

Sampling C-obstacles border using a filtered
deterministic sequence

Jan Rosell, Alexander Pérez.

IOC- Divisió de Robòtica

IOC-DT-P-2008-10
Setembre 2008

Sampling C-obstacles border using a filtered

deterministic sequence

Jan Rosell and Alexander Pérez

Abstract

This paper is focused on the sampling process for path planners based on probabilistic roadmaps. The paper

first analyzes three sampling sources: the random sequence and two deterministic sequences, Halton and sd(k),
and compares them in terms of dispersion, computational efficiency (including the finding of nearest neighbors),

and sampling probabilities. Then, based on this analysis and on the recognized success of the Gaussian sampling

strategy, the paper proposes a new efficient sampling strategy based on deterministic sampling that also samples

more densely near the C-obstacles. The proposal is evaluated and compared with the original Gaussian strategy

in both 2D and 3D configuration spaces, giving promising results.

I. INTRODUCTION

The sampling-based approach to path planning consists in the generation of collision-free samples

of configuration space (C-space) and in their interconnection with free paths, forming either roadmaps

(PRM [1]) or trees (RRT [2]). PRM planners are conceived as multi-query planners, while RRT planners

are developed to rapidly solve a single-query problem. These methods are giving very good results, being

its success mainly due to its sampling-based nature, i.e. they do not require the explicit characterization

of the obstacles of C-space and its efficiency relies on the sample set. Therefore, the generation of

samples is one of the crucial factors in the performance of sampling-based planers.

Sampling-based methods based on probabilistic sampling are demonstrated to be probabilistic com-

plete, e.g. for the basic PRM method the number of samples necessary to achieve a probability of

failure below a given threshold has been determined [3]. For difficult path-planning problems, however,

like those involving narrow passages, this number might be quite large and, therefore, importance

sampling methods have been introduced. Those strategies increase the density of sampling in some

areas of C-space, thus facilitating the finding of a solution using a reasonable amount of samples. A

good classification of importance sampling methods can be found in [4], that divide them by the type

of strategy followed: those that bias samples using workspace information (e.g. [5], [6]); those that

over-sample the C-space but quickly filter any not-promising configuration (e.g. [7], [8]); those that bias

the sampling using the information gathered during the construction of the roadmap or tree (e.g. [9],

[10]); and those that deform (dilate) the free C-space to make it more expansive to easily capture its

connectivity (e.g. [11], [12]).

Sampling-based methods usually rely on the use of a random number generation source, although

the use of deterministic sampling sequences has also been proposed [13]. Deterministic sampling has

proven slightly better results than random sampling in roadmap planners for few degrees of freedom

tasks [4], [14]. For motion planing purposes, the desired feature of deterministic sampling sequences is

to provide a good incremental and uniform coverage of C-space. The Halton sequence [15] is a low-

discrepancy sequence that satisfies this requirement. Nevertheless, another useful property is to have a

lattice structure to easily allow the determination the neighborhood relations. This can be fulfilled by

methods based on multisresolution grids [16], [17]. When this lattice structure is not provided, efficient

nearest neighbor searching must be adopted to decrease the computational cost of this much required

operation [18].

This work was partially supported by the CICYT projects DPI2005-00112 and DPI2007-63665.

The authors are with the Institute of Industrial and Control Engineering - Technical University of Catalonia, Barcelona, Spain

jan.rosell@upc.edu

Fig. 1. 100 samples generated using random (left), Halton (middle) and sd(k) (right) sequences.

II. MOTIVATION, OBJECTIVES AND OVERVIEW

Deterministic sampling has given relative good results in comparison with random sampling when

basic sampling-based planners are used (i.e. using uniform distributions), but this advantage diminishes

when non-uniform sampling is considered, like the Gaussian sampling strategy, being the selection of

a non-uniform sampling the relevant issue rather than the sampling source [4]. However, no sampling

strategy has yet taken full profit of the use of a deterministic sampling source. Therefore, the aim of

this paper is the proposal of an efficient non-uniform sampling strategy based on deterministic sampling

that, like the Gaussian sampling strategy, sample more densely near the C-obstacles.

The paper is structured as follows. Section III makes a comparative study of sampling sources

based on dispersion, computational efficiency (including the finding of nearest neighbors), and sampling

probabilities. Section IV then proposes the new sampling strategy inspired by the Gaussian sampling

strategy and based on the previous study, that is evaluated in Section V. Finally Section VI discusses

the results and the contributions of the paper.

III. ANALYSIS OF SAMPLING SOURCES

A. The sampling sources under study

The following three sampling sources are considered to sample a d-dimensional unitary hypercube

representing the C-space: the random sequence and the deterministic sequences of Halton [15] and

sd(k) [17].

The random sequence: This sequence is usually obtained using a pseudo-random number generator

with long period and good statistical acceptance; for the present study the one provided by [19] is used.

A sample of the random sequence is:

(x1, x2, . . . , xd) with xj = rand{[0, 1)} and j = 1..d (1)

The Halton sequence: This deterministic sequence is a d-dimensional generalization of the van der

Corput sequence. It is constructed as follows. Let p1, p2, . . . , pd be d distinct primes, k be the index

of the sequence and a0 + pa1 + p2a2 + . . . with aj ∈ {0, 1, . . . , p} be the base p representation of k.

Then, the kth sample of the Halton sequence is1:

(rp1 , rp2 , . . . , rpd
) with rpi

(k) =
a0

pi

+
a1

p2
i

+
a2

p3
i

+ . . . (2)

The sd(k) sequence: This sequence introduced in [17] is a deterministic sampling sequence based on

a multi-grid cell decomposition with an efficient cell coding and on the use of the digital construction

method, first proposed in [16].

1Implementation available from http://people.scs.fsu.edu/∼ burkardt.

Let M be the maximum partition level (i.e. M -cells have sides of size 2−M). The sd(k) sequence is

a sequence of M -cells; the samples are random configurations within those M -cells. Then, the code of

the kth sample is obtained as follows2:

sd(k) = (TdV
M
k) · W ′M (3)

where Td is a d × d binary matrix, e.g. T2 =

(

1 0
1 1

)

, V M
k is the binary d × M index matrix

corresponding to an M -cell with code k, e.g. V 3
6 =

(

0 1 0
0 0 1

)

- see Fig.4 (left)-, and W ′M is a d×M

matrix of weights, with w′

ij = 2(j−1)d+i−1 for i ∈ 1 . . . d and j ∈ 1 . . . M , e.g. W ′3 =

(

1 4 16
2 8 32

)

.

Let (wM
1 , . . . , wM

d) be the indices of the cell with code sd(k). Then the coordinates of the kth sample

are randomly chosen within the cell:

xj = rand{[wM
j 2−M , (wM

j + 1)2−M)} ∀j ∈ 1 . . . d (4)

When k is greater than 2dM the sequence repeats the cell codes generated, but the samples are different

since the configuration coordinates are randomly chosen.

In the implementation done for the present study, a random initial value has been introduced:

s′d(k) = sd((k + r)%2dM) with r = rand{[0, 2−dM − 1)} (5)

% being the modulo operator.

To illustrate the three sequences considered, Fig. 1 shows the first 100 samples obtained for each of

them.

