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ABSTRACT. The distributions obtained by left-truncating at & a mixed Poisson
distribution, kT-MP, those obtained by mixing previously left-truncated Pois-
son distributions, M-kTP; and those obtained by left-truncating at k a mixture
of previously left-truncated Poisson distributions, kT-M-iTP, are character-
ized by means of their probability generating function. The AT-MP models
are useful because they aproximate well the mechanism behind many count
data generating processes, and because under the hypothesis that the mixing
distribution has probability zero at zero, as in the continuous case, they allow
one to estimate the first £ + 1 probabilities of the untruncated mixed Poisson
model. Consequences of the characterizations obtained are that every kT-MP
distribution is a M-KTP distribution but not the other way around, and that
the set of distributions £T-M-iTP is included in the set kT-M-(i+1)TP. Based
on the characterizations obtained it follows that the factorial size-biased ver-
sion of order k + 1 of a mixed Poisson random variable and, under a certain
condition, its shifted version of order k + 1 are neither kT-MP nor M-kTP
distributed. A transformation that applied to a mixed Poisson distribution
always yields to a M-KTP distribution is defined.

1. INTRODUCTION

Count data often has larger variability than the one expected from the Poisson

model. In Valero et al. (2010) it is pointed out that in many of those instances
the data generating process can be modeled through a two stage process in which
the distribution of each count would be Poisson but with an expected value
that changes from count to count. By modeling the distribution of the Poisson
expectation one is naturally lead to the use of Poisson mixture models.
These models have the advantatge that they provide a simple mechanistic expla-
nation that lets one interpret the mixing distribution as the frequency distribu-
tion of a population characterizing the sample. That is useful for example when
modelling word or species frequencies count data, in stylometry and in ecology,
because the mixing distribution represents the word or species frequency distri-
bution of the vocabulary or the population from which the sample was created
(see, e.g. Sichel 1975, 1997).
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In applications one faces situations where one can not observe the counts smaller
or equal than k, for k£ > 0, or where one needs to model the frequency of the
values larger than k£ apart. By resorting to the use of left-truncated mixed Pois-
son distributions, denoted here by kT-MP, one is still allowed the mechanistic
interpretation described above, which is lacking in the alternative models for this
kind of data.

This paper characterizes by means of their probability generating functions (pgf’s)
the models that result from left-truncating at k& mixed Poisson distributions, de-
noted as KT-MP, those that result from mixing Poisson distributions that have
been previously left-truncated at k, denoted as M-kTP, and those obtained by
left-truncating at k a mixture of Poisson distributions previously left-truncated
at ¢, denoted as kKT-M-2TP. The characterizations obtained allow on the one side
to classify any given parametric model as belonging or not in any of these clases
based on the properties of its pgf. On the other side, they allow one to define
new models of the required type by means of their pgf’s.

The characterization of the KT-MP distributions is specially useful because if one
assumes that the mixing distribution has probability zero at zero, which is true in
the continuous case, it is possible to recuperate features of the untruncated mixed
Poisson model from the pgf of the KT-MP model. In particular, we present a way
to recover the first £ + 1 probabilities of the untruncated model starting from
the pgf of the the KT-MP model. This is specially rellevant for example in the
analysis of word or species frequency count data though 0T-MP models because
the estimation of the size of the vocabulary or population is directly related to
the estimation of the probability of zero of the corresponding untruncated model
and hence, of the proportion of words or species unobserved in the data.
Bohning and Kuhnert (2006) proves that if the mixing distribution has a finite
support and the truncation is at zero, the two sets of distributions obtained by
either first truncating and then mixing or the other way around a non negative
integer distribution, are the same set of distributions. Valero et al. (2010) proved
that when the mixing distribution has infinite support and the mixed untruncated
distribution is Poisson, this result is no longer true. Here it is proved that when
one left-truncates at any non-negative integer value k£ other than zero, every
E'T-MP distribution is a M-kTP distribution but not the other way around.
The shifted version and the factorial size-biased version of order k£ + 1 of a count
distribution are two alternative mechanisms of obtaining count distributions tak-
ing only integer values larger than k. From the characterizations presented in this
paper it follows that the factorial size-biased version of order k£ + 1 and, under
a certain condition, the shifted version of order k£ + 1 of a Poisson mixture are
neither a kKT-MP distribution nor a M-kTP distribution. A transformation that
applied to a mixed Poisson distribution always yields a M-KTP distribution is
proposed.

The paper is organized as follows. In Section 2 the background definitions are
given, a known characterization of Poisson mixture distributions is presented
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and two useful transformations of a random variable are defined. In Section 3
the pgf’s of the kKT-MP models are characterized and a method to recuperate the
pgf of the initial untruncated mixed Poisson model from the pgf of the kT-MP
model is proposed. Section 4 characterizes the pgf’s of the M-£TP distributions.
Section 5 remarks that the set of M-£TP distributions includes the set of £T-MP
distributions. It also characterizes the set of kKT-M-:TP distributions and proves
that this set is included in the set of KT-M-(i + 1)TP distributions. Section
6 presents consequences of the characterizations that relate to alternative ways
to create count random variables supported on the integers larger than k. The
results presented in this paper relie on and generalize some of the results for the
zero-truncated case obtained in Valero et al. (2010). All the proofs are presented
in the Appendix with the exception of the one of Proposition 4.

2. PREMILINARY CONCEPTS AND DEFINITIONS

The probability generating function of a non-negative integer (count) random
variable (r.v.) N such that P(N = i) = p; is defined as:

h(s) = E[SN] = sz‘ s,

for any s in the domain of convergence, which includes (—1,1). The pgf of a r.v.
depends only on its probability distribution, and two r.v.’s have the same pgf if,
and only if, they have the same probability distribution. Any pgf verifies that
h(0) = po and that h(1) = 1. Denoting the i-th derivative of h(s) by h(¥(s), it
is easy to check that p; = h()(0)/i! and that if the i-th factorial moment of that
r.v. exists, i. e. if E[X!/(X —1i)!] < +oo0, then it is equal to A (1).

