the flag to be used as index in the threshold transparency vector.

e long getNumNeighs ()

Returns the neighbours number of the sample.

e double getTransparency (void) const

Returns the transparency value of the sample.

e int getColor () const

Returns the color of sample. This color is the collision status. If sample is free the color is 1
otherwise the color is -1. If the sample is not evaluated then the color is 0 .

Generated for SDK by Doxygen

$class_s_d_k_1_1_w_mat.html

5.2 SDK::Sample Class Reference 13

void setColor (int c)

This method set the sample color.

void updateTNeighs ()
This method updates the transparency.

double computeTransparency ()

This method calculates and returns the value of transparency. This value is calculated based on
the neighbourset collision status.

int collisionCheck ()

This method evaluates the collision status of the sample.

Static Public Attributes

e static float sizeContainer — 1.0
This is the size of an M-Cell.

e static char DIM — 1

This is the dimension of the sampling space.

e static char M =1
This is the grid partition level.

e static double thresholdT [2] = {0.0,0.0}

This array contains the two threshold transparency levels. This thresholds are used to indicate
when the tranparency must be recalculated or not.

e static int kNeighs = 4

This is the number of neighbours considered to calculate the transparency.

e static WMat + wMat = NULL

This is a static pointer to the W matriz. This is a unique object used for any sample in sampleset.

e static vector< int > x Obst3 — NULL

This is the static pointer to the obstacles code list. The obstacles are represented for a list with
the samples code to be occuped by it.

Private Attributes

e char * index

Pointer to the grid indezes.

e vector< Sample x > neighset

Standar vector of pointer to neighbour samples.

e unsigned long int code

Generated for SDK by Doxygen

14 SDK Class Documentation

This is the sample code.

double * coord

Pointer to the samples coordinates array.

double transparency

This is the sample transparency value. This is calculated as the mean of the color of its neighs.

char flagT

This flag is used to indicate that sample has neighbours with different color.

int color

This is the sample color.

Static Private Attributes

e static LCPRNG * genl = new LCPRNG()

Pointer to object that generates a random number sequence.

e static int * topIndex = NULL
This is the pointers used to show the neighbour sample with the highest code.

e static int * lowIndex = NULL

This is the pointers used to show the neighbour sample with the lower code.

5.2.1 Member Function Documentation
5.2.1.1 void SDK::Sample::updateTNeighs ()

update the transparency of the neighs and call collisionchsk if needed

5.2.1.2 double SDK::Sample::computeTransparency ()

computeTransparency

The documentation for this class was generated from the following files:

e sample.h
e cspace.cpp
e sample.cpp

Generated for SDK by Doxygen

5.3 SDK::Sequence Class Reference 15

5.3 SDK::Sequence Class Reference

This class provides the simply and fast way to use the deterministic sequence. This class is the
minimal implementation of the deterministic sequence algorithm. More information about it,
will be found in: Jan Rosell, Maximo Roa, Alexander Perez, and Fernando Garcia. A general
deterministic sequence for sampling d-dimensional configuration spaces. Journal of Intelligent and
Robotic Systems, 50(4):361 - 373, December 2007. (omitted accents).

#include <sequence.h>

Collaboration diagram for SDK::Sequence:

| sok:wMat | | sok:TMat |

\WwMat ,_tMat
\ /

SDK::Sequence

Public Member Functions

e Sequence (int dim, int M, bool randOffset=true)

Simply constructor. This constructor is a simply way to obtain the SDK (p.7) generator. Be
careful with dim and M because dimxM will be less of 32. If randoOffset is true, the first code of
sequence s random, otherwise it is zero.

e ~Sequence (void)

Simply destructor.

e unsigned long getCode (char xindexes)

This method returns the code of the cell with grid coordinates "indezes".

e char * getIndexes (unsigned long int code)

This method returns an array with the indexes of a cell with code "code".

e char * getIndexes (void)

Returns the indezes corresponding to the last generated cell code of the sequence.

e unsigned long getSequenceCode ()

Returns the new code in the sequence.

¢ unsigned long getSequenceCode (unsigned long K)

Returns the code corresponding to the K" sample of the sequence.

e char #*x getVMatrix (unsigned long int code)

Returns the V matriz for a cell with code "code". V is the matriz of index in binary representa-
tion.

e char #*x getVMatrix (void)

Returns the V matriz corresponding to the last sample generated of the sequence.

e void setW (WMat &w)

Generated for SDK by Doxygen

$class_s_d_k_1_1_w_mat.html
$class_s_d_k_1_1_t_mat.html

16 SDK Class Documentation

This method sets the W matriz.

e WMat * getW ()

This method returns a pointer to the W matriz.

e void setT (TMat &t)
This method sets the T matriz.

e TMat * getT ()

This method returns a pointer to the T matrix.