B. Study of dispersion

This section compares the uniformity obtained by the different sampling sources under study. Dis-

persion is the uniformity measure that best suits path planning purposes since it is a metrics-based

criterion that measures the radius of the largest empty hypersphere that can be inscribed in the space

being sampled [14]. Let X = [0, 1]d ⊂ R
d be such space and P be the set of samples taken from X .

Then, dispersion for P is defined as:

δ(P, ρ) = sup
q∈X

min
p∈P

ρ(q, p) (6)

being ρ any metrics on X .

An analytical expression of the dispersion can be obtained as the function that best fits the normalized

and approximate values of dispersion. It is done as follows. First, an approximate value of dispersion

is computed (after the generation of each sample in the sequence) by considering a set Q of control

points of a fine regular grid:

δ(P, ρ) = sup
q∈Q

min
p∈P

ρ(q, p) (7)

ρ being the Euclidean distance.

Then, in order to make equivalent the values of dispersion for different dimensional spaces, the

obtained dispersion is normalized by a factor
√

d. Also, in order to take into account that the higher d
the more samples are needed to obtain the same dispersion, a fixed set of N normalized samples are

considered, i.e. those with index: (int)(i(d/2)), i = 1..N , (e.g. the 4th normalized sample corresponds

to the 4th and to the 8th samples of the sequences s2(k) and s3(k), respectively).

2The operation A ·B represents the scalar product of matrices A and B, and AB is the standard binary matrix multiplication between

matrices A and B.

no
rm

al
iz

ed
_d

is
pe

rs
io

n

0.2

25

0.4

50

0.1

75

0.5

normalized_samples

100

0.3

normalized_samples
10 20 30 40 50 60 70 80 90 100

no
rm

al
iz
ed

_d
is
pe

rs
io
n

0,1

0,2

0,3

0,4

0,5

0,6 0.6

75

0.1

no
rm

al
iz

ed
_d

is
pe

rs
io

n

100

0.4

normalized_samples

0.3

0.5

25

0.2

50

Fig. 2. Analytical curves that fit the dispersion approximated by Eq. (7): sd(k) (left), Halton (middle) and random (right).

R
at

io

Normalized_samples

1.1

0.9

0.7

7525

1.0

0.6

0.8

10050

Fig. 3. Dispersion for the random (blue), Halton (green) and sd(k) (red) sequences for d = 2 (left), d = 3 (middle-left), d = 6
(middle-right). Right: Normalized dispersion ratios.

Results of the computed normalized dispersion for d = 2 and d = 3 are simultaneously shown in

Fig. 2 for the sd(k), Halton and random sequences. Setting N = 100, the number of samples required

are 100 and 1000 for d = 2 and d = 3, respectively. These values are used to fit the following functions

(shown in blue in the figures):

fsdk(t) =
1

t0.4400
(0.6036 − 0.4052e(−0.7862t)) (8)

fran(t) =
1

t0.2644
(0.4582 − 0.3210e(−11.0076t)) (9)

fhal(t) =
1

t0.4095
(0.5762 − 0.3474e(−1.3474t)) (10)

For its uses in a given d-dimensional space, these expressions are denormalized, f ′

type =
√

d ftype(t
2/d)

with type = {sdk, ran, hal}. As an example, Fig. 3 shows, for different dimensional C-spaces, the

dispersion measured and the denormalized analytical approximations of the three sequences.

The ratios fsdk/fran and fhal/fran show that both Halton and sd(k) are better than the random

sequence, being the sd(k) the best one, obtaining a reduction of up to 40% with respect to the random

sequence (Fig. 3b).

C. Computational efficiency

This section compares the computational efficiency of the random and the sd(k) sequences when

generating a set of samples and connecting each of them with its K nearest neighbors. The Halton

sequence is omitted since the cost of generating samples is higher than in the random case and the

same nearest neighbor computation procedure would be used.

y

x

2 3

0 1

6 7

4 5

M=3

0 1 2 3 4 5 6 7

0

2

4

6

1

3

5

7

10 11

8 9

14 15

12 13

18 19 22 23

16 17 20 21

26 27 30 31

24 25 28 29

34 35 38 39

32 33 36 37

42 43 46 47

40 41 44 45

50 51 54 55

48 49 52 53

58 59 62 63

56 57 60 61

y

x

2 3

0 1

6 7

4 5

M=3

0 1 2 3 4 5 6 7

0

2

4

6

1

3

5

7

10 11

8 9

14 15

12 13

18 19 22 23

16 17 20 21

26 27 30 31

24 25 28 29

34 35 38 39

32 33 36 37

42 43 46 47

40 41 44 45

50 51 54 55

48 49 52 53

58 59 62 63

56 57 60 61

Fig. 4. Cell coding (left); Neighbor box (right).

For the random sequence, the procedure used to find the nearest neighbors is the one available

from [18], which is an extension of the algorithm ANN, that is based on an efficient classification of

samples within a kd-tree. The K-neighbors can be searched within a maximum user-specified distance D.

For the sd(k) sequence, on the other hand, a method is implemented that gives the K neighbors within

a given hyperbox, of side sbox. Then, for comparison purposes, the distance D has been set to the value

of the radius r that makes the volume of the hypershere equal to the hyperbox volume (V = 2rdπ(1/2d)

dΓ(1/2d)
=

sd
box):

D = r =
sbox√

π
d

√

d

2
Γ(d/2) (11)

The computation of neighbors for the sd(k) sequence is done as follows. Consider the finding, for a

sample contained in an M -cell, of all the neighbors within a hyperbox of side sbox = L 2−M , like

cell 37 in Fig. 4 (right) with L = 5. Let TR and BL be, respectively, the codes of the top-right and

bottom-left corners of the hyperbox (cells 57 and 9 in Fig. 4). Then, the procedure is performed from

the list of cell codes in two steps:

1) Prune all those samples that lies within cells with codes greater than TR or lower than BL (gray

areas in Fig. 4). Depending on the position of the cell, this step makes a more or less efficient

pruning (Fig. 5).

2) For the non-pruned cells in the list determine if they lie within the hyperbox by verifying its

indices (x-index between 1 and 5 and y-index between 2 and 6 in the example of Fig. 4)

Tables I and II show the execution times required for the generation of 10,000 samples and the

neighbor query for 1,000 of them (using K = 50) for C-spaces of 2, 3 and 6 dimensions, run on

a computer with Intel Core 2 Duo processor at 1.8Hz. For the random sequence, the whole set of

samples is first generated for each experiment and then neighbor queries are answered. Therefore, the

construction of the kd-tree required by the ANN-based method is only done once and the construction

time is not reported. The neighbor computation for the sd(k) sequence is, on the other hand, computed

incrementally, i.e. after the generation of each sample. It can be seen that total time is better for the

random sequence (although the difference decreases with dimension), being, on the other hand, the

incremental construction a merit of sd(k).

D. Probabilities

When considering deterministic sequences, like sd(k), one may think that the probability of sampling

a configuration of a given region in n trials can be, for some regions and some value of n, zero. This

is in fact not true if the initial sample of the sequence is selected randomly.