A function such that all its derivatives f)(s) exist in an interval (a, b) is said to
be absolutely monotone (strictly absolutely monotone) in (a, b) if, and only if,

(1) f9(s) > (>)0, Vs € (a,b) and i=0,1,2,---.

A real function f(s) is a pgf if, and only if, it is absolutely monotone in (0, 1)
and f(1) =1 (see Feller, 1971).

Given a count random variable N and a positive integer number k, the left-
truncation at k of N, denoted by N*~*"_is defined to be the r.v. with probabilities

P(N =1)
1Y% PN =)
It is easy to check that if one denotes the pgf of N by hy(s), the pgf of N*¥~" is
hn(s) = Yo P(N = j) s
L =350 PV =)

P(N¥'" =4) = P(N =i|N > k) = i=k+1,k+2,--.

2) Bk (5) =

which means that
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S PN =j)s) iy (s)
1-Yl0P(N=j) 1=/ P(N=j)

The pgf of a Poisson distribution with mean parameter A is equal to exp(A (s—1)),
and hence by (2), the pgf of the left-truncation at &k of a Poisson distribution is:

(3) hNk—tr(S) +

(4) hpo()\)k—tr (S) = - J . )
1—e ’\Z] ojv er —Z?ZO% Qk(lv)\)
where
AV
(5) Qu(s;\) =™ =) R
=0

A zero-modification of a r.v. N, denoted by N*, is a r.v. with a distribution that
is a mixture of the distribution of N and the degenerated distribution at zero.
Thus, one has that

o gy A= PN =k) if k=0
(N=h) = (1—e)P(N =k) if k>1,

for a given value € satisfying that e + (1 —¢) P(N = 0) > 0. Positives, negatives,
values of € yield r.v.’s with probability at zero larger, smaller, than N (see Johnson
et al. 2005). The fact that the left-truncation at k of ar.v. and the left-truncation
at k of any of its zero-modifications are equal will be used in Section 3.

This paper deals with mixed Poisson distributions, which are the result of assum-
ing that the mean parameter of a Poisson distribution follows a given probability

distribution. The following characterization is a reformulation of a result in Puri
and Goldie (1979).

Proposition 1. A function hy(s) is the pgf of a r.v. N with a mized Poisson
distribution different from the degenerated distribution at zero if, and only if, it
s such that:
a) hy(1) =1,
b) it is analytical in (—oo, 1),
c) all the coefficients of the series expansion of hx(s) about any point sg
in (—oo,1) are strictly positive, or what is the same, hy(s) is strictly
absolutely monotone in (—oo,1).

Remember that a given function is called analytical in the neighborhood of
x = a if an expansion of f(z) as a convergent power series in (z — a) is possible
in this neighborhood (see Courant and John, 1965). It follows that if N has a
mixed Poisson distribution and hy(s) denotes its pgf, then hy(s) is a non-negative
increasing function which limit is established in the following proposition.
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Lemma 1. If N is a mized Poisson distributed r.v. with pgf hn(s) then
(6) lim hy(s) =,

S§——00

where € is the probability that the mixing distribution takes the zero value.

This proposition is a consequence of the fact that if U denotes the distribution
function of the mixing distribution and it is assumed that U(0) = €, denoting by
Uy the distribution function of the zero-truncation of U one has that:

hy(s) =€+ (1 —¢) /000 A DAty (M),

which tends to € when s tends to —oo.

It is important to observe that in the case where € > 0, N may be posed as a
zero-modification of a mixed Poisson distribution with a pgf with limit zero at
—oo. For more details on the Poisson distribution and on distributions resulting
from mixing and truncating it see Johnson et al. (2005).

The normalization of a given function f(s) such that f(1) # 0 is defined to be
f(s)/f(1). When it exist, the derivative transformation of f(s) is defined to be
the normalization of the first derivative of f(s), and the integral transformation
of f(s) is defined to be the normalization of the definite integral of f(s) between
zero and a positive value s. In what follows, starting from a r.v. N new r.v.’s are
defined through the derivative and integral transformation of its pgf, hy(s).
DEFINITION 1: The derivative transformation of a count r.v. N with E(N) <
+oo and with pgf hy(s) is the r.v. N’; with pgf:

hiy(s)
7 hyi(s) = N .
Observe that if V' is the derivative transformation of N, then:
_ (J+1)
) =",
(1)

and hence if h%)(O) =0 for 7 =0,1,-,k, then h%?(O) =0forj=0,1,--- k- 1.
Thus, if NV is supported on the integers larger than or equal to k with k& > 1,
then N’ is supported on the integers larger than or equal to k& — 1; if N is
supported on the integers larger than or equal to zero then N and N’ have the
same support. Moreover, if h%)(l) < 400, forj=0,1,--- , k, then h%?(l) < 400,
fory=0,1,--- bk —1.

DEFINITION 2: The integral transformation of a count r.v. N with pgf hy(s)
is the r.v. M, with pgf:

B Jo h(t) dt

(8) har(s) = f01 T (1) A
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Note that fol hy(t)dt = E(1/(N + 1)), which for count r.v.’s is always finite and
smaller than one.

If M is an integral transformation, then hy;(0) = 0 and thus M has probability
zero at zero. Moreover,

) h(jfl)
) W(s) = 1L gy
Jo b (t)dt
from where one has that if h%)(O) =0, for j =0,1,--- ,k, then hg\]}(O) =0, for
j=0,1,--- Jk+ 1. Thus, if N is supported on integers larger than or equal to

k, k > 0, then its integral transformation, M, is supported on integers larger
than or equal to k + 1. Moreover, if h%)(l) < 400, for j = 0,1,--- ,k, then
h9(1) < +o0, for j =0,1,--- , k+ 1.

Intuitively it seems that the derivative and the integral transformations are in-
verse, in what follows it is argued that this is true under a given condition. It
is easy to check that two r.v.’s have the same derivative transformation if, and
only if, one is a zero-modification of the other one with a positive e. Thus, if
one restricts atention to the set of pgf’s such that h(0) = 0 and A/(1) < +o0,
the derivative transformation is injective. The integral transformation is defined
in the set of pgt’s of count distributions and, in that set, it is injective. Given
that any pgf of a count distribution is the derivative transformation of a pgf of
a count distribution with finite mean and probability zero at zero, one has that
if one considers as initial space the set of pgf’s of count distributions with finite
mean and probability zero at zero and as a final space the set of pgf’s of count
distributions, both the derivative and the integral transformations defined are
one the inverse of the other one.

