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Universitat Politècnica de Catalunya

Anna Espinal
anna.espinal@uab.es

Departament de Matemàtiques
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1 Introduction

The goal of this technical report is to review some of the main contribu-
tions in the area of multivariate survival data and to propose some possible
extensions. In particular, we have concentrated our search and study on
those papers that are relevant to the situation where two (or more) consec-
utive variables are followed until a common day of analysis and subject to
informative censoring.

In two different situations we have encountered consecutive times subject
to dependent censoring and we have not found standard tools to estimate
their corresponding joint distributions, neither to identify prognostic factors
for the joint survival. These two instances are briefly described below to
motivate the technical report but their specific analysis are not pursued here
and will be published elsewhere.

The first example corresponds to the joint estimation of the survival of
the first two times without treatment in a clinical trial known as the Tibet
project. Tibet is an ongoing trial in which an intermittent therapeutic strat-
egy aiming to improve the quality of life of HIV-infected patients, as well
as to reduce the toxic effects of HAART (Highly Active Antiretroviral Ther-
apy), has been assigned to each patient. This strategy defines a sequence of
successive stages on which the patients are alternatively without treatment
(state OFF) or under treatment (state ON). The process for an individual
consists of a series of sojourns in states OFF and ON and various lifetime
variables can be defined within this process. Of special clinical interest are
the lifetime variables T1, T2, T3, . . . , Tm defined as the length that a patient
stays on each stage. That is, T1 is the time, from randomization, that a
patient stays without treatment. T2 accounts for the time since the patient
restarts treatment until he/she is switched off and T3 denotes the second
time OFF, that is, the time that a patient is without treatment for the sec-
ond time. One of the goals of such a clinical trial was to characterize the
time spent in state ON (T2) for different sojourns in state OFF (T1), as well
as to study the second time without treatment (T3) in relation to the first
time without treatment (T1).

The second instance we have approached with a similar methodological
problem relates to the estimation of the maturation time and the senescentia
time of a climateric fruit and is of great importance in shell life studies. In
particular, our coresearchers are interested in bananas which are climateric
fruits harvested while still ”living”, and continue the same metabolic reac-
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tions as when it is attached to the plant; it continues growing and maturing
(developing attractive flavors and aromas) and improving its eating charac-
teristics. During this period, banana consumer acceptance increases. At one
point, catabolic (degenerative/breaking down) biochemical processes replace
anabolic (synthetic/building up) processes. This change is called senescence.
It causes aging and finally death. In banana, the most obvious changes re-
lating to fruit senescence are peel color change, from yellow to black, and
softening pulp. During this period, banana consumer acceptance decreases.
We have thus a period of sensorial quality improvement (T1) followed by
a degradative one (T2). The correct estimation of both periods (consumer
acceptance versus consumer rejection) -dependent on the storage time and
conditions- is an exceptional tool to correctly manage the post-harvest prod-
uct, both for banana growers and retailers.

In those studies, where two, or more, consecutive times are observed
and the censoring mechanisms acts on their sum, the estimation of the joint
survival function of the first, T1, and second, T2, duration has to take into
account the fact that T2 is only observed if T1 + T2 does not exceed the total
time of follow–up. That is, the censoring mechanism acting on T2 will depend
on T1 and if T1 and T2 are correlated we will be dealing with a particular
case of dependent censoring.

The paper goes as follows. We start reviewing bivariate nonparametric
approaches in Section 2. We extend some of the bivariate proposals to the
case of two nonconsecutive times in Section 3. We devote Section 4 to in-
troduce the notation and construct the likelihood for the general problem
of more than two consecutive survival times. While in this section we state
a second order Markov assumption on which we base a Cox model and an
alternative partial likelihood, we postpone to Section 5 the formulation of the
time dependencies and trends via a Bayesian approach. Finally, in Section 6,
three regression models for multivariate survival times are discussed together
with the differences among them which will be useful when the main interest
is on the effect of covariates on the risk of failure.
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2 Review of bivariate nonparametric approaches

2.1 Introduction and notation

The bivariate survival estimator is useful in predicting the joint survival
experience, in estimating the degree of dependence, in model building and
testing and in strengthening marginal analysis. As Gill (1992) points out is
a notoriously tough problem.

Methods for analyzing univariate censored data have been studied by
many scientists over the last decades, however, relatively little research has
been devoted to the analysis of bivariate observations in the presence of
dependent censoring. In many studies two times are observed, examples
include twin studies, matched pair studies, studies that record two different
failure times and studies in chronic diseases where recurrent and death times
are recorded. Other biomedical examples include times to severe visual loss
on the left and right eyes, times to cancer detection in the left and right
breast. AIDS studies present two important consecutive times: time to HIV
infection and subsequent time to AIDS diagnosis.

Most of the published papers concerning the nonparametric estimation
of the bivariate distribution functions under random censorship distinguish
whether censoring is bivariate –different censoring in each coordinate– or
univariate –the same censoring for both coordinates– but only few of them
take into account dependent censoring caused by successive times.

We present in subsection 2.2 an overview of several approaches under
independent right-censoring. Subsection 2.3 is devoted to the nonparametric
estimation of the survival function in the presence of dependent censoring.
This section concludes with a brief presentation of dependence measures.

Let T1 and T2 be two duration variables. Let F , F1 and F2 be the bivariate
and marginal distribution functions for (T1, T2) and let S, S1 and S2 be the
bivariate and marginal survival functions for (T1, T2):

F (t1, t2) = Prob{T1 ≤ t1, T2 ≤ t2}
S(t1, t2) = Prob{T1 > t1, T2 > t2}

F1(t1) = Prob{T1 ≤ t1} F2(t2) = Prob{T2 ≤ t2}
S1(t1) = Prob{T1 > t1} S2(t2) = Prob{T2 > t2}

3



Two different types of censoring can occur. Bivariate censoring implies
a different censoring random variable for each of the two coordinates while
univariate censoring would assume the same censoring for each coordinate.
For the first one consider the population of twins which have suffered a heart
attack and the interest relies on the elapsed time to the second heart attach
for each one. The censoring here will be, most probably, bivariate since the
follow-up time will be independent for each twin. On the other hand, the
joint behaviour of the ages of cancer diagnosis in each breast has major health
implications. The censoring –due to lost of follow-up or end of study– is here
univariate.