2 3

0 1

6 7

4 5

10 11

8 9

14 15

12 13

18 19 22 23

16 17 20 21

26 27 30 31

24 25 28 29

34 35 38 39

32 33 36 37

42 43 46 47

40 41 44 45

50 51 54 55

48 49 52 53

58 59 62 63

56 57 60 61

66 67

64 65

70 71

68 69

74 75

72 73

78 79

76 77

82 83 86 87

80 81 84 85

90 91 94 95

88 89 92 93

98 99 102 103

96 97 100 101

106 107 110 111

104 105 108 109

114 115 118 119

112 113 116 117

122 123 126 127

120 121 124 125

130 131 134 135

128 129 132 133

138 139 142 143

136 137 140 141

146 147 150 151

144 145 148 149

154 155 158 159

152 153 156 157

162 163 166 167

160 161 164 165

170 171 174 175

168 169 172 173

178 179 182 183

176 177 180 181

186 187 190 191

184 185 188 189

194 195 198 199 1

192 193 196 197

202 203 206 207

200 201 204 205

210 211 214 215

208 209 212 213

218 219 222 223

216 217 220 221

226 227 230 231

224 225 228 229

234 235 238 239

232 233 236 237

242 243 246 247

240 241 244 245

250 251 254 255

248 249 252 253

2 3

0 1

6 7

4 5

10 11

8 9

14 15

12 13

18 19 22 23

16 17 20 21

26 27 30 31

24 25 28 29

34 35 38 39

32 33 36 37

42 43 46 47

40 41 44 45

50 51 54 55

48 49 52 53

58 59 62 63

56 57 60 61

66 67

64 65

70 71

68 69

74 75

72 73

78 79

76 77

82 83 86 87

80 81 84 85

90 91 94 95

88 89 92 93

98 99 102 103

96 97 100 101

106 107 110 111

104 105 108 109

114 115 118 119

112 113 116 117

122 123 126 127

120 121 124 125

130 131 134 135

128 129 132 133

138 139 142 143

136 137 140 141

146 147 150 151

144 145 148 149

154 155 158 159

152 153 156 157

162 163 166 167

160 161 164 165

170 171 174 175

168 169 172 173

178 179 182 183

176 177 180 181

186 187 190 191

184 185 188 189

194 195 198 199 1

192 193 196 197

202 203 206 207

200 201 204 205

210 211 214 215

208 209 212 213

218 219 222 223

216 217 220 221

226 227 230 231

224 225 228 229

234 235 238 239

232 233 236 237

242 243 246 247

240 241 244 245

250 251 254 255

248 249 252 253

2 3

0 1

6 7

4 5

10 11

8 9

14 15

12 13

18 19 22 23

16 17 20 21

26 27 30 31

24 25 28 29

34 35 38 39

32 33 36 37

42 43 46 47

40 41 44 45

50 51 54 55

48 49 52 53

58 59 62 63

56 57 60 61

66 67

64 65

70 71

68 69

74 75

72 73

78 79

76 77

82 83 86 87

80 81 84 85

90 91 94 95

88 89 92 93

98 99 102 103

96 97 100 101

106 107 110 111

104 105 108 109

114 115 118 119

112 113 116 117

122 123 126 127

120 121 124 125

130 131 134 135

128 129 132 133

138 139 142 143

136 137 140 141

146 147 150 151

144 145 148 149

154 155 158 159

152 153 156 157

162 163 166 167

160 161 164 165

170 171 174 175

168 169 172 173

178 179 182 183

176 177 180 181

186 187 190 191

184 185 188 189

194 195 198 199 1

192 193 196 197

202 203 206 207

200 201 204 205

210 211 214 215

208 209 212 213

218 219 222 223

216 217 220 221

226 227 230 231

224 225 228 229

234 235 238 239

232 233 236 237

242 243 246 247

240 241 244 245

250 251 254 255

248 249 252 253

2 3

0 1

6 7

4 5

10 11

8 9

14 15

12 13

18 19 22 23

16 17 20 21

26 27 30 31

24 25 28 29

34 35 38 39

32 33 36 37

42 43 46 47

40 41 44 45

50 51 54 55

48 49 52 53

58 59 62 63

56 57 60 61

66 67

64 65

70 71

68 69

74 75

72 73

78 79

76 77

82 83 86 87

80 81 84 85

90 91 94 95

88 89 92 93

98 99 102 103

96 97 100 101

106 107 110 111

104 105 108 109

114 115 118 119

112 113 116 117

122 123 126 127

120 121 124 125

130 131 134 135

128 129 132 133

138 139 142 143

136 137 140 141

146 147 150 151

144 145 148 149

154 155 158 159

152 153 156 157

162 163 166 167

160 161 164 165

170 171 174 175

168 169 172 173

178 179 182 183

176 177 180 181

186 187 190 191

184 185 188 189

194 195 198 199 1

192 193 196 197

202 203 206 207

200 201 204 205

210 211 214 215

208 209 212 213

218 219 222 223

216 217 220 221

226 227 230 231

224 225 228 229

234 235 238 239

232 233 236 237

242 243 246 247

240 241 244 245

250 251 254 255

248 249 252 253

Fig. 5. Pruning in neighbor searching.

TABLE I

COMPUTATION TIMES FOR RANDOM+ANN (ms).

d 2 3 6

Generation 0.7 1.0 1.8

Neigh. search 77.6 115.9 346.0

Total 78.3 116.9 347.8

In order to ease the computation of sampling probabilities, let consider the samples as cells of a very

fine regular grid. Let these cells be of side 2−S . Then, for the random sequence, the probability to select

a cell in a single throw is:

Pran1 =
1

2dS
(12)

and the probability to select a cell in the ith throw is:

Prani
= (1 − Pran1)

(i−1)Pran1 (13)

TABLE II

COMPUTATION TIMES FOR sd(k) (ms).

d 2 2 2 3 3 6 6

M 5 6 7 6 7 4 5

Generation 15 15 15 31 31 31 31

Neigh. search 125 125 141 187 188 359 359

Total 140 140 156 218 219 390 390

Finally, the probability to select an S-cell in n throws or less is:

Pran1...n =
n

∑

i=1

Prani
= 1 − (1 − 2(−dS))n (14)

Consider now the sd(k) sequence, with M < S. When an M -cell is selected by the sequence, then

an S-cell within the M -cell is randomly chosen. First, the probability of selecting an M -cell in a single

throw (i.e. the probability that the cell be the first in the sequence) is:

PM =
1

2dM
(15)

This is also the probability that the M -cell be the jth cell in the sequence (i.e. the cell located jth

positions before in the sequence was the one selected as the first in the sequence, with probability PM).

Second, the probability to select a given S-cell within the M -cell given by the sequence is:

PS =
1

2d(S−M)
(16)

If an S-cell is not selected, then it has to wait until the deterministic sequence covers the whole set

of M -cells to have a second chance. Therefore, the probability that an S-cell be chosen in the ith throw

is:

Psdki
= PM(1 − PS)iquo(i,2dM) PS (17)

where the function iquo(a, b) returns the integer part of the quocient between a and b. Finally, the

probability to select a cell in n throws or less is:

Psdk1...n =
n

∑

i=1

Psdki
(18)

Fig. 6 shows the curves of Pran1...n and Psdk1...n obtained with Maple considering d = 2, M = 4 and

S = 5. When M is decreased, the probabilities tend to coincide.