Observe that if hy(s) is (strictly) absolutely monotone, the pgf of its derivative
transformation is also (strictly) absolutely monotone. As a consequence, the
derivative transformation of a mixed Poisson distribution is a mixed Poisson
distribution. On the other hand, in Section 6 it will be found that the integral
transformation of a mixed Poisson distribution is an strictly positive distribution,
which is not necessarily a zero-truncated mixed Poisson distribution.

3. LEFT-TRUNCATION OF A MIXED POISSON DISTRIBUTION

3.1. Characterization of K'T-MP distributions. The next theorem charac-
terizes the distributions obtained by left-truncating at £ a mixed Poisson distri-
bution with the first £ + 1 moments finite.

Theorem 1. A function h(s) is the pgf of a kT-MP distributed r.v. with the first
k + 1 moments finite if, and only if, it verifies that:

a) h(0) =0 fori=0,1,2,--- ,k;

b) h(1) =1 and hD(1) < +oo, fori=1,2,---  k+1;

c) it is analitical at (—oo,1);
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d) all the coefficients of the series expansion of h(s) about any point sy in
(=00, 1) are strictly positive except the first k + 1 coefficients that may be
negative, or what is the same, h\**)(s) is strictly absolutely monotone in
(_007 1);

e) there exists a polinomial function q(s) = Lo+ Ly s + -+ + Ly s* with
L; >0, fori=20,1,--- ,k such that

lims—._oo(h(s) + qx(s)) = 0.

Proposition 1 indicates that given any function h(s) such that h*+1)(1) < 400
and that it satisfyies conditions ¢) and d) in Theorem 1, the normalization of
D (5), K+ (5) /R (1), is the pgf of a non-degenerated mixed Poisson r.v.
The next result is a direct consequence of Step 2 of the proof of Theorem 1.

Corollary 1. Let N be a count r.v. with pgf hy(s) and let N' be its derivative
transformation. Then, if N has a (k+ 1) T-MP distribution with finite first k+ 2
moments for a given k > 1, then N’ has a kT-MP distribution with finite first
k 4+ 1 moments.

Observe that by applying Corollary 1 recursively one has that if NV has a
(k+ 1)T-MP distribution with first k£ + 2 moments finite, then the normalization
of h%)(s) for any 1 < j < k+1is the pgf of a (k+1—j)T-MP distribution. With
the understanding that a (—1)TP distribution is a MP distribution, it also follows
that the normalization of hlj\,”)(s) is the pgf of a mixed Poisson distribution.

3.2. Determination of the untruncated mixed Poisson model from a
ET-MP. An important and interesting property of the distributions in the kT-
MP family is that if the mixing distribution has probability zero at zero, one can
recover the first £ 4+ 1 probabilities of the untruncated mixed Poisson model. To
determinate the untruncated mixed Poisson model is very useful. For example
in the analysis of words or species frequency count data though 0T-MP mod-
els, computing the probability at zero of the corresponding untruncated mixed
Poisson model allows one to determinate the proportion of unobserved words
or species, and therefore the size of the vocabulary or of the population. This
property is a consequence of the following theorem which is more general, since
it refers to any kind of mixing distribution not only those with probability zero
at zero.

Theorem 2. Let h(s) be the pgf of the left-truncation at k of a mized Poisson r.v.
N with the first k + 1 moments finite and with a pgf such that lims_,_ hy(s) =
e € 10,1). Starting from h(s) it is possible to determine hy(s) and P(N = j) for
7=0,1,2,--- , k through:

LQ (]. —6)

1‘*’2?:0[4
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L:(1—¢ ,
(11) P(N:j):ﬁ’ for j=1,2,---k,
and
(12) hN(S) =€+ (1 — G)M

1+q(1)

where qi(s) is the polynomial of condition e) in Theorem 1; which coefficients L,
can be calculated though:

1
and
~1 b ()
(14)  L;=—7 lim <h(s)—|— ) Lisi) for j=0,1,-k—1.
Ji s——o0

i=j+1

Observe that from Lemma 1 € is equal to the probability at zero of the mixing
distribution, and thus if it is equal to zero by (12) the pgf of the corresponding kT-
MP distribution completely determines the pgf of the corresponding untruncated
mixed Poisson distribution.

EXAMPLE 1: Let us consider the function:

_ s*(8—35s)
h(s)—m,

which is the pgf of a r.v. with probability zero at zero and at one because h(0) = 0
and h'(0) = 0. Given that h(s) satisfies the conditions of Theorem 1, it is the
pgf of the left-truncation at one of a mixed Poisson r.v. N with pgf hy(s). From
(13) and (14) one has that

3 4
Ll = g, and that LO = g

Moreover, if one assumes that lims ., hn(s) = €, by (12) one has that

(4—s)

h(s)+3:+2s
3(s—2)%

hn(s) =€+ (1—¢) 137

=e+(1—¢)
and by (10) and (11), P(N =0) =¢+ (1 —¢)/3 and P(N =1) = (1 —€)/4. For
the particular case where ¢ = 0, and taking into account (15), one has that h(s)

is the left-truncation at one of a mixture of two negative binomial distributions
with a =2 and 0 = 1/2.
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4. MIXTURE OF LEFT-TRUNCATED P0OISSON DISTRIBUTIONS

In order to prove the main result of this section, we need to establish first the
following result.

Proposition 2. Let N be a count r.v. with pgf hy(s) such that hy(0) =0, and
let N’ be its derivative transformation. Given k > 1, N is M-kTP distributed
with first k+1 moments finite if, and only if, N' is M-(k — 1) TP distributed with
first k moments finite.

The next theorem states that the first four conditions in Theorem 1 are enough
to characterize the pgf’s of M-kTP distributions.