Private Attributes

e unsigned long int _index

This is the indez of the sequence.

e unsigned long int _lastCode

This is the last code generated by the sequence.

e unsigned long int _ offset

This is the initial random offset for the sequence.

e unsigned long maxNumCells

This is the mazimum number of cells. It is 2P™*M

e char maxSamplingLevel

This is the M value. This is the mazimum sampling level.

e char dim

This is the dimension of the space to be sampled.

e TMat x tMat

Pointer to T matriz.

e WMat x _wMat

Pointer to W matriz.

e char xx V

This is the pointer to the unique V matriz used to calculate the binary values for indexes of a
cell.

e char * indexes

Pointer to the unique inderes matriz that contains the indezes of a cell.

The documentation for this class was generated from the following files:

e sequence.h
e sequence.cpp

Generated for SDK by Doxygen

5.4 SDK::TMat Class Reference 17

5.4 SDK::TMat Class Reference

This class is the abstraction of the dxd binary matrix T, . This class implements the square (dxd)
matrix T, that is used to find the sequence of 2¢ samples of a d-dimensional space that satisfy
that the mutual distance is maximized, i.e. the minimum distance to all the previous samples of
the sequence is maximized.

#include <tmat.h>

Public Member Functions

e TMat (int d=0)

This is a unique constructor.

e string printMatrix ()

This method returns a string that contains the text representation of the matriz.

e int multiply (const int k)

This method multiply the matriz for a constant k.

void multiply (const char *const k, char xconst 1)

void multiply (const char xconst k, char xconst 1, const int m)
void multiply (const char xconst w, char xconst res) const

char #+ multiply (const char xconst *const v, const int m) const

This method multiply the matriz for other matriz V that it corresponds to m level and return the
pointer to the result.

Private Member Functions

e void prime_factorization (long int x, int *fact, int *numfactors)
void compose (int *primefactors, int numfactors, char *+vC, int dimC, int trunc=0)

This method creates the base matrices of the prime numbers involved.

void insert (char xxvA, char *xvB, int dimA, int dimB)
void createTd ()

This method create the matriz properly.

Private Attributes

e intd

This is the dimension of the matriz.

e char xx tMat

This is the matriz values.

e char *x matRes

Pointer to the matriz that contains the results of any multiplication operation.

Generated for SDK by Doxygen

18 SDK Class Documentation

5.4.1 Member Function Documentation
5.4.1.1 void SDK:: TMat::multiply (const char xconst w, char xconst res) const

Multiplies the matrix by a binary vector "w". Returns the result at the parameter "res" A standard
matrix-vector operation is performed and then a mod2 operation is done. Therefore the resulting
vector is a binary vector.

5.4.1.2 void SDK:: TMat::prime factorization (long int z, int * fact, int *
numfactors) [private]

Does the prime factorization of number 'x’. Puts the result in parameter 'fact’ and the number
of prime factors in parameter 'numfactors’. This function is addapted from Steven S. Skiena
(www.programming-challenges.com).

The documentation for this class was generated from the following files:

e tmat.h
e tmat.cpp

Generated for SDK by Doxygen

5.5 SDK::WMat Class Reference 19

5.5 SDK:WMat Class Reference

This class is the abstraction of the dzM matrix of weights, W. This class is the matrix that it
contains the values of weigths.

#include <wmat.h>

Public Member Functions

¢ WMat (int dim, int level)

This is the unique constructor provided.

e std:string printMatrix ()

This member method returns a string that contains a text representationm of the matriz.

¢ void setRow (const int index1, const int index2, const long value)
This method sets the value of the row (indezl) and the column (indez2) specified.

¢ long getRow (const int index1, const int index2)

This method returns the value of the row (indexl) and the column (indez2) specified.

Protected Member Functions

¢ WMat ()

This is a protected constructor used to restrict the construction way without a correct parameters.

Private Attributes

e intd

This is the dimension of matriz.

e int m

This is the mazimum level of samplig.

e long int *x w
This is the matriz values.
The documentation for this class was generated from the following files:

e wmat.h
e wmat.cpp

Generated for SDK by Doxygen

Index

computeTransparency
SDK::Sample, 14

multiply
SDK::TMat, 18

prime factorization
SDK::TMat, 18

SDK, 7
SDK::CSpace, 9
SDK::Sample, 12
computeTransparency, 14
updateTNeighs, 14
SDK::Sequence, 15
SDK::TMat, 17
multiply, 18
prime _factorization, 18
SDK::WMat, 19

updateTNeighs
SDK::Sample, 14