For the bivariate censoring define (C1, C2) as the right-censor random
variables for (T1, T2) and let G be the bivariate survival function for (C1, C2):

G(c1, c2) = Prob{C1 > c1, C2 > c2}.

The observed vector is (Y1, Y2, D1, D2) where Yj = min{Tj, Cj} and Dj =
1{Tj ≤ Cj} (j = 1, 2).

For the univariate censoring define C as the right-censor random variable
for (T1, T2) and let G1 be the survival function for C:

G1(c) = Prob{C > c}. (1)

Note that this is a particular case of bivariate censoring where Prob{C =
C1 = C2} = 1. The observed vector is (Y1, Y2, D1, D2) where Yj = min{Tj, C}
and Dj = 1{Tj ≤ C} (j = 1, 2).

In either censoring case, assume that we have a random sample {(T1i, T2i, C1i, C2i), i =
1, . . . , n} of (T1, T2, C1, C2) from which the observed data is {(Y1i, Y2i, D1i, D2i), i =
1, . . . , n}.

There is a complementary classification which distinguishes whether or
not the failures act simultaneously. When a study subject can potentially
experience multiple events, the data can fall into one of two categories: par-
allel and serial (Lin, Sun and Ying, 1999). In the parallel system several
possibly dependent failure processes act concurrently, while in the serial sys-
tem there is a natural ordering of the times of occurrence of events. In the
parallel system the censoring can be bivariate or univariate and most of the
papers consider the situation under which the vector (C1, C2) is independent
of (T1, T2) (or C independent of (T1, T2)).

The serial sampling scheme, which is very useful for describing the evolu-
tion of a multistage disease process or a process of recurrent events, is affected
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by what is known as dependent censoring and is such that the censoring of
the second time depends on the first. We encounter this type of situation
both in the shell life of bananas and in the interruption times in the Tibet
clinical trial. This case is reviewed in subsection 2.3, where specific notation
and considerations about censoring is introduced.

2.2 Nonparametric estimation of the bivariate distri-
bution function under independent censoring

All the papers reviewed in this subsection assume independent bivariate cen-
soring, except the last one (Lin and Ying, 1993) which assumes independent
univariate censoring.

• The first paper that tackles the bivariate estimation problem for the dis-
tribution function from a nonparametric viewpoint is Campbell (1981).
Campbell derives two estimators for the bivariate distribution function
under the presence of independent pairs of censoring variables. The first
estimator is a reduced-sample estimator based on the factorization of
the bivariate distribution function for the observed random vector as
a product of the bivariate distribution function for the bivariate vec-
tor of interest and the bivariate distribution function for the censoring
variables. The second estimator is a discrete bivariate self-consistent
estimator. Campbell estimator is in essence a nonparametric MLE
(other approaches by Hanley and Parnes (1983)). Although these esti-
mators are shown to be strongly uniform consistent at a rate of conver-
gence equal to that of the empirical distribution function, they are not
necessarily monotone increasing in both coordinates and therefore not
a “legitimate” bivariate distribution function. Furthermore, the non-
parametric MLE does not have a closed form expression and presents
a nonuniqueness problem.

• Two years later Campbell and Földes (1982) propose two path-dependent
estimators again under the assumption that the censoring times are in-
dependent of the failure times. Based on the path decomposition of
the bivariate survival function as the product of the conditional times
the marginal:

S(t1, t2) = Prob{T2 > t2|T1 > t1}S1(t1), (2)
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Campbell and Földes propose a one-dimensional Kaplan-Meier product
limit estimator for each term and their corresponding product as bi-
variate survival estimator. Their estimator, denoted by Ŝn, reduces to
the ordinary empirical survival function in the case of no censoring in
either coordinate. Note that for the implementation of such estimator
standard univariate survival software can be used. For each t1, S1(t1)
can be estimated by the ordinary Kaplan-Meier ignoring all the infor-
mation regarding T2. To estimate ST2|T1

(t2|t1) = Prob{T2 > t2|T1 > t1}
we calculate the Kaplan-Meier estimator of T2 based on those individu-
als for which T1 > t1. Their estimator is nevertheless uniformly almost

surely consistent for the survival S(t1, t2) with rate O(
√

log log n
n

). In the
same paper Campbell and Földes propose a second estimator based
on the bivariate hazard function. They prove as well that this second
estimator is asymptotically equivalent to the first. This estimator suf-
fers from two drawbacks: it is not a legitimate survival function and is
dependent on the selected path and ordering of the components.

• Tsai, Leurgans and Crowley (1986) propose a family of closed form es-
timators that are always survival functions based on a decomposition
of the bivariate survival in terms of identifiable survival an subsur-
vival functions extending Peterson’s ideas and some smoothing tech-
niques. Their estimators are fairly complicated and involve the esti-
mation of conditional survival functions using density estimation tech-
niques. Their estimators are kernel and bandwidth dependent. They
prove that they are uniformly consistent under bivariate censoring and
self-consistent under univariate censoring. However, the rate of con-
vergence of their estimator is slower than Campbell and Földes and
Dabrowska and inferior to the rate for the empirical distribution func-
tion.

• Burke (1988) modifies Campbell’s estimator in such a way that the
rate of convergence is preserved but the monotonicity requirements are
fulfilled. Burke proposes an estimator based on the representation of
the bivariate distribution function as the convolution of the subdistri-
bution which can be naturally estimated by the observed data and the
inverse of the bivariate distribution function for the censoring times.