Theorem 3. A function h(s) is the pgf of a M-kTP distribution with the first
k + 1 moments finite if, and only if, it verifies that:
a) h ()—Oforif0,1,2,---,k;
b) h(1) =1 and hD(1) < +oo fori=1,2,---  k+1;
c) it is analitical at (—oo, 1);
d) all the coefficients of the series expansion of h(s) about any point sy in
(—o00, 1) are strictly positive exept the first k + 1 coefficients that may be

negative, or what is the same, h\**Y)(s) is strictly absolutely monotone in
(_007 1)

The next consequence of Theorem 3 helps recognize pgf’s of M-kTP distributions.

Corollary 2. Let k be a positive integer value. A function h(s) such that h®(0) =
0 fori = 0,1,---,k and such that hW(1) < +oo fori = 1,2--- k + 1 is the
paf of a M-kTP distribution with first k + 1 moments finite if, and only if, the
normalization of K1) (s) is the pgf of a mived Poisson distribution.

5. CONSEQUENCES OF THE CHARACTERIZATIONS

5.1. The set £T-MP is a subset of the set M-kTP. From Theorems 1 and
3 it follows that the set of KT-MP distributions is strictly included in the set of
M-ETP distributions.

Corollary 3.

a) Fvery kT-MP distribution is a M-kTP distribution.

b) A M-kTP distribution with pgf h(s) is a kT-MP distribution if, and only
if, there exists a polynomial of degree k with positive coefficients qi(s) such
that h(s) + qx(s) has limit zero at —

EXAMPLE 2: Consider the negative binomial distribution, with pgf:

w o (o

) , where 0<6<1, a>0,
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the logarithmic series distribution, with pgf:
In(1—0s)

h(s) = ———+

)= Ta=a

and the Hermite distribution, with pgf:

h(s) = =D+ where  a, 8> 0.

where 0 <6 <1,

The negative binomial and the Hermite distributions are supported on the non-
negative integers and the logarithmic series distribution is supported on the pos-
itive integers. Thus, the zero-truncation of the logarithmic series distribution is
equal to the untruncated distribution. The top pannel of Figure 1 presents these
pef functions for a particular set of values for 6, o and 3, while the central and
bottom pannels present the pgf’s of their left-truncations at zero and one.
Given that the negative binomial distribution is a mixed Poisson distribution,
its zero-truncation and its left-truncation at one are particular cases of kT-MP
distributions and thus they are also M-£TP distributions.

Looking at the pgf of the Hermite distribution one concludes that it can not be
a mixed Poisson distribution because the first derivative of its pgf takes the zero
value at a point sg € (—o0, 1). Its zero-truncation is neither the zero-truncation of
a Poisson mixture nor a mixture of zero-truncated Poisson distributions, because
its first derivative also takes the value zero at some point in (—oo, 1) and thus con-
dition d) of Theorems 1 and 3 is not verified. With respect to its left-truncation
at one, it is not the left-truncation at one of a mixed Poisson distribution because
condition e) of Theorem 1 is not satisfied, and even though it is not possible to
apreciate it in Figure 1, it can be checked that it is not a mixture of Poisson
distributions left-truncated at one either.

The logarithmic series distribution is not a Poisson mixture because its pgf takes
negative values, it is not the zero-truncation of a Poisson mixture because its pgf
does not have a finite limit at —oo, but it can be checked that it is a mixture
of zero-truncated Poisson distributions. Given that the left-truncation at one
of the logarithmic series distribution satisfies the conditions of Theorem 3, it is
a mixture of Poisson distributions left-truncated at one, but it is not the left-
truncation at one of a mixed Poisson distribution because it does not satisfy
condition e) in Theorem 1 with & = 1. Nevertheless, by construction it is the
left-truncation at one of a mixture of zero-truncated Poisson distributions. The
results obtained for these three particular models are summarized in Table 1.

5.2. Repeated combination of mixing and truncation. To truncate at k
a mixture of Poisson distributions previously left-truncated at ¢ with ¢ > k has
no efect, leaving one with a distribution in M-¢TP. In this subsection the dis-
tributions obtained by left-truncating at k£ a mixture of Poisson distributions
previously left-truncated at ¢ for 0 < ¢ < k, denoted by ET-M-iTP, are charac-
terized.
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FIGURE 1. The top pannel presents the pgf’s of the
negative binomial with (f = 0.2, o = 3), of the log-
arithmic series with 6 = 0.75, and of the Hermite
distribution with (o = 0.5, 8 = 1/20). The central
and bottom pannels present the pgf’s of the corre-
sponding left-truncations at zero and one.
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Distribution | Degree of truncation Type
N. B. untruncated MP
zero-truncated 0T-MP and M-0TP
left-truncated at one 1T-MP and M-1TP
Hermite untruncated not MP

zero-truncated neither 0T-MP nor M-0TP
left-truncated at one | neither 1T-MP nor M-1TP
log. series untruncated M-0TP but not 0T-MP
left-truncated at one | M-1TP but not 1T-MP

TABLE 1. Summary of Example 2. Note that the
logarithmic series distribution and its zero-truncation
are the same distribution.

The next Proposition looks into the derivative transformation of a KT-M-iTP
distribution with ¢ < k. Previously, the following lemma is required.

Lemma 2. If N is a count r.v. with pgf hy(s), the derivative transformation
of the left-truncation at k of N has the same probability distribution as the left-
truncation at k — 1 of the derivative transformation of N, N'.

Proposition 3. A count r.v. N is kT-M-iTP distributed if, and only if, its
derivative transformation is (k — 1) T-M-(i — 1) TP distributed.

Appling Proposition 3 consecutively (i + 1) times, one obtains the following
characterization of the k'T-M-iTP distributions. Note that to normalize the de-
rivative of a given function consecutively ¢ + 1 times is equivalent to normalizing
its (¢ + 1)-th derivative.

Corollary 4. A count r.v. N with pgf hy(s) is kT-M-iTP distributed if, and
only if, the normalization of hg\i,ﬂ)(s) is the pgf of a (k —i—1)T-MP distributed
T.0.

The following theorem is the main result of this section. It proves that be-
tween the sets £T-MP and M-£TP one can consider k intermediate sets obtained
through repeated combinations of mixing and truncation.