IV. THE SDK SAMPLING STRATEGY

As stated in Section II, the aim of this paper is to propose an efficient non-uniform sampling strategy

that, like the Gaussian sampling strategy, samples more densely near the C-obstacles. The proposal is

called SDK and is based on the deterministic sampling sequence sd(k). The following three subsections

present, respectively, some facts that have guided the proposal, its basic points and the procedure.

0.25
P

ro
ba

bi
lit

y

103

Throws

0.5

43

1.0

0.75

0.0
21

Fig. 6. Sampling probabilities Pran1...n
(red) and Psdk1...n

(green).

A. Guides

The non-uniform sampling provided by the Gaussian strategy is very useful since configurations

with poor visibility often lie close to the boundary of the C-obstacles. The Gaussian sampling strategy

randomly selects a configuration q and then, within a neighborhood of q determined by a Gaussian

measure, randomly selects another configuration q′. If these configurations are both free or both obstacle

then they are discarded. Otherwise, the free one is added to the roadmap. In this approach, all sampled

configurations are collision-checked, and no information is kept when samples are discarded. Also, the

standard deviation σ used is constant and usually determined experimentally with few initial samples. It

would be desirable to obtain the same sampling bias with less calls to the collision-detection algorithm.

Model-based approaches, like those based on locally weighted regression methods [20] or on prob-

abilistic cell decompositions [21], [22], use the information of the model to decide weather a sampled

configuration needs to be collision-checked or not, i.e. as a lazy evaluation test. This allows to reduce

the calls to the collision-detection algorithm, but requires the maintenance of a model of the whole

C-space, which can be computationally costly or not possible for many degrees of freedom. It would be

desirable to have a similar lazy evaluation method but without the need to maintain the C-space model.

The previous section has demonstrated that the deterministic sequence sd(k) provides samples with

the best dispersion, which is an interesting feature for the exploration of C-space. The computational

efficiency has shown not favorable, but the difference is affordable if, as expected, reduction of com-

putational time is obtained by the proper exploitation of the incremental construction of neighbors.

B. Proposal

The non-uniform sampling strategy proposed is based on the following points:

• The sd(k) deterministic sequence is used to provide samples over the C-space.

• K neighbors of each generated sample are computed within the minimum hyperbox (centered at

the M -cell containing the sample) such that it guarantees the finding of neighbors. This hyperbox,

called neighbor box Bi, is of side sbox = L 2−M with:

L = 2M−(int)(1
d
log2(k))+1 (19)

The decrease of the size of the neighbor box is like that of the dispersion (Fig. 7).

0.7

0.5

0.4

0.1

0.6

samples

0.2

7525 100

di
sp

er
si

on

0.3

50

Fig. 7. Neighbor box diagonal (in red) vs. dispersion (denormalized fsdk(t) for d = 2 in blue).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 CSPACE

X Axis

Y
 A

xi
s

Fig. 8. A 2D C-space sampling using 2,000 generated samples, 617 collision-checks, 376 of them resulting in free configurations (black

dots).

• A collision detection algorithm determines weather a configuration is free or not. A parameter,

called color Ci, is associated to each sample si storing the information related to its free or

obstacle nature:

Ci =







+1 if si is a free configuration

0 if si is not collision-checked

−1 if si is an obstacle configuration

(20)

• The call to the collision detection algorithm depends on the color of the neighbor samples. A

parameter, called transparency Ti, is defined as the mean value of the color of the neighbors:

Ti =

∑j=K
j=1 Cj

K
(21)

00.10.20.30.40.50.60.70.80.91

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 CSPACE

X Axis

Y Axis

Z
 A

xi
s

0

0.2

0.4

0.6

0.8

1 0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.5

1

Y Axis

 CSPACE

X Axis

Z
 A

xi
s

Fig. 9. Two views of a 3D example.

The transparency satisfies −1 ≤ Tj ≤ 1. It is close to zero if there are roughly the same number

of free and obstacle samples, and close to one of the extremes if they are mainly either free or

obstacle samples. The collision-check will be performed if the transparency lies within an interval,

called uncertainty interval U , around zero. The size of this interval will be set at two different

values depending on weather there are collision-checked neighbor samples with different color or

not (U [1] and U [0], respectively). Setting U [1] with a greater size makes greater the chance to

collision-check the sample.

C. Procedure

With the basis set on the previous subsection, the procedure of the proposed sampling strategy is as

follows:

1) Generate some initial samples until the dispersion is below a given threshold.

2) Loop until a total given number of samples is reached:

a) Generate a sample si

b) Compute the neighbor box Bi

c) Find within Bi a maximum number of K evaluated samples and store them as neighbor on

a set Ni

d) Add si to the neighbor lists of the samples in Ni, i.e. ∀sj ∈ Ni, Nj = Nj ∪ si

e) Compute the transparency Ti

f) If there are evaluated samples in Ni with different color, then set f = 1, otherwise set f = 0
g) If Ti ∈ U [f] then Ci = collisioncheck(si)
h) Otherwise Ci = 0
i) If Ci 6= 0 update the transparency of the samples in Ni and collision-check them if necessary

D. Results

As an example, Fig. 8 shows a 2D C-space generated using K = 4, U [0] = [−0.1, 0.1], U [1] = [−1, 1]
and S = 2000, being 617 of those samples collision-checked (with 376 found free). It can be seen how

the proposed method samples more densely near the C-obstacles. Similarly, Fig. 9 shows the sampling

of a 3D C-space.

V. COMPARATIVE ANALYSIS

This section compares the proposed strategy with respect to the original Gaussian sampling strategy.

For the comparison, the Gaussian method has also been applied to the 2D example, generating as many

samples as required until a similar set of free samples is obtained (since the Gaussian strategy does not

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 CSPACE

X Axis

Y
 A

xi
s

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 CSPACE

X Axis

Y
 A

xi
s

Fig. 10. (Left) The 2D example of Fig. 8. (Right) The 2D example using the Gaussian sampling strategy, using 11,000 samples (generated

and collision-checked). The number of output free samples is 362.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

50

100

150
 Distance of SDK Sequence

Distance

F
re

cu
en

cy

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

20

40

60

80

100

120

140

160

180
 Distance of Random Sequence

Distance

F
re

cu
en

cy

Fig. 11. Histograms of the distances to C-obstacles for the proposed strategy (left) and for the Gaussian one (right).

place samples far away from obstacles, few samples - 1.4% - have been added with uniform sampling

in order to also have some configurations on free-space regions). Fig. 10 shows the proposed method on

the left and the Gaussian on the right. Similarity of the sampling obtained is verified by the histograms

of the distances from the samples to the C-obstacles, as shown in Fig. 11.

By comparing figures 8 and 10 it can be see that the proposed method distributes samples near the

C-obstacles more evenly than the Gaussian; the same occurs far from the obstacles where samples are

also more evenly distributed than those generated from the uniform sampling.

No collision detection algorithm has been used, but a discretized C-space has been precomputed,

giving a negligible computational cost for the collision-check queries. The following table summarizes

the results of the comparison, showing for each strategy the number of samples generated, the number

of free samples returned, the number of collision-checks performed, and the total time required.