Define the subdistribution function

F̃ (x, y) = Prob{Y1 ≤ x, Y2 ≤ y,D1 = 1, D2 = 1}
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which can be expressed as the convolution of F and G:

F̃ (x, y) =
∫ x

−∞

∫ y

−∞
G(u, v)dF (u, v).

The bivariate distribution function F for the random vector (T1, T2) can
be expressed in terms of F̃ and G and is the basis of Burke’s approach:

F (x, y) =
∫ x

−∞

∫ y

−∞
{G(u, v)}−1dF̃ (u, v) (3)

The subdistribution function F̃ (x, y) can be naturally estimated from
the empirical subdistribution function

Fn(x, y) =
1

n

n
∑

i=1

D1iD2i1{Y1i ≤ x, Y2i ≤ y}.

G can be estimated using the Campbell-Földes approach computed
from the data (Y1i, Y2i, 1 − D1i, 1 − D2i) (i = 1, . . . , n). Denote the
estimator by Gn.

The estimation of F is accomplished plugging Fn(u, v) and Gn(u, v)
into the integral (21).

F̂ (x, y) =
∫ x

−∞

∫ y

−∞
{Gn(u, v)}−1dFn(u, v)

=
1

n

n
∑

i=1

D1iD2i{Gn(Y1i, Y2i)}1{Y1i ≤ x, Y2i ≤ y}.

Since Fn can be expressed as an integral of a positive function with
respect to a nondecreasing one, it is monotone nondecreasing in both
variables. One of the main undesirable features of this approach is
that only uses the information provided by the uncensored observations
(T1 < C1, T2 < C2), throwing away the relevant information of censored
data points (T1 < C1, T2 > C2) or (T1 > C1).

• Dabrowska (1988) expresses the bivariate survival function in terms
of the joint distribution of the observable variables. She develops an
empirical estimator which is such that the marginals are given by the
univariate Kaplan-Meier, in the absence of censoring reduces to the em-
pirical survival function and is almost sure consistent. The undesirable
property is that it throws important part of the data away.
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Dabrowska defines a bivariate cumulative hazard function (a vector
function Λ(t1, t2) = (Λ10(t1, t2), Λ01(t1, t2), Λ11(t1, t2))) and shows that
it determines the bivariate survival function. Furthermore she shows
that identifiability of S will follow if the bivariate hazard function can
be expressed in terms of joint distribution of the observables. Under
the assumption of independent bivariate censoring, she proves that S
is identifiable on the support of the bivariate survival function of the
observables.

The corresponding instantaneous bivariate hazard has as well three
components: λ(t1, t2) = (λ10(t1, t2), λ01(t1, t2), λ11(t1, t2)) which repre-
sent, respectively, the instantaneous rate of a single failure at time t1

given that (T1 ≥ t1, T2 > t2), the instantaneous rate of a single failure
at time t2 given that (T1 > t1, T2 ≥ t2) and the instantaneous rate of a
double failure at point (t1, t2) given that individuals were alive at times
T1 = t1− and T2 = t2−, that is given that (T1 ≥ t1, T2 ≥ t2).

Dabrowska’s estimators admits the following expression

Ŝ(t1, t2) = Ŝ1(t1)Ŝ2(t2)
∏

0<u≤t1,0<v≤t2

[1 − L̂(∆u, ∆v)]

where Ŝ1(t1) and Ŝ2(t2) are the corresponding univariate Kaplan-Meier
estimators and L̂ is function of the empirical counterparts of
(Λ10(t1, t2), Λ01(t1, t2), Λ11(t1, t2)).

The Dabrowska estimator overcomes some of the undesirable features
of other proposals: nonuniqueness, inconsistency and lack of weak con-
vergence and for these reasons is to be preferred. Unfortunately, its
computation is quite complicated and the covariance function of these
estimators cannot be estimated analytically.

• Prentice and Cai (1992), while approaching the problem of the char-
acterization of the dependence between T1 and T2 using an estimator
for the covariance function for T1 and T2, propose a new estimator for
the bivariate survival function. They provide a representation for S
in terms of the marginal survivor functions and a differential function
which can be easily estimated:

S(t1, t2) = S1(t1)S2(t2)L(t1, t2)
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where L(t1, t2) is function of estimable differential functions. Further-
more, they provide another representation allowing to generate joint
survivor functions having specified marginal distributions and covari-
ance function.

S(t1, t2) = S1(t1)S2(t2)[1 +
∫ t1

0

∫ t2

0
{S1(u)S2(v)}−1C(du, dv)]

• Lin and Ying (1993) provide a simple nonparametric estimator of the
bivariate survival function under univariate censoring. It works under
the assumption that C = C1 = C2 right-censors independently the
random variables (T1, T2). The observed vector is (Y1, Y2, D1, D2) where
Yj = min{Tj, C} and Dj = 1{Tj ≤ C}, (j = 1, 2). Their estimator is
based on the following representation:

S(t1, t2) = Prob{Y1 ≥ t1, Y2 ≥ t2}/G(max(t1, t2)),

where G is the survival function for C and it follows straightforwardly
from the independence between (T1, T2) and C. It is also natural to
estimate Prob{Y1 ≥ t1, Y2 ≥ t2} by the empirical survival function:
n−1∑n

i=1 1{Y1i ≥ t1, Y2i ≥ t2} and G can be estimated by the Kaplan-
Meier estimator from the data (C∗

i , δ
c
i ) where

C∗
i = min{Ci, max(T1i, T2i)} = max(Y1i, Y2i)

and δc
i = 1{Ci ≤ max(Y1i, Y2i)} = 1 − D1iD2i.

This estimator is far simpler than the others, reduces to the empirical
survival function in the absence of censoring, converges weakly to a
zero-mean Gaussian process (properly normalized) and if the support
of C contains the support of (T1, T2), we will have uniform consistency
of the estimator over the entire support of S. Simulation studies sug-
gest that Lin and Ying estimator behaves similarly to Prentice-Cai and
Dabrowska estimator.