Theorem 4. For any given positive integer value k > 0, one has that:

kT-MP C kT-M-(0TP) C kT-M-(1TP) C -+ C kT-M-((k — 1)TP)
C kT-M-(kTP) = M-k TP.
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EXAMPLE 2 (cont): Given that the left-truncation at one of the negative bi-
nomial distribution is a 1'T-MP distribution, it is also a 1T-M-0TP distribution
and a M-1TP distribution. The left-truncation at one of the logarithmic series
distribution is not a 1'T-MP distribution as already said, but by definition it is a
1T-M-0TP distribution and thus it is a M-1TP distribution. The Hermite distri-
bution is not a M-1TP distribution, and hence it is neither a 1T-MP distribution
nor a 1T-M-0TP distribution.

6. ON ALTERNATIVE WAYS TO CREATE R.V.’S SUPPORTED ON THE INTEGERS
LARGER THAN k

There are ways different from left-truncating at k to transform an initial count
r.v. into a r.v. supported on the non-negative integers strictly larger than k. In
this section we consider the shift version of order £+1 and the factorial size-biased
version of a r.v., because these are the more natural ones. Given that these two
transformations do not yield in general to r.v’s which are M-KTP distributed,
and alternative transformation is first proposed.

6.1. On r.v.’s obtained by integral transformation. Proposition 2 states
that a r.v. N is M-KTP distributed if, and only if, its derivative transformation
is M-(k — 1)TP distributed. The next result is the analogous one for the integral
transformations.

Proposition 4. If M is the integral transformation of a given count r.v. N, then

a) M is M-0TP distributed if, and only if, N is mized Poisson distributed
with finite mean,
b) M is M-(k + 1) TP distributed if, and only if, N is M-kTP distributed.

The first part of the proposition is proved in Proposition 3 of Valero et al.
(2010). To see that b) holds, observe that from (9) one has that hy(s) verifies
the conditions of Theorem 3 for k = ko if, and only if, hys(s) verifies the same
conditions for k = kg + 1.

If N is M-kTP distributed, Proposition 4 ensures that its integral transformation,
M, is M-(k + 1)TP distributed, but it can also be (k + 1)T-M-kTP distributed,
which happens only if N is kT-M-(k — 1)TP distributed. As a consequence of
Proposition 4, by applying the integral transformation to a M-(k — 1)TP distri-
bution one always obtains a M-kTP distribution. Instead, the transformations
considered in Subsections 6.2 and 6.3 will not always lead to M-£TP distributions.

Next we present an example of a distribution that is in M-1TP but neither in
1T-MP nor in 1T-M-0TP.

EXAMPLE 3: Let us define the integral logarithmic series distribution to be the
integral transformation of the logarithmic series distribution, which is supported
on the integer values larger than or equal to two and has a pgf:
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1
h(s) = <s — 5) In(1 —#0s) —s, where 0 <6 < 1.

Given that the logarithmic series distribution is not the zero-truncation of a mixed
Poisson distribution, by Corollary 1 one has that the integral logarithmic series
distribution is not the left-truncation at one of a mixed Poisson distribution, 1T-
MP, and by Lemma 2, it is neither a 1T-M-0TP distribution. Nevertheless, it can
be checked that the integral logarithmic series distribution is a mixture of Poisson
distributions left-truncated at one, M-1TP, because its derivative transformation,
the logarithmic series distribution, is a mixture of zero-truncated Poisson distri-
butions. This can be appreciated in Figure 2, presenting the derivative transfor-
mation of the left-truncation at one of the integral logarithmic series distributions
with 6 = 0.85.
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FIGURE 2. Derivative transformation of the left-
truncation at one of the pgf of the integral logaritmic
series with 8 = 0.85.

6.2. The Shifted version of order k£ + 1. The shifted version of order k + 1 of
a count r.v. N, with pgf hn(s), is defined to be the r.v. M such that

P(M=i)=P(N=i—(k+1), for i=k+1k+2---,

and hence with pgf:
har(s) = ¥ hy(s).

Proposition 5. Let M be the shifted version of order k+1 of a Poisson mizture
N with pgf hn(s), and let € be the limit when s tends to —oo of hy(s). If condition

(16) im s hn(s) —€) =0

holds, then M 1is neither k'T-MP distributed nor M-kTP distributed.
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EXAMPLE 4: The Tweedie-Poisson model, first considered by Hougaard (1997),
is a three parameter Poisson mixture model that arises by assuming that the
mean of a Poisson distribution follows a three parameter Tweedie distribution
with non-negative support. Its pgf is:

o(1-8)
(17) h(s) = oS5 (=) ~(1-05)%)

where 3 € (—o0,1), @ € (0,400) and 6 € (0,1).

e For § € (0,1), h(s) has limit zero at —oo and condition (16) is verified for
any k > 0. Consequently, the shifted version of any order of a Tweedie-
Poisson distribution with 8 € (0,1) is neither a kT-MP nor a M-kTP.
In particular this holds for the inverse-Gaussian Poisson model, obtained
when 3 =1/2.

e The limit of (17) when [ tends to zero is the pgf of a negative binomial
distribution in (15). In that case, the limit of h(s) at —oo is equal to
zero. If k < a—1 condition (16) is satisfied and the corresponding shifted
version of the negative binomial distribution is neither £T-MP distributed
nor M-KTP distributed.

e For # € (—o0,0) one obtains the Pélya-Aeppli models for which the limit
of (17) at —oo is equal to exp{a (1 — 3)(1 — a)?/B}. If 3 < —3, condition
(16) is satisfied when & < —f — 1 and in that case, the corresponding
shifted version of the Pdlya-Aeppli is neither in KT-MP nor in M-k£TP.

In Valero et al. (2010) it is proved that the parameter space of the zero-truncated
Tweedie-Poisson model can be made larger than the one for the Tweedie-Poisson
mixture model. It is also proved that the distributions forming the extended
part of the model are not 0T-MP and that other than when 3 = 0, they are not
M-0TP either.

6.3. The factorial size-biased version of order k+1. Given a count random
variable N with the first £ 4+ 1 moments finite and with pgf hn(s), the factorial
size biased version of order k 4+ 1 of N is defined to be its weighted version with
weight:

(18) w@) =i(i—1)---(i—k), for i=0,1,--.