It can be seen that, with negligible collision-check times, the proposed method is slower. Nevertheless,

compared to the Gaussian strategy, it only requires a 6% of the calls to the collision-checker. Then,

if collisions are to be computed on the workspace using a collision detection algorithm, the proposed

method outperforms the Gaussian, as shown in Fig. 12 for collision-check times of up to 1ms and the

collision-check requirements of Table III.

TABLE III

COMPARATIVE ANALYSIS.

generated # free # collision Time

samples samples checks (ms)

SDK 2,000 376 617 46

Gaussian 10,140 370 10,140 16

0.25

7.5

to
ta

l s
am

pl
in

g
tim

e
(s

)

2.5

0.0

collision−check time (ms)

0.75

10.0

5.0

1.00.5

Fig. 12. Total sampling times (in seconds) for the sampling of the 2D example represented with respect to the time to perform a collision

check (in milliseconds): the Gaussian sampling strategy in blue, the SDK sampling strategy in red.

VI. CONCLUSIONS

Deterministic sequences have previously been used mainly with uniform sampling, giving just slightly

better results than random sampling in PRM path planners. Its use with non-uniform sampling has given

no significative improvements. No sampling strategy has yet, however, been designed to take full profit of

deterministic sequences. This paper was focused in this direction: it has presented a new and efficient

non-uniform sampling strategy, SDK, based on the deterministic sequence sd(k). Like the Gaussian

sampling strategy, this new proposal samples more densely near the C-obstacles, but using much less

calls to the collision detection algorithms, resulting in less computational time. Also, samples near the

C-obstacles are more evenly distributed and no extra uniform sampling is required since the proposed

strategy also puts (few) samples over open-free regions.

REFERENCES

[1] L. E. Kavraki and J.-C. Latombe, “Randomized preprocessing of configuration for fast path planning,” in Proc. of the IEEE Int.

Conf. on Robotics and Automation, vol. 3, 1994, pp. 2138–2145.

[2] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to single-query path planning,” in Proc. of the IEEE Int. Conf.

on Robotics and Automation, 2000, pp. 995–1001.

[3] L. E. Kavraki, M. N. Kolountzakis, and J.-C. Latombe, “Analysis of probabilistic roadmaps for path planning,” IEEE Trans. on

Robotics and Automation, vol. 14, no. 1, pp. 166 –171, Feb. 1998.

[4] D. Hsu, J.-C. Latombe, and H. Kurniawati, “On the probabilistic foundations of probabilistic roadmap planning,” Int. Journal of

Robotics Research, vol. 25, no. 7, pp. 627 – 643, 2006.

[5] J. P. van der Berg and M. H. Overmars, “Using workspace information as a guide to non-uniform sampling in probabilistic roadmap

planners,” Int. J. of Robotics Res., vol. 24 (12), pp. 1055–1071, 2005.

[6] H. Kurniawati and D. Hsu, “Workspace-based connectivity oracle: An adaptive sampling strategy for PRM planning,” in Algorithmic

Foundations of Robotics VII, S. Akella and et.al., Eds. Springer–Verlag, 2006.

[7] V. Boor, M. H. Overmars, and A. F. van der Stappen, “The Gaussian sampling strategy for probabilistic roadmap planners,” in Proc.

of the IEEE Int. Conf. on Robotics and Automation, 1999, pp. 1018–1023.

[8] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling narrow passages with probabilistic roadmap planners,” in Proc.

of the IEEE Int. Conf. on Robotics and Automation, 2003, pp. 4420–4426.

[9] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. K. Overmars, “Probabilistic roadmaps for path planning in high - dimensional

configuration spaces,” IEEE Trans. on Robotics and Automation, vol. 12, no. 4, pp. 566–580, August 1996.

[10] D. Hsu, G. Sanchez-Ante, and Z. Sun, “Hybrid PRM sampling with a cost-sensitive adaptive strategy,” in Proc. of the IEEE Int.

Conf. on Robotics and Automation, 2005, pp. 3874 – 3880.

[11] M. Saha, J. C. Latombe, Y. C. Chang, and F. Prinz, “Finding narrow passages with probabilistic roadmaps: The small-step retraction

method,” Autonomous robots, vol. 19(3), pp. 301–319, 2005.

[12] H. L. Cheng, D. Hsu, J. C. Latombe, and G. Sanchez-Ante, “Multi-level free space dilation for sampling narrow passages in prm

planning,” in Proc. of the IEEE Int. Conf. on Robotics and Automation, 2006, pp. 1255– 1260.

[13] M. S. Branicky, S. M. LaValle, K. Olson, and L. Yang, “Quasi-randomized path planning,” in Proc. of the IEEE Int. Conf. on

Robotics and Automation, 2001, pp. 1481–1487.

[14] S. M. LaValle, M. S. Branicky, and S. R. Lindemann, “On the relationship between classical grid search and probabilistic roadmaps,”

Int. Journal of Robotics Research, vol. 23, no. 7-8, pp. 673–692, 2004.

[15] J. Halton, “On the effciency of certain quasi-random sequences of points in evaluating multi-dimensional integrals,” Numer. Math.,

vol. 2, pp. 84–90, 1960.

[16] S. R. Lindemann, A. Yershova, and S. M. LaValle, “Incremental grid sampling strategies in robotics,” in Proc. of the Sixth Int.

Workshop on the Algorithmic Foundations of Robotics, 2004, pp. 297 – 312.

[17] J. Rosell, M. Roa, A. Pérez, and F. Garcı́a, “A general deterministic sequence for sampling d-dimensional configuration spaces,” J.

of Intelligent and Robotic Systems, vol. 50, no. 4, pp. 361–374, 2007.

[18] A. Yershova and S. LaValle, “Improving motion planning algorithms by efficient nearest-neighbor searching,” IEEE Trans. on

Robotics, vol. 23(1), pp. 151 – 157, 2006.

[19] E. S. Rabin, AI Game Programming Wisdom 2. Charles River Medis, 2004.

[20] B. Burns and O. Brock, “Sampling-based motion planning using predictive models,” in Proc. of the IEEE Int. Conf. on Robotics

and Automation, 2005, pp. 3131–3136.

[21] J. Rosell and P. Iñiguez, “Path planning using harmonic functions and probabilistic cell decomposition,” in Proc. of the IEEE Int.

Conf. on Robotics and Automation, 2005, pp. 1815–1820.

[22] L. Zhang, Y. J. Kim, and D. Manocha, “A hybrid approach for complete motion planning,” in Accepted to IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems, 2007.