2.3 Nonparametric estimation of the bivariate distri-
bution function under dependent right-censoring

We assume that an individual may experience two consecutive events at times
T1 and T1 + T2 which are measured from the start of the follow-up. Assume
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as well that the follow-up time is subject to independent right censoring by
C, which implies that T2 is subject to right censoring by C − T1, which is
naturally correlated with T1 unless T1 is independent of T2. The marginal dis-
tribution of T2 cannot therefore be estimated by the Kaplan–Meier method,
and neither can the joint distribution of (T1, T2) be estimated by any existing
estimator for parallel events.

Furthermore, the bivariate distribution function F (t1, t2) is not estimable
if t1 + t2 > τC where τC = sup{t : G(t) > 0}. In other words, for any
T1 = t1 < τC , T2 is only observable while T2 ≤ τC − t1, and there is no
information in the data to estimate T2 > τC−t1. This restriction is analogous
to the non-estimability of the Kaplan-Meier estimators beyond those values
larger than the total follow-up time.

The observed vector is (Y1, Y2, D1, D2) where Yj = min{Tj, Cj}, Dj =
1{Tj ≤ Cj}, C1 = C and C2 = (C1 − T1)1{T1 ≤ C1}. A different way of
representing the observables is via (Y1, Y2, δ) where

δ =











1 if T1 > C
2 if T1 ≤ C < T1 + T2

3 if T1 + T2 ≤ C.

Note that when

1. δ = 1 ⇐⇒ D1 = 0 = D2: the two durations are right–censored and
thus Y1 = C, Y2 = 0 and no information about T2 is available

2. δ = 2 ⇐⇒ D1 = 1, D2 = 0, T1 is observed while T2 is right–censored by
C−T1, which implies that T2 is right–censored by a dependent variable
if T1 and T2 are correlated.

3. δ = 3 ⇐⇒ D1 = 1, D2 = 1, T1 and T2 are observed.

Assume that we have a random sample {(T1i, T2i, Ci), i = 1, . . . , n} of
(T1, T2, C) from which the observed data is {(Y1i, Y2i, D1i, D2i), i = 1, . . . , n}.

In what follows we review three approaches: Visser’s approach which
is valid under the assumption of discrete times and which is extended in
subsection 3.1 to the case of two non consecutive times, Wang and Wells’s
weighting approach, similar to the original way of defining the well–known
Kaplan–Meier proposed by Satten and Datta (2001) as an inverse probability
of censoring weighted average, and Ling, Sun and Ying which is a natural
extension of the univariate Kaplan–Meier method.
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• Visser (1996) proposes a nonparametric estimator for the bivariate sur-
vival function when the two duration variables are successive, are al-
ways observed in a particular order, and the censoring mechanisms acts
on their sum.

Visser starts assuming that T1, T2 and C are discrete random variables
taking values in {0, 1, 2, . . . , K}, and therefore Y1, Y2 are discrete as
well. We introduce the following notation for the bivariate survival
function of (T1, T2), the survival function of T1, the conditional survival
function of T2 given T1 ≥ k, as well as for the hazard function of T1,
the conditional hazard function of T2 given T1 ≥ k and the survival
function of C:

ST1,T2
(k, l) = Prob{T1 ≥ k, T2 ≥ l}

ST1
(k) = Prob{T1 ≥ k}

ST2|T1
(l|k) = Prob{T2 ≥ l|T1 ≥ k}

ST2|T1=k(l) = Prob{T2 ≥ l|T1 = k}
λT1

(k) = Prob{T1 = k|T1 ≥ k}
λT2|T1

(l|k) = Prob{T2 = l|T1 ≥ k, T2 ≥ l}
λT2|T1=k(l) = Prob{T2 = l|T1 = k, T2 ≥ l}

SC(k) = Prob{C ≥ k}

Note that, due to the fact that the random variables T1, T2 and C are
supposed to be discrete and finite, Visser defines the corresponding
survival distributions at each time t as the probability of being greater
or equal than t. It does not mean lose of generality for the subsequent
results.

Two different conditional survival functions are defined, namely ST2|T1
(l|k)

and ST2|T1=k(l), and the corresponding hazard functions, namely λT2|T1
(l|k)

and λT2|T1=k(l).

To achieve the main goal, that is the estimation of ST1,T2
(k, l), he uses

the fact that the joint survival can be factorized in terms of the marginal
and the conditional survival functions. The following equalities are
relevant:

ST1,T2
(k, l) = ST1

(k)ST2|T1
(l|k) (4)
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Furthermore, he takes advantage of the product limit factorization of
the survival in terms of the hazard functions. For k, l = 1, 2, . . . , K:

ST1
(k) = (1 − λT1

(0)) . . . (1 − λT1
(k − 1)) (5)

ST2|T1=k(l) = (1 − λT2|T1=k(0)) . . . (1 − λT2|T1=k(l − 1)) (6)

It is also worth noticing that ST2|T1
(l|k) can be written as follows:

ST2|T1
(l|k) = Prob{T2 ≥ l|T1 ≥ k} =

Prob{T2 ≥ l, T1 ≥ k}
Prob{T1 ≥ k}

= (ST1
(k))−1

K
∑

j=k

Prob{T2 ≥ l|T1 = j}Prob{T1 = j}

= (ST1
(k))−1

K
∑

j=k

ST2|T1=j(l)Prob{T1 = j}

= (ST1
(k))−1

K
∑

j=k

ST2|T1=j(l)(ST1
(j) − ST1

(j + 1)) (7)

Equalities (4) and (7) imply that in order to estimate ST1,T2
(k, l) we

only need to estimate ST1
(k) and ST2|T1=j(l). The estimation of ST1

(k)
is straightforward though the Kaplan-Meier estimator.

In general estimators for λT1
(k) and for λT2|T1=k(l) can be derived based

on the observations (Y1i, Y2i, δi) (i = 1, 2, . . . , n).