Hence, it is the r.v. M with probability mass function:

Pl =) = TR PO =),

and therefore with P(M =) =0 fori =0,1,2---, and with pgf:
skJrth\]fH)(s)

R (1)

(19) har(s) =
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Proposition 6. If M is the factorial size-biased version of order k 4+ 1 of a
Poisson mixture N with the first k+1 moments finite, then M is neither k'T-MP
distributed nor M-kTP distributed.

7. CONCLUSIONS

In this work three types of probability models have been characterized. The
one obtained by left-truncating at £ a mixed Poisson distribution, £T-MP, the
one obtained by mixing left-truncated Poisson distributions, M-£TP, and the one
obtained by left-truncating mixtures of previously left-truncated Poisson distribu-
tions, kKT-M-iTP. To be able to recognize the £T-MP model is of special interest
if the mixing distribution is continuous, because for this type of models one is
allowed to recover the first probabilities of the untruncated model and therefore
some features associated with the mixing distribution.

From the characterizations obtained one has that the set KT-MP is strictly in-
cluded in the set M-KTP. It also turns out that between these two sets one can
consider k£ intermediate sets obtained through repeated combinations of mixing
and truncating. Moreover, it is proved that the factorial size-biased version of
order £ + 1 and under a certain condition, the shifted version of order k£ + 1 of
a count r.v. are neither KT-MP distributed nor M-£TP distributed. A transfor-
mation that applied to a mixed Poisson distribution always yields to a M-£TP
distribution is proposed.

It might be of interest to extend the results obtained in this paper for distribu-
tions that are mixtures of models for non negative integer data partically closed
under addition (see, Puig and Valero, 2006, JASA), because their pgf’s have an
exponential form and the mixing parameters only appear in the exponent as a
multiple of a function of s, very much alike what one has for Poisson mixtures.

APPENDIX: PROOFS

Proof of Theorem 1: If h(s) is the pgf of a r.v. with the first £ + 1 moments
finite and with a kT-MP distribution, the first four conditions of the theorem
hold as a straight consequence of (2) and of Proposition 1. To see that condition
e) holds observe that by (3) one has that

YioPM=j)s¢ ha(s)
1_Z§:0P(M:j) 1_Z§:0P<M:j)7
where hy;(s) is the pgf of the corresponding untruncated Poisson mixture. Thus,

if hp(s) has limit zero at —oo, then h(s) satisfies condition e) with gx(s) =
Lo+ Lys+ Lys®>+--- 4+ Ly s*, where

_ P(M =)
1= Y0 P(M =)

(20) h(s) +

(21) L, for i=0,1,2-k.



ON LEFT-TRUNCATING AND MIXING POISSON DISTRIBUTIONS 17

If otherwise the limit of hjy/(s) at —oo is equal to a strictly positive real number
€, then h(s) satisfies condition e) with gx(s) being the polinomial with L; as in
(21) for all ¢ > 1 and with constant term:

 P(M=0)—c¢
LN PO =)

The reverse implication, that a function verifing the five conditions of the theorem
is always the pgf of a kT-MP r.v. with the first £ + 1 moments finite, is proved
by induction. When k& = 0 the result follows from Theorem 1 of Valero et al.
(2010). Assume that the result is true for k = k¢, and assume that h(s) verifies
the five conditions of the theorem for k = ko + 1. To prove that in that case h(s)
is the pgf of a (ko 4+ 1)-truncated mixed Poisson distribution the next four steps
are followed:

1) A r.v. N is defined through the derivative transformation of h(s).

2) It is proved that N is the left-truncation at kg of a mixed Poisson r.v. M,
and hy(s) is obtained.

3) A zero-truncated mixed Poisson r.v. M* is defined by means of the inte-
gral transformation of M.

4) Tt is checked that the pgf of the left-truncation at ko + 1 of M* is equal

(22)

to h(s).
Step 1 By a),¢) and d) one has that
+o00 '
(23) h(s) = Z g p14y 8T,
j=1
where ag,114; > 07 = 1,2,---, and Zjﬁ ago+1+; = 1. By e), there exists a
polynomial
(24) ro+1(5) = Lo+ Ly s+ -+ + Lyy1 87,
such that
(25) lim_ (h(s) + gior1(s)) = 0.

Let us denote by N the r.v. with pgf:

_ ()
- W)
Step 2 It is straightforward to check that hy(s) verifies conditions a), b), ¢)

and d) of the theorem for k = kq. To see that it also verifies condition e), consider
the polynomial

(26) hn(s)

! L 2L k 1)L ko
(27) Qro (8) = ko/H(S) -t Slest ,+< 0 1) Ligi s ,
h(1) r'(1)




18 JORDI VALERO, MARTA PEREZ-CASANY AND JOSEP GINEBRA

and observe that
limg oo (R () + @11 (8))  limy_ oo (R(S) + Grys1(5))’
li _ o+1 _ §——00 0+
si{nm<hN(s)+Qko(3)) h'(l) h/(l) )
and thus, condition e) is equivalent to:

i (h(s) + s (5)) = 0.

Given that A(s) 4+ gxy+1(s) has no more than ko + 1 critical points, there exists
a value sy € (—o0,1) such that h(s) + gg+1(s) is monotone in (—o0, sp); to be
consistent with (25), the only possibility is that (h(s) + qr,11(s))" tends to zero
at —oo.