SDK Referen
e ManualGenerated by Doxygen 1.5.3Jun 2008Te
hni
al University of CataloniaInstitute of Industrial and Control Engineering

Contents
1 SDK: Deterministi
 Sequen
e 12 SDK Namespa
e Index 32.1 SDK Namespa
e List . 33 SDK Class Index 53.1 SDK Class List . 54 SDK Namespa
e Do
umentation 74.1 SDK Namespa
e Referen
e . 75 SDK Class Do
umentation 95.1 SDK::CSpa
e Class Referen
e . 95.2 SDK::Sample Class Referen
e . 125.3 SDK::Sequen
e Class Referen
e . 155.4 SDK::TMat Class Referen
e . 175.5 SDK::WMat Class Referen
e . 19

Chapter 1SDK: Deterministi
 Sequen
eThis is a brief explanation about the S.D.K. deterministi
 sequen
e. The S.D.K. is used as asampler inside a parti
ular Spa
e in the Kautham Planner. This planner was developed in theInstitute of Industrial and Control Engineering (IOC, a
ronym in spanish, www.io
.up
.edu) fromTe
hni
al University of Catalonia in Bar
elona, Spain (www.up
.edu) in the PhD Programme inAutomati
 Control, Roboti
s and Computer Vision.This sample
ode is provided "as is". This pie
e of
ode is used to show the fa
ilities and potentialsof this S.D.K. over other sampling strategies like random or halton sequen
es.More information about it,
an be found in:Jan Rosell, Maximo Roa, Alexander Perez, and Fernando Gar
ia. A general deterministi
 sequen
efor sampling d-dimensional
on�guration spa
es. Journal of Intelligent and Roboti
 Systems,50(4):361 - 373, De
ember 2007. (omitted a

ents)

2 SDK: Deterministi
 Sequen
e

Generated for SDK by Doxygen

Chapter 2SDK Namespa
e Index
2.1 SDK Namespa
e ListHere is a list of all do
umented namespa
es with brief des
riptions:SDK (This namespa
e
ontains the deterministi
 sequen
e and other useful tools. Thisnamespa
e is de�ned to make a
ompa
t and reusable pie
e of
ode
ontainingthe deterministi
 sequen
e and many other tool that des
ribes a samplig spa
e(a
on�guration spa
e for motion planning purpose)) 7

4 SDK Namespa
e Index

Generated for SDK by Doxygen

Chapter 3SDK Class Index
3.1 SDK Class ListHere are the
lasses, stru
ts, unions and interfa
es with brief des
riptions:SDK::CSpa
e (This
lass represents the sampling spa
e. It is a set that
ontains listsof samples and other useful tools. This
lass
an generates deterministi
 andrandom samples, it
an de�nes testing obsta
les inside sampling spa
e and it
an be asked about sample's neighbours) . 9SDK::Sample (This
lass is the abstra
tion of a sample entity. This
lass
ontains the
ode, the indexes and the
oordinates of a sample and it provides some methodsto extra
t and to use its information in the exploration pro
ess) 12SDK::Sequen
e (This
lass provides the simply and fast way to use the deterministi
sequen
e. This
lass is the minimal implementation of the deterministi
 sequen
ealgorithm. More information about it, will be found in: Jan Rosell, Maximo Roa,Alexander Perez, and Fernando Gar
ia. A general deterministi
 sequen
e forsampling d-dimensional
on�guration spa
es. Journal of Intelligent and Roboti
Systems, 50(4):361 - 373, De
ember 2007. (omitted a

ents)) 15SDK::TMat (This
lass is the abstra
tion of the dxd binary matrix Td . This
lassimplements the square (dxd) matrix Td that is used to �nd the sequen
e of

2d samples of a d-dimensional spa
e that satisfy that the mutual distan
e ismaximized, i.e. the minimum distan
e to all the previous samples of the sequen
eis maximized) . 17SDK::WMat (This
lass is the abstra
tion of the dxM matrix of weights, W. This
lassis the matrix that it
ontains the values of weigths) 19

6 SDK Class Index

Generated for SDK by Doxygen

Chapter 4SDK Namespa
e Do
umentation
4.1 SDK Namespa
e Referen
eThis namespa
e
ontains the deterministi
 sequen
e and other useful tools. This namespa
e isde�ned to make a
ompa
t and reusable pie
e of
ode
ontaining the deterministi
 sequen
eand many other tool that des
ribes a samplig spa
e (a
on�guration spa
e for motion planningpurpose).Classes�
lass CSpa
eThis
lass represents the sampling spa
e. It is a set that
ontains lists of samples and otheruseful tools. This
lass
an generates deterministi
 and random samples, it
an de�nes testingobsta
les inside sampling spa
e and it
an be asked about sample's neighbours.�
lass SampleThis
lass is the abstra
tion of a sample entity. This
lass
ontains the
ode, the indexes andthe
oordinates of a sample and it provides some methods to extra
t and to use its informationin the exploration pro
ess.�
lass Sequen
eThis
lass provides the simply and fast way to use the deterministi
 sequen
e. This
lass is theminimal implementation of the deterministi
 sequen
e algorithm. More information about it,will be found in: Jan Rosell, Maximo Roa, Alexander Perez, and Fernando Gar
ia. A generaldeterministi
 sequen
e for sampling d-dimensional
on�guration spa
es. Journal of Intelligentand Roboti
 Systems, 50(4):361 - 373, De
ember 2007. (omitted a

ents).�
lass TMatThis
lass is the abstra
tion of the dxd binary matrix Td . This
lass implements the square (dxd)matrix Td that is used to �nd the sequen
e of 2d samples of a d-dimensional spa
e that satisfythat the mutual distan
e is maximized, i.e. the minimum distan
e to all the previous samples ofthe sequen
e is maximized.�
lass WMatThis
lass is the abstra
tion of the dxM matrix of weights, W. This
lass is the matrix that it
ontains the values of weigths.

8 SDK Namespa
e Do
umentation

Generated for SDK by Doxygen

Chapter 5SDK Class Do
umentation
5.1 SDK::CSpa
e Class Referen
eThis
lass represents the sampling spa
e. It is a set that
ontains lists of samples and other usefultools. This
lass
an generates deterministi
 and random samples, it
an de�nes testing obsta
lesinside sampling spa
e and it
an be asked about sample's neighbours.#in
lude <
spa
e.h>Collaboration diagram for SDK::CSpa
e:

SDK::CSpace

SDK::Sequence

DetermSequence

SDK::WMat

W

_wMat

SDK::TMat

T

_tMat

Publi
 Member Fun
tions� CSpa
e (
har dimParti,
har maxPartion, WMat &w, TMat &t)It is the
onstru
tor of spa
e representation. The dimensions, the maximum sampling level, theW and T matri
es are the parameters.� long int �ndOrder (unsigned long
ode)Returns the index of sample with
ode "
ode" in the general sampling sequen
e.� bool existSample (unsigned long
ode)Returns true if there exists a sample with
ode "
ode" in the general sample list.� TMat ∗ getTMat ()Returns a pointer to T matrix.� WMat ∗ getWMat ()

$class_s_d_k_1_1_sequence.html
$class_s_d_k_1_1_w_mat.html
$class_s_d_k_1_1_t_mat.html