Denote by n1k, n2kl, n3kl the following counting processes:

n1k =
n
∑

i=1

1{Y1i = k, δi = 1}

n2kl =
n
∑

i=1

1{Y1i = k, Y2i = l, δi = 2}

n3kl =
n
∑

i=1

1{Y1i = k, Y2i = l, δi = 3},

that is, n1k counts the number of censored individuals at k months
(for these individuals T1 > k and T2 is not defined), n2kl counts the
number of patients whose first duration is equal to k months and who
are censored after k+l months (for these individuals T1 = k and T2 > l)

12



and n3kl counts the number of patients with a first duration equal to k
months and a second duration equal to l months (for these individuals
T1 = k and T2 = l). Denote as well nk· =

∑K
l=1(n2kl + n3kl) which

counts the total number of individuals whose T1 = k irrespective of
their status on T2.

The likelihood for the n observations is as follows:

L =
n
∏

i=1

{

Prob{T1 > y1i, C = y1i}1{δi=1}

Prob{T1 = y1i, T2 > y2i, C − y1i = y2i}1{δi=2}

Prob{T1 = y1i, T2 = y2i, C > y1i + y2i}1{δi=3}
}

and the corresponding log likelihood looks like as

L = log L =
n
∑

i=1

{1{δi = 1} log Prob{T1 > y1i, C = y1i}

+ 1{δi = 2} log Prob{T1 = y1i, T2 > y2i, C − y1i = y2i}
+ 1{δi = 3} log Prob{T1 = y1i, T2 = y2i, C > y1i + y2i}} .

Since our variables are discrete, the possible values for y1i, y2i and C
are only {0, 1, 2, . . . , K}, thus L can be rewritten as

L =
K
∑

k=1

n1k log Prob{T1 > k,C = k}

+
K
∑

k=1

K
∑

l=1

n2kl log Prob{T1 = k, T2 > l, C − k = l}

+
K
∑

k=1

K
∑

l=1

n3kl log Prob{T1 = k, T2 = l, C > k + l}.

Factorizing each probability into the conditional probabilities we can
rewrite:

L =
K
∑

k=1

n1k log Prob{T1 > k|C = k} +
K
∑

k=1

n1k log Prob{C = k} +

13



K
∑

k=1

K
∑

l=1

n2kl log Prob{T2 > l|T1 = k, C − k = l} +
K
∑

k=1

K
∑

l=1

n2kl log Prob{T1 = k|C − k = l} +

K
∑

k=1

K
∑

l=1

n2kl log Prob{C − k = l} +
K
∑

k=1

K
∑

l=1

n3kl log Prob{T2 = l|T1 = k, C > k + l} +

K
∑

k=1

K
∑

l=1

n3kl log Prob{T1 = k|C > k + l} +
K
∑

k=1

K
∑

l=1

n3kl log Prob{C > k + l}

and since C is independent of (T1, T2), it follows

L =
K
∑

k=1

n1k(log Prob{T1 > k} + log Prob{C = k}) +

K
∑

k=1

K
∑

l=1

n2kl(log Prob{T2 > l|T1 = k} + log Prob{T1 = k} + log Prob{C − k = l}) +

K
∑

k=1

K
∑

l=1

n3kl(log Prob{T2 = l|T1 = k} + log Prob{T1 = k} + log Prob{C > k + l})

=
K
∑

k=1

{nk· log Prob{T1 = k} + n1k log Prob{T1 > k}} + (8)

K
∑

k=1

K
∑

l=1

{n3kl log Pr{T2 = l|T1 = k} + n2kl log Pr{T2 > l|T1 = k}} + (9)

K
∑

k=1

{n1k log Pr{C = k} +
K
∑

l=1

{n2kl log Pr{C = k + l} + n3kl log Pr{C > k + l}}}(10)

= LT1
+ LT2|T1

+ LC .

All the expressions for the probabilities can be replaced by functions
containing uniquely λT1

(k) and to λT2|T1=k(l). For instance,

LT1
=

K
∑

k=1

{nk· log Prob{T1 = k} + n1k log Prob{T1 > k}}

=
K
∑

k=1

{nk· log λT1
(k)ST1

(k) + n1k log ST1
(k + 1)}

=
K
∑

k=1

{nk·(log λT1
(k) + log

k−1
∏

j=0

(1 − λT1
(j))) + n1k log

k
∏

j=0

(1 − λT1
(j))}
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=
K
∑

k=1

nk· log λT1
(k) +

K
∑

k=1

(n1k + nk·)
K−1
∑

j=0

log(1 − λT1
(j)) +

K
∑

k=1

n1k log(1 − λT1
(k)).

The nonparametric estimators for the hazard functions are obtained
after maximizing the log likelihood L = LT1

+ LT2|T1
+ LC . Note that

we are in fact maximizing log L with respect to λT1
(k) and to λT2|T1=k(l),

and because the terms act additively we can maximize first with respect
to λT1

(k) and then with respect to λT2|T1=k(l).

Visser proves that the nonparametric MLE for λT1
(k) is given by

λ̂T1
(k) =

∑n
i=1 1{Y1i = k, δi ≥ 2}
∑n

i=1 1{Y1i ≥ k} =

∑K
l=1(n2kl + n3kl)

n1k +
∑K

l=1(n2kl + n3kl)
(11)

which yields the discrete time Kaplan-Meier estimator after replacing
it in (5). On the other hand, the nonparametric MLE for λT2|T1=k(l) is
given by

λ̂T2|T1=k(l) =
n
∑

i=1

1{Y1i = k, Y2i = l, δi = 3}
∑n

i=1 1{Y1i = k, Y2i ≥ l} . (12)

Replacing λ̂T2|T1=k(l) in (6) provides the MLE for ST2|T1=k(l), which
in turn can be replaced in (7) to obtain an estimator for ST2|T1

(l|k).
Finally everything could be replaced in (4) to get the bivariate non-
parametric estimator for ST1,T2

(k, l).