As a consequence, N is the left-truncation at kg of a mixed Poisson r.v. M
with the first kg + 1 moments finite. Picking the mixed Poisson r.v. M with pgf
that has limit zero at —oo, by (2) one has that

ko .
h S P M — .
09 i) = Dy P
1_Zj:0P<M:-7) j:ol_ijop(M:J)
and given that hy(s) verifies condition e) for k = ko with gx,(s), by (27) the
following equalities hold:

i+ 1) L, P(M=j
(]+/) A k(o J) —, for j=0,1,--ko.
P 1o, P(M =)
Consequently,
ko ‘
P(M = j) , 1
Qo (S) = — s/, and 1+ qi(s) = —.
’ ?21—zﬁ5pu4:ﬁ ’ 1= Yk, P(M = j)

Taking into account the last two equalities, (28) may also be expressed as:

hn(s) = (14 qr, (1)) har(s) — o (5),

and thus,
hN(S) + qr (8)
29 hy(s) = .
( ) M( ) I+ Ak (1)
Step 3 Let M* be the integral transformation of M with pgf:
(30) e (5) = Sy Pas O,
Jo Pas(t)dt

As has been pointed out in Section 2, by definition P(M* = 0) = hp+(0) = 0
and M* has the first ko 4+ 2 moments finite. Taking into consideration (26), (27)
and (29), one has that

o (B () + g (1) at
Jo (W (8) + gy oy (D)t

Y

hM* (S)
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and thus that,

h(s) + arot1(s) = 1(0) = 411 (0)
h(1) + ro+1(1) = P(0) = Gro41(0)

Given that h(0) = 0 by condition a) and that by (24) koH(O) = Lo, one has that

(
h(s) + qror1(s) —
L+ Groya(1) — Lo ’

hM* (S) =

and thus that,
B9 (s) + g (5)
1+ qro1 (1) — Lo’

From (32), and taking into account the relationship between the derivatives of
a pgf evaluated at zero and the probabilities of the corresponding probability
distribution, one has that

(32) h) () = Vi > 1.

). (0) h(j)(O)_f_ql(cj) (0)
33 PM*=j)= M7 — _ +l . V> 1.

Because of Proposition 3 of Valero et al. (2010), to check that M* is the zero-
truncation of a mixed Poisson distribution it is enough to check that hj«(s) has
a finite limit at —oo. But by (31) and (25) one has that

— Lo
lim hy«(s) = < +00.
() = 7 + ro+1(1) — Lo
Step 4 By (2), (31) and (33), the pgf of the left-truncation at ky + 1 of M* is
equal to:
k * .
p,(ko+1)—tr o har(s) — Z o P(M* = J)
M* (3) - k0+1 « .
L= S PO = j)

B9 ()+fl),,(0)
h(s) + ro1(s) = Lo — 3371 #sf

h@(0)+q,  (0)
L+ qros1(1) — Lo — Z?Sl %

and given that by condition a) one has that A7) (0) = 0 forj =0,---,ko+1, and
that by (24) one has that qk +1( )/j! =L, for j=1,--- ko + 1, it follows that

REFDTIN (6) = h(s). O

Proof of the Theorem 2: Let h(s) be the pgf of the left-truncation at k£ of a
mixed Poisson r.v. N with pgf Ay (s) and such that lims_, o, hy(s) =€ € [0,1).
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If gx(s) is the polinomial of condition e) of Theorem 1, by (2) one has that:

L o [(h(s) = PN =) ¢
0 = SEI_HOO(h(s) + qr(s)) = SEI_HOO ( 1 Zf:o PN =) + Qk(3)>
_ i € B PISN =0) VL
I_Z]’:()P(N:j) 1_Zj:OP(N:j)

k .
. —P(N =j) ,
+ lim E —+L;)s.
e j=1 <1 - Z?:O P(N :]) J>

This equation is true only if the following system of equations is satified:
. __ P(N=0) _
-2 P(N=j)  1-%F_, P(N=j) 0

_ —P(N=j) - =
S, V=) +L; =0, forj=1,2,---k

Adding the last k equations and isolating the sum of the probabilities one has
that

k k
1—P(N=0 L,
ZP(N:j)Z( ( k))ZH i
j=1 1+Zj:1Lj
which gives that
k
, 1-P(N=0
(34) 1—ZP(N:]):#.
J=0 1+Zj:1Lj

Substituing (34) in the first equation one has that:

(35) P(N:O):e(1+2jzle)+L0:€+ Lo(1—¢)

1+ 30 o L 1+30 L

By substituing P(N = 0) in (34), after some calculus one has that:

1—c¢
(36) 1-» PIN=j)= ———.
jz; 1+Z§:0Lj

and thus that:

(37) P(N =j) =
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To see that (12) is verified, observe that by (2), (36), (35) and (37) one has that

h(s) = h(s) (1 -Y PN = j)) £ PN =

Jj=0
k

_h(s)(1—e) Lo(1—6)+ZLa‘(1—€)5j

= 7 - @ 7 € —|- R - 7
1+ gr(1) L+aqe(l) = 1+g(1)

h(s) + qi(s)
14 qi(1) -

To calculate the coefficients of polinomial gx(s) starting from h(s), let My be a
r.v. with distribution the untruncated mixed Poisson model associated to h(s)
with € = 0. Thus, hjy,(s) is obtained from (12) with ¢ = 0 and given that it has
to be constant and equal to zero in (—oo, 0], differentiating it one has that for all
1> 0:

=e+(l—¢)

RO (s) +i! L; + ey ST Ui
0= lim h§)(s)= lim () Zieiv1 Gh
S——00 S——00 1+Qk(1)

?

which implies that:

Ly = — lim h%¥(s),

]{j' §——00

and that forall 0 <: <k —1,

k k (4)
1 : i E ]' —1 1 : E j

—1
J j=i+1

Proof of Proposition 2: If N has a M-kTP distribution with the first k£ + 1
moments finite, there exists a constant ¢ and a non-negative r.v. I' with mean
equal to one and with probability density function f(x) such that A =¢T" and

T Qs t)
0 Qr(1;tx)
Differentiating both sides one has that

T Qr-1(s; tx)
0 Qr(1;tx)

(38) hn(s) = f(z)dz.

hiy(s) = ta f(x)de,

and in particular that:

T Qr-1(15tx)

(1) = 0 Qr(1,tx)

tof(x)
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which is strictly finite. Thus, the derivative transformation of N, N’, has the
first £ moments finite and its pgf verifies that

fo+oo ch (ll(st;)x) tef(z)de T Qo (s;ta)
h / — k - - d
VO T R s Ty Qe T
where
_ Qra(L;tx) T Qr-1(1;tx) -1
10 =G O, Gl ]

Given that g(x) is a probability density function on the positive real line, N’ has
a M-(k — 1)TP distribution.
To prove the reverse implication, let us assume that N’ has a M-(k —1)TP distri-
bution with the first £ moments finite, and that it is the derivative transformation
of N with pgf hy(s).