10 SDK Class Do
umentationReturns a pointer to W matrix.� void sear
hAllNeighs (int threshold)This method sear
hs all neighs for all existing samples within a threshold distan
e.� void sear
hNeighs (Sample &smp, int threshold)This method sear
hs all neighs for a parti
ular sample within a threshold distan
e.� Sample ∗ nextSample (bool random=true, bool sorted=false)This method makes a new sample. Its parameters are two, the Random parameter that swit
hbetween
enter or any other random
oordinates asigned to sample, and the Sorted parameterpoint out if a new generated sample is putted into a list under time or
ode order.� Sample ∗ addSample (Sample &smp, bool sorted=false)This method add a sample "smp" into the general sample list. If the Sorted parameter is false,the sample is pushed to the end of the list, otherwise is pushed in
ode order.� void printSamples (string �lename)This method writes a �le with �lename in the run dire
tory with all deterministi
 samples.� void printRandSamples (string �lename)This method writes a �le with �lename in the run dire
tory with all random samples.� void printNeighs (string �lename)This method writes a �le with �lename in the run dire
tory with all deterministi
 samples andtheir neighs.� void printCspa
e (string �lename)This method writes a �le with �lename in the run dire
tory with all free determinsti
 samples.� void printCspa
eRandom (string �lename)This method writes a �le with �lename in the run dire
tory with all free random samples.� void printEx
el (string �lename)This is a
onvenient method used to write text to be pushed into an Ex
el spreadsheet.� int loadObsta
les (string �lename)This method loads the sample
odes of the
-obsta
les of an arti�
ial
-spa
e.� double ∗ getTimes ()This method returns the time spent in the generation and the neighbours sea
h pro
esses.� int
ollisionChe
kRand (long int
ode)This method return the
ollision status of a
ode. It is useful to know if an obsta
le is in this
ell.� long exploreRandom (long numSamples, double radio)This method makes the random exploration of the CSpa
e (p. 9).� void explore (long numSamples, bool Neighs=true, int threshold=2, bool random=true,bool sorted=false) Generated for SDK by Doxygen

5.1 SDK::CSpa
e Class Referen
e 11This method makes the deterministi
 exploration of the CSpa
e (p. 9).� void �ndingTimes (long numSamples, long numNeighs, int threshold=2, bool ran-dom=true, bool sorted=false)This method generate a numSamples of samples and looking for a numNeighs of neighbours, andit measures the time elapsed.Publi
 Attributes� Sequen
e ∗ DetermSequen
ePointer to the deterministi
 sequen
e obje
t.Private Attributes�
har dimProblemDimension of a problem. Be sure that Dim∗M is less than 32.� ve
tor< Sample ∗ > samplesList of deterministi
 samples.� ve
tor< double ∗ > randsamplesList of random samples.� WMat ∗ WPointer to W matrix.� TMat ∗ TPointer to T matrix.� ve
tor< int > obs3List of
-obsta
le
ell
odes.� double _times [2℄Array of two times: the generation time and the neighbours sear
h time.� long numCollChe
kNumber of
ollision
he
ks done in the exploration pro
edure.Stati
 Private Attributes� stati
 LCPRNG ∗ gen1 = new LCPRNG()Pointer to obje
t of LCPRNG
lass that generates random numbers.The do
umentation for this
lass was generated from the following �les:�
spa
e.h�
spa
e.
ppGenerated for SDK by Doxygen

12 SDK Class Do
umentation5.2 SDK::Sample Class Referen
eThis
lass is the abstra
tion of a sample entity. This
lass
ontains the
ode, the indexes and the
oordinates of a sample and it provides some methods to extra
t and to use its information in theexploration pro
ess.#in
lude <sample.h>Collaboration diagram for SDK::Sample:
SDK::Sample

SDK::WMat

_wMat

Publi
 Member Fun
tions� Sample (unsigned long int
ode,
har ∗indexes, bool random=true)Unique
onstru
tor for a
lass. Indexes parameter is used for neighbours sear
h.� unsigned long int getCode ()Returns the sample
ode.� void sear
hNeighs (std::ve
tor< Sample ∗ > ∗
andidates, int threshold)This method sear
hs the neighbours of the sample that belong to the ve
tor of
andidate samplesprovided that the partition level of the sample is over a given threshold.� ve
tor< Sample ∗ >::iterator getNeighs (Sample &smp)Returns an iterator to point to neighbours ve
tor of the sample smp.� string print (bool extend=true)Returns a string
ontaining the
oordinates information and if extend parameter is true, it
on-tains the
ode and the
oordinates information in a expli
it form.� string printNeighs ()Returns a string that
ontais the sample
ode and the
odes of neighbour samples.�
har getFlagT (void)
onstReturns the �ag to be used as index in the threshold transparen
y ve
tor.� long getNumNeighs ()Returns the neighbours number of the sample.� double getTransparen
y (void)
onstReturns the transparen
y value of the sample.� int getColor ()
onstReturns the
olor of sample. This
olor is the
ollision status. If sample is free the
olor is 1otherwise the
olor is -1. If the sample is not evaluated then the
olor is 0 .Generated for SDK by Doxygen

$class_s_d_k_1_1_w_mat.html

5.2 SDK::Sample Class Referen
e 13� void setColor (int
)This method set the sample
olor.� void updateTNeighs ()This method updates the transparen
y.� double
omputeTransparen
y ()This method
al
ulates and returns the value of transparen
y. This value is
al
ulated based onthe neighbourset
ollision status.� int
ollisionChe
k ()This method evaluates the
ollision status of the sample.Stati
 Publi
 Attributes� stati
 �oat sizeContainer = 1.0This is the size of an M-Cell.� stati

har DIM = 1This is the dimension of the sampling spa
e.� stati

har M = 1This is the grid partition level.� stati
 double thresholdT [2℄ = {0.0,0.0}This array
ontains the two threshold transparen
y levels. This thresholds are used to indi
atewhen the tranparen
y must be re
al
ulated or not.� stati
 int kNeighs = 4This is the number of neighbours
onsidered to
al
ulate the transparen
y.� stati
 WMat ∗ _wMat = NULLThis is a stati
 pointer to the W matrix. This is a unique obje
t used for any sample in sampleset.� stati
 ve
tor< int > ∗ Obst3 = NULLThis is the stati
 pointer to the obsta
les
ode list. The obsta
les are represented for a list withthe samples
ode to be o

uped by it.Private Attributes�
har ∗ indexPointer to the grid indexes.� ve
tor< Sample ∗ > neighsetStandar ve
tor of pointer to neighbour samples.� unsigned long int
odeGenerated for SDK by Doxygen

14 SDK Class Do
umentationThis is the sample
ode.� double ∗
oordPointer to the samples
oordinates array.� double transparen
yThis is the sample transparen
y value. This is
al
ulated as the mean of the
olor of its neighs.�
har �agTThis �ag is used to indi
ate that sample has neighbours with di�erent
olor.� int
olorThis is the sample
olor.Stati
 Private Attributes� stati
 LCPRNG ∗ gen1 = new LCPRNG()Pointer to obje
t that generates a random number sequen
e.� stati
 int ∗ topIndex = NULLThis is the pointers used to show the neighbour sample with the highest
ode.� stati
 int ∗ lowIndex = NULLThis is the pointers used to show the neighbour sample with the lower
ode.5.2.1 Member Fun
tion Do
umentation5.2.1.1 void SDK::Sample::updateTNeighs ()update the transparen
y of the neighs and
all
ollision
hsk if needed5.2.1.2 double SDK::Sample::
omputeTransparen
y ()
omputeTransparen
yThe do
umentation for this
lass was generated from the following �les:� sample.h�
spa
e.
pp� sample.
pp
Generated for SDK by Doxygen