Visser proves that both estimators, λ̂T1
(k) and λ̂T2|T1=k(l), are con-

sistent and asymptotically normal after normalizing by
√

n. He also
claims that both estimators are asymptotically independent. These
facts, together with the δ method, allow him to prove that

√
n(ŜT1,T2

(k, l)−
ST1,T2

(k, l)) is asymptotically normal, mean zero and with an asymp-
totic variance that can be estimated replacing the unknown functions
by their estimators.

The survival function SC of the censoring variable appears in the ex-
pression for the variances. It may be estimated by the product-limit
method.

• Wang and Wells (1998) propose a path-dependent (nonparametric) es-
timate for the joint survival function of two duration variables.
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Denote the observed sample by S = {(Y1i, Y2i, D1i, D2i), i = 1, . . . , n}.
Consider a subset of S consisting of observations for which T1 is ob-
served, that is S∗ = {(Y1i, Y2i, D1i = 1, D2i), i = 1, . . . , n}.
Following the notation introduced in subsection 2.1, they consider the
following path-dependent decomposition

S(t1, t2) = Prob{T2 > t2|T1 > t1}Prob{T1 > t1}
=

∏

v≤t2

{1 − ΛT2|T1>t1(dv)}S1(t1) (13)

where ΛT2|T1>t1(dv) is the cumulative conditional hazard of T2 given
T1 > t1. Wang and Wells propose to estimate S(t1, t2) via estimable
components for ΛT2|T1>t1(dv) and for S1(t1) and to plug them into (13).

The estimation of the marginal S1(t1) is accomplished via the Kaplan–
Meier estimator based on the observables (Y1i, D1i) (i = 1, . . . , n). Note
that if T1 is right–censored then δi = 1 and D1i = 0 while if T1 is
observed then δi = 2 or 3 (D1i = 1).

The estimator for ΛT2|T1>t1(dv) extends Campbell and Földes estimator
so that dependent censoring is taking into account. First note that if we
let RT2

(v|t1) be the risk set of T2 at time v given T1 > t1, if v > 0 then
RT2

(v|t1) ⊂ S∗. An observation i with the first duration T1 = t1i affects
the probability of the corresponding T2i being included in RT2

(v|t1) as
we see in the following expression

Prob{i ∈ RT2
(v|t1)} = Prob{Y1i ∈ t1i, t1i > t1, D1i = 1, Y2i ≥ v}

= Prob{T1 ∈ t1i, t1i > t1, T2 ≥ v}Prob{C1 > t1i + v}
= Prob{T1 ∈ t1i, t1i > t1, T2 ≥ v}G1(t1i + v).

Hence we will adjust this heterogeneity weighting each observation in
RT2

(v|t1) by an estimate of 1/G1(t1i + v).

Wang and Wells’ estimator for ΛT2|T1>t1(dv) can be expressed as follows:

Λ̂T2|T1>t1(∆v) =

∑

i∈RT2
(v|t1) 1{Y2i = v,D2i = 1}/Ĝ1(t1i + v)

∑

i∈RT2
(v|t1) 1{Y2i ≥ v}/Ĝ1(t1i + v)

(14)

=

∑n
i=1 1{Ĝ1(Y1i + v) > 0}1{Y1i > t1, D1i = 1, Y2i = v,D2i = 1}/Ĝ1(Y1i + v)
∑n

i=1 1{Ĝ1(Y1i + v) > 0}1{Y1i > t1, D1i = 1, Y2i ≥ v}/Ĝ1(Y1i + v)
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where Ĝ1(·) is the Kaplan-Meier estimator of G1(·) computed from the
data (Y1i + Y2i, 1−D1iD2i) (i = 1, . . . , n). Wang and Wells’ estimator
for S(t1, t2) is given by

Ŝ(t1, t2) =
∏

v≤t2

{1 − Λ̂T2|T1>t1(dv)}Ŝ1(t1)

Their estimator uses the information on the first duration to weight
each observation to unbias the effect of dependent censoring. The
marginal survivor function is estimated by Ŝ2(t2) = Ŝ(0, t2). This es-
timator has a potential problem with the existence of Ŝ(t1, t2) when
Ĝ1(·) = 0. If the largest value of Y1i + Y2i, say c(n), is censored
(D1iD2i = 0 or δi = 3), then the largest observation of the censor-
ing variables is observed (1 − D1iD2i = 1) and hence Ĝ1(c(n)) = 0.

Wang and Wells show that Ŝ(t1, t2) converges in probability to S(t1, t2)
and claim that the limit distribution of

√
n(Ŝ(t1, t2) − S(t1, t2)) con-

verges weakly to a zero-mean Gaussian process, but the variance of the
limiting process is quite complex and is not given.

• Lin, Sun and Ying (1999) propose an estimator for the bivariate distri-
bution F (t1, t2) based on the relationship F (t1, t2) = L(t1, 0)−L(t1, t2),
where L(t1, t2) = Prob{T1 ≤ t1, T2 > t2}. The estimator for L is de-
fined as

L̂(t1, t2) =
1

n

n
∑

i=1

1{Y1i ≤ t1, Y2i > t2}
Ĝ1(Y1i + t2)

where Ĝ1(·) is the Kaplan-Meier estimator of G1(·) computed from the
data (Y1i, 1−D1i) or (Y2i, 1−D2i) (i = 1, . . . , n). L̂(·, ·) would be an
unbiased estimator of L(·, ·) if G1 were known. Hence the estimator for
the bivariate distribution is defined ad hoc as

F̂ (t1, t2) = L̂(t1, 0) − L̂(t1, t2)

and is as well unbiased if G1 were known.