Given that N’ is a mixture of Poisson distributions left-truncated at k& — 1,
there exists a constant value ¢ and a non-negative r.v. I' with probability density
function f(z) and mean equal to one such that A = ¢I" and

hni(s) = h Mf(x)dx

0 Qk—1(1§t$)

Integrating both sides in [0, s] where s is a positive real number, one has that

(39) /0 e () = /0 S [ 0+°° % Fa)da | dr.

Moreover, taking on account that N’ is the derivative transformation of N one
has that

(40) /0 e ()l = h}i(s)

and given that hx(1) = 1, because it is a pgf, by (40) and (39) one also has that

(41) h?vl(l) = /01 has(r)dr = /01 [/0+00 %ﬂx}dm] dr.

Then, by (39), by (41), by

/0 Qr—1(r;tx)dr = %Qk(s; tx)
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and by Fubini’s theorem one has that

s +o00 _1(ritx 400 ¥ Qr_1(ritx)dr
Jo [ 0 g:_lél;iwgf(x)dx}dr Do [%]f@f)dﬂf

1 400 Qi (ritz) T too [[LQu i (rita)dr
Jo [ 0 Qe (T f(x)dx}dr 0 [%}f(x)dﬂc

hN<S) =

0o Qi (15tx)
* Qk(57 .T) tIQ;I: 1(1; tx)f( ) do
o oo Q(ljtx )
o Qu(ltz) fo tzQ: 1(1ix)f(1’>d$

and given that
Qi (1;tx)
tzQ:A(l;tx)f(x)
+oo  Qr(1ltx)
f() t:rQ:,l(l;t:v) f(I)dl‘
is a density function on the positive real line, by (38) one has that N has a M-kTP
distribution, with finite first £ 4+ 1 moments. O

Proof of Theorem 3: By (4), (5) and (38) it follows that the pgf of a M-kTP
distribution must verify the four conditions of the theorem.

The reverse implication is proved by induction. Assuming that h(s) is a func-
tion verifying the four conditions of the theorem for £ = 0 then, by Theorem 2
of Valero et al. (2010), h(s) is the pgf of a mixture of zero-truncated Poisson
distributions with the first moment finite. Furthermore, if h(s) verifies the condi-
tions of the theorem for k = ko + 1, then the function hy(s) = h'(s)/h’'(1) verifies
the conditons of the theorem for k = kg and hence, by the induction assumption,
har(s) is the pgf of a M-koTP distribution with the first kg + 1 moments finite.
Hence, h(s) is the pgf of a M-(ko+ 1)TP distribution because of Proposition 2.0J

Proof of Lemma 2: By (2) one has that if h(s) is the pgf of the left-truncation
at k of a mixed Poisson r.v. N with pgf hx(s), then the derivative transformation
of h(s) is equal to

gy M) R T T ST R - Sl ) M
w(1) L= >0 1= S0+ 1) P
Given that the derivative transformation of IV verifies that
J+1HP(N=j+1)
Ry (1) ’
by (42) h'(s)/h'(1) is also the pgf of the & — 1 truncation of N'. O

P(N' = j) =

Proof of Proposition 3: By definition, NV follows a kT-M-iTP distribution if,
and only if, it is the left-truncation at k£ of a r.v. N* which is M-¢TP distributed.
Applying Lemma 2 one has that the derivative transformation of N is equal
to the left-truncation at k — 1 of the derivative transformation of N*, but by
Proposition 2, the derivative transformation of N* is M-(i — 1)TP distributed,
which proves the result. U
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Proof of Theorem 4: Let us consider k fixed. First we prove that KT-MPC kT-
M-0TP. Given h(s) a pgf of a MP distribution, it is straightforward to check that
its left-truncation at k is equal to the left-truncation at k of its zero-truncation.
To prove that kT-M-¢TP is included in kT-M-(i+1)TP for a given 0 <i < k—1,
note that if NV, with pgf hy(s), follows a kKT-M-iTP distribution, by Corollary

4 one has that the normalization of hgf,ﬂ)(s) is the pgf of a (kK —i — 1)T-MP

distribution. Applying Corollary 1 to hsf,ﬂ)(s) one has that the normalization of

hz;,ﬂ) (s) is the pgf of a (k— (i+1) — 1)T-MP distribution, and by using Corollary
4 on hf,\J,FZ)(s) one has that N is kT-M-(i + 1)TP distributed. O

Proof of Proposition 5: The function hys(s) = s*™'hy(s) verifies conditions
a), b) and c¢) of theorems 1 and 3. Therefore it is enough to check that if hp(s)
satisfies (16), it does not satisfy condition d). Given that N is mixed Poisson
distributed, by Proposition 1 one has that € € [0,1). Next, the cases ¢ = 0 and
€ # 0 are distinguished.

If € = 0, the limit of hy(s) at —co is equal to zero by condition (16). Given
that, by condition a), hy/(s) and their first k& derivatives evaluated at zero are
all equal to zero, applying the mean value theorem to the function and to their
first k& derivatives, one has that for ¢ = 1---k + 1 there exists sj < 0 such that

hg\? (sh) = 0. Consequently, hg\]?rl)(s) takes the value zero for at least a point in
(—00,0) and condition d) is not verifyed.

If € >0, then N = €+ (1 — ¢)N* where N* is mixed Poisson distributed with
limit zero at co. Given that N verifies (16) if, and only if, N* verifies the same
condition with € = 0, by condition a) of Theorems 1 and 3 one has that there

exists a value sy < 0 such that hI;VtQ) (s) < 0. And given that for n > 2 the

signs of h?v)(s) and of h;(,)*(s) are the same, it follows that hj(s) does not verify
condition d) and, as a consequence, M is neither kT-MP distributed nor M-£TP
distributed. O

Proof of Proposition 6: Consider N* to be the r.v. with pgf equal to the
normalization of the (k 4+ 1)-th derivative of hy(s),

e (s) = By (s)
Py (1)

By Proposition 1, N* is a Poisson mixture that verifies (16) with e = 0, and that
has M as a shifted version of order k + 1. Thus, the result is a consequence of
Proposition 5. 0
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