5.3 SDK::Sequen
e Class Referen
e 155.3 SDK::Sequen
e Class Referen
eThis
lass provides the simply and fast way to use the deterministi
 sequen
e. This
lass is theminimal implementation of the deterministi
 sequen
e algorithm. More information about it,will be found in: Jan Rosell, Maximo Roa, Alexander Perez, and Fernando Gar
ia. A generaldeterministi
 sequen
e for sampling d-dimensional
on�guration spa
es. Journal of Intelligent andRoboti
 Systems, 50(4):361 - 373, De
ember 2007. (omitted a

ents).#in
lude <sequen
e.h>Collaboration diagram for SDK::Sequen
e:
SDK::Sequence

SDK::WMat

_wMat

SDK::TMat

_tMat

Publi
 Member Fun
tions� Sequen
e (int dim, int M, bool randO�set=true)Simply
onstru
tor. This
onstru
tor is a simply way to obtain the SDK (p. 7) generator. Be
areful with dim and M be
ause dim∗M will be less of 32. If randoO�set is true, the �rst
ode ofsequen
e is random, otherwise it is zero.� ∼Sequen
e (void)Simply destru
tor.� unsigned long getCode (
har ∗indexes)This method returns the
ode of the
ell with grid
oordinates "indexes".�
har ∗ getIndexes (unsigned long int
ode)This method returns an array with the indexes of a
ell with
ode "
ode".�
har ∗ getIndexes (void)Returns the indexes
orresponding to the last generated
ell
ode of the sequen
e.� unsigned long getSequen
eCode ()Returns the new
ode in the sequen
e.� unsigned long getSequen
eCode (unsigned long K)Returns the
ode
orresponding to the Kth sample of the sequen
e.�
har ∗∗ getVMatrix (unsigned long int
ode)Returns the V matrix for a
ell with
ode "
ode". V is the matrix of index in binary representa-tion.�
har ∗∗ getVMatrix (void)Returns the V matrix
orresponding to the last sample generated of the sequen
e.� void setW (WMat &w)Generated for SDK by Doxygen

$class_s_d_k_1_1_w_mat.html
$class_s_d_k_1_1_t_mat.html

16 SDK Class Do
umentationThis method sets the W matrix.� WMat ∗ getW ()This method returns a pointer to the W matrix.� void setT (TMat &t)This method sets the T matrix.� TMat ∗ getT ()This method returns a pointer to the T matrix.Private Attributes� unsigned long int _indexThis is the index of the sequen
e.� unsigned long int _lastCodeThis is the last
ode generated by the sequen
e.� unsigned long int _o�setThis is the initial random o�set for the sequen
e.� unsigned long _maxNumCellsThis is the maximum number of
ells. It is 2Dim∗M .�
har _maxSamplingLevelThis is the M value. This is the maximum sampling level.�
har _dimThis is the dimension of the spa
e to be sampled.� TMat ∗ _tMatPointer to T matrix.� WMat ∗ _wMatPointer to W matrix.�
har ∗∗ _VThis is the pointer to the unique V matrix used to
al
ulate the binary values for indexes of a
ell.�
har ∗ _indexesPointer to the unique indexes matrix that
ontains the indexes of a
ell.The do
umentation for this
lass was generated from the following �les:� sequen
e.h� sequen
e.
pp Generated for SDK by Doxygen

5.4 SDK::TMat Class Referen
e 175.4 SDK::TMat Class Referen
eThis
lass is the abstra
tion of the dxd binary matrix Td . This
lass implements the square (dxd)matrix Td that is used to �nd the sequen
e of 2d samples of a d-dimensional spa
e that satisfythat the mutual distan
e is maximized, i.e. the minimum distan
e to all the previous samples ofthe sequen
e is maximized.#in
lude <tmat.h>Publi
 Member Fun
tions� TMat (int d=0)This is a unique
onstru
tor.� string printMatrix ()This method returns a string that
ontains the text representation of the matrix.� int multiply (
onst int k)This method multiply the matrix for a
onstant k.� void multiply (
onst
har ∗
onst k,
har ∗
onst l)� void multiply (
onst
har ∗
onst k,
har ∗
onst l,
onst int m)� void multiply (
onst
har ∗
onst w,
har ∗
onst res)
onst�
har ∗∗ multiply (
onst
har ∗
onst ∗
onst v,
onst int m)
onstThis method multiply the matrix for other matrix V that it
orresponds to m level and return thepointer to the result.Private Member Fun
tions� void prime_fa
torization (long int x, int ∗fa
t, int ∗numfa
tors)� void
ompose (int ∗primefa
tors, int numfa
tors,
har ∗∗vC, int dimC, int trun
=0)This method
reates the base matri
es of the prime numbers involved.� void insert (
har ∗∗vA,
har ∗∗vB, int dimA, int dimB)� void
reateTd ()This method
reate the matrix properly.Private Attributes� int dThis is the dimension of the matrix.�
har ∗∗ _tMatThis is the matrix values.�
har ∗∗ matResPointer to the matrix that
ontains the results of any multipli
ation operation.Generated for SDK by Doxygen

18 SDK Class Do
umentation5.4.1 Member Fun
tion Do
umentation5.4.1.1 void SDK::TMat::multiply (
onst
har ∗
onst w,
har ∗
onst res)
onstMultiplies the matrix by a binary ve
tor "w". Returns the result at the parameter "res" A standardmatrix-ve
tor operation is performed and then a mod2 operation is done. Therefore the resultingve
tor is a binary ve
tor.5.4.1.2 void SDK::TMat::prime_fa
torization (long int x, int ∗ fa
t, int ∗numfa
tors) [private℄Does the prime fa
torization of number 'x'. Puts the result in parameter 'fa
t' and the numberof prime fa
tors in parameter 'numfa
tors'. This fun
tion is addapted from Steven S. Skiena(www.programming-
hallenges.
om).The do
umentation for this
lass was generated from the following �les:� tmat.h� tmat.
pp

Generated for SDK by Doxygen

5.5 SDK::WMat Class Referen
e 195.5 SDK::WMat Class Referen
eThis
lass is the abstra
tion of the dxM matrix of weights, W. This
lass is the matrix that it
ontains the values of weigths.#in
lude <wmat.h>Publi
 Member Fun
tions� WMat (int dim, int level)This is the unique
onstru
tor provided.� std::string printMatrix ()This member method returns a string that
ontains a text representationm of the matrix.� void setRow (
onst int index1,
onst int index2,
onst long value)This method sets the value of the row (index1) and the
olumn (index2) spe
i�ed.� long getRow (
onst int index1,
onst int index2)This method returns the value of the row (index1) and the
olumn (index2) spe
i�ed.Prote
ted Member Fun
tions� WMat ()This is a prote
ted
onstru
tor used to restri
t the
onstru
tion way without a
orre
t parameters.Private Attributes� int dThis is the dimension of matrix.� int mThis is the maximum level of samplig.� long int ∗∗ wThis is the matrix values.The do
umentation for this
lass was generated from the following �les:� wmat.h� wmat.
pp
Generated for SDK by Doxygen

Index
omputeTransparen
ySDK::Sample, 14multiplySDK::TMat, 18prime_fa
torizationSDK::TMat, 18SDK, 7SDK::CSpa
e, 9SDK::Sample, 12
omputeTransparen
y, 14updateTNeighs, 14SDK::Sequen
e, 15SDK::TMat, 17multiply, 18prime_fa
torization, 18SDK::WMat, 19updateTNeighsSDK::Sample, 14