Note that for the estimation of F (t1, t2) when t2 < ∞ only the ob-
servations for which T1 is observed are considered, that is only the
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observations inside the subset S∗, defined as in Wang and Wells, will
be used for the computations. However, if we are interested in the
marginal F1(t1) = F (t1,∞), the estimator

F̂ (t1,∞) = L̂(t1, 0) =
1

n

n
∑

i=1

D1i1{Y1i ≤ t1}
Ĝ1(Y1i)

is identical to the Kaplan-Meier estimator of F1 if Ĝ1(·) is the Kaplan-
Meier estimator of G1(·) computed from (Y1i, 1 − D1i) (i = 1, . . . , n).

Lin, Sun and Ying’s estimator reduces to the usual empirical distri-
bution function in the absence of censoring, is a natural extension of
the univariate Kaplan-Meier approach, is strongly consistent and the
process

√
n(F̂ (·, ·)−F (·, ·)) converges weakly to a bivariate zero-mean

Gaussian process. The authors give an explicit expression, as well as
a consistent estimator, for the covariance function. This estimator,
however, is not always a proper distribution since it can yield negative
mass points.

2.4 Average relative risk dependence measure

Once we have an estimator for the joint survival for (T1, T2), it is of interest to
have a measure which summarizes the degree of dependency or concordance
level between T1 and T2. To this end several proposals can be made.

Clayton (1978) and Oakes (1989) propose the cross ratio as a measure of
local dependence at (s1, s2), that is,

c∗(s1, s2) =
F (ds1, ds2)F (s−1 , s−2 )

F (ds1, s
−
2 )F (s−1 , ds2)

= λ2(s2|T1 = s1)/λ2(s2|T1 ≥ s1),

where F (s1, s2) = Prob{T1 > s1, T2 > s2} is the joint survival function. The
cross ratio is a type of hazard ratio or relative risk. An average of the cross
ratio over a period of time can be computed as a summary.

Another local measure could be based on Kendall’s coefficient of concor-
dance.

Fan, Hsu and Prentice (2000) propose a summary dependence measure
C(t1, t2) based on the reciprocal of the cross ratio c∗(s1, s2). The reason
of using the reciprocal cross ratio is that it can be consistently estimated.
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The average relative risk dependence measure over [0, t1]x[0, t2] is defined as
follows:

C(t1, t2) =

∫ t1
0

∫ t2
0

1
c∗(s1,s2)

F (ds1, ds2)
∫ t1
0

∫ t2
0 F (du1, du2)

=

∫ t1
0

∫ t2
0

F (ds1,s−
2

)F (s−
1

,ds2)

F (ds1,ds2)F (s−
1

,s−
2

)
F (ds1, ds2)

1 − F (t1, 0) − F (0, t2) + F (t1, t2)

=

∫ t1
0

∫ t2
0 F (s−1 , s−2 )Λ10(ds1, s

−
2 )Λ01(s

−
1 , ds2)

1 − F (t1, 0) − F (0, t2) + F (t1, t2)

where Λ10(ds1, s
−
2 ) = −F (ds1, s

−
2 )/F (s−1 , s−2 ) and Λ01(s

−
1 , ds2) = −F (s−1 , ds2)/F (s−1 , s−2 )

are the failure hazards at (t1, t2).
Under independent random censorship the measure C(t1, t2) can be esti-

mated nonparametrically by

Ĉ(t1, t2) =

∫ t1
0

∫ t2
0 F̂ (s−1 , s−2 )Λ̂10(ds1, s

−
2 )Λ̂01(s

−
1 , ds2)

{1 − F̂ (t1, 0) − F̂ (0, t2) + F̂ (t1, t2)}
where

• F̂ is a strongly consistent nonparametric estimator of F . Both Dabrowska
(1988) and Prentice and Cai (1992) propose such a F̂ .

• Λ̂10 and Λ̂01 are the Nelson-Aalen counterparts of Λ10 and Λ01.

• Under weak conditions, Ĉ(t1, t2) is strongly consistent for C(t1, t2) and
K1/2(Ĉ(t1, t2)−C(t1, t2)) converges in distribution to a mean zero Gaus-
sian process, where K is the sample size.

• The covariance of Ĉ is very complicated due to the complexity of F̂ .

C(t1, t2) can be interpreted as a weighted average of the hazard ratio
1

c∗(s1,s2)
with weight proportional to the failure time density at (t1, t2). Also

C(t1, t2) = 1 if T1 and T2 are independent, while if they are locally positively
dependent 0 ≤ C(t1, t2) < 1 and if they are locally negatively dependent
C(t1, t2) > 1.

Another meaningful summary dependence measure would be C−1(t1, t2)
since its range of values for positive and negative dependence and indepen-
dence agrees with the usual cross ratio local dependency measure.
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3 Extensions of the bivariate survival estima-

tor

3.1 Estimation of the bivariate survival function for

two not consecutive gap times. A discrete ap-
proach

Consider the situation in which individuals can experience at most three
events. Here we focus our interest on the successive times, T1, T2 and T3,
between these three events. It is convenient to define three different stages
as follows: An individual is in Stage 1 while he does not experienced the first
event, is in Stage 2 after he/she has experienced the first event and before
the second one, and is in Stage 3 if he/she has experienced the fisrts and
second events and before the third one.

Due to the possible different nature of T1 and T3 compared to T2 we
start focusing our attention on the joint behaviour of (T1, T3), taking into ac-
count T2, and therefore looking at the distribution of (T1, T3) as the marginal
bivariate distribution of (T1, T2, T3).

We generalize Visser’s nonparametric estimator for the bivariate survival
function which takes into account the dependent censoring implied by the
successive durations. As in Visser we assume that T1, T2, T3 and C are dis-
crete random variables taking values in {0, 1, 2, . . . , K}, and therefore Y1, Y2

and Y3 are discrete as well.
We introduce the notation S123(a, b, c) for the joint survival function of

(T1, T2, T3) and Sjk(a, b) for the bivariate survival function of (Tj, Tk) (1 ≤
j, k ≤ 3), that is,

S123(a, b, c) = Prob{T1 ≥ a, T2 ≥ b, T3 ≥ c},
Sjk(a, b) = Prob{Tj ≥ a, Tk ≥ b}.

The conditional survival functions for any subset of random variables
conditioned to any other subset can be defined straightforwardly. Due to the
nature of our random variables, we will only be interested in conditioning
to the past, that is T3 given T2 and T1, T3 given T1, etc. For instance, the
conditional survival function of T3 given T1 ≥ a,

ST3|T1
(c|a) = Prob{T3 ≥ c|T1 ≥ a}.
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We also define the survival functions of T3 conditioned to (T2 = b, T1 = a)
and of T2 conditioned to T1 = a as follows

ST3|T2=b,T1=a(c) = Prob{T3 ≥ c|T2 = b, T1 = a}
ST2|T1=a(b) = Prob{T2 ≥ b|T1 = a}.

Analogously we define the following hazards and conditional hazards and
the survival function of C as follows:

λT1
(a) = Prob{T1 = a|T1 ≥ a}

λT2|T1
(b|a) = Prob{T2 = b|T1 ≥ a, T2 ≥ b}

λT3|T2,T1
(c|b, a) = Prob{T3 = c|T1 ≥ a, T2 ≥ b, T3 ≥ c}

λT2|T1=a(b) = Prob{T2 = b|T1 = a, T2 ≥ b}
λT3|T2=b,T1=a(c) = Prob{T3 = c|T1 = a, T2 = b, T3 ≥ c}

SC(k) = Prob{C ≥ k}

Note that the following equalities are straightforward:

ST1,T3
(a, c) = ST1

(a)ST3|T1
(c|a) (15)

ST3|T1
(c|a) = Prob{T3 ≥ c|T1 ≥ a} =

K
∑

k=0

Prob{T3 ≥ c, T2 = k|T1 ≥ a} (16)

= (ST1
(a))−1 ·

K
∑

k=0

K
∑

j=a

Prob{T3 ≥ c|T2 = k, T1 = j}Prob{T2 = k|T1 = j}Prob{T1 = j}

= (ST1
(a))−1 ·

K
∑

k=0

K
∑

j=a

ST3|T2=k,T1=j(c)(ST2|T1=j(k) − ST2|T1=j(k + 1))(ST1
(j) − ST1

(j + 1))

ST1
(a) = (1 − λT1

(0)) . . . (1 − λT1
(a − 1)) (17)

Equalities (15) and (16) show that to provide an estimator for ST1,T3
(a, c)

we only need to take care of the estimation of ST1
(j), ST2|T1=j(k) and ST3|T2=k,T1=j(c)

for a ≤ j ≤ K + 1 and 0 ≤ k ≤ K + 1.
By definition we will use

ST1
(0) = 1 = ST2|T1=j(0) = ST3|T2=k,T1=j(0)

and
ST1

(K + 1) = 0 = ST2|T1=j(K + 1) = ST3|T2=k,T1=j(K + 1)
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On the other hand the product decomposition (17) of the survival function
in terms of the hazards implies that to derive an estimator for ST1,T3

(a, c),
0 ≤ a, c ≤ K, it is only necessary to estimate λT1

(j), λT2|T1=j(k) and
λT3|T2=k,T1=j(c) for a ≤ j ≤ K and 0 ≤ k ≤ K .

Denote by n1k, n2kl, n3klm, n4klm, 0 ≤ k, l,m ≤ K the number of observa-
tions for which (Y1 = k, δ = 1), (Y1 = k, Y2 = l, δ = 2), (Y1 = k, Y2 = l, Y3 =
m, δ = 3), (Y1 = k, Y2 = l, Y3 = m, δ = 4) respectively. That is, n1k counts
how many individuals in Stage 1 are censored at k months, n2kl counts how
many individuals in Stage 2 have stayed k units of time in the first period
and l units of time in the second period being censored at the end of the
study. n3klm counts how many individuals in Stage 3 have stayed k units
of time in the first period, l units of time in the second period and m units
of time in the third one being censored at the end of the study, and finally
n4klm counts how many individuals in Stage 4 have stayed k units of time in
the first period, l units of time in the second period and exactly m units of
time in the third one, before the end of the study.

Summarizing,

n1k =
n
∑

i=1

1{Y1i = k, δi = 1}

n2kl =
n
∑

i=1

1{Y1i = k, Y2i = l, δi = 2}

n3klm =
n
∑

i=1

1{Y1i = k, Y2i = l, Y3i = m, δi = 3}

n4klm =
n
∑

i=1

1{Y1i = k, Y2i = l, Y3i = m, δi = 4}

The likelihood of the n observations is as follows:

L = L1L2L3L4

=
n
∏

i=1

{

Prob{T1 > y1i, C = y1i}1{δi=1}

Prob{T1 = y1i, T2 > y2i, C − y1i = y2i}1{δi=2}

Prob{T1 = y1i, T2 = y2i, T3 > y3i, C − (y1i + y2i) = y3i}1{δi=3}

Prob{T1 = y1i, T2 = y2i, T3 = y3i, C > y1i + y2i + y3i}1{δi=4}
}

Denote by L the log likelihood, by Lj = log Lj (j = 1, . . . , 4) and by
logP = log Prob.
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All the expressions for the probabilities can be replaced by functions
containing uniquely λT1

(a), λT2|T1=k(l), λT3|T2=l,T1=k(m) and SC(a). Indeed,

L1 =
n
∑

i=1

1{δi = 1}logP{T1 > y1i, C = y1i}

=
K
∑

k=0

n1k(logP{T1 > k} + logP{C = k})

=
K
∑

k=0

n1k(log
k
∏

a=0

(1 − λT1
(a)) + logP{C = k})

=
K
∑

k=0

n1k

(

k
∑

a=0

log(1 − λT1
(a)) + logP{C = k}

)

L2 =
n
∑

i=1

1{δi = 2}logP{T1 = y1i, T2 > y2i, C − y1i = y2i}

=
K
∑

k=0

K
∑

l=0

n2kl(logP{T2 > l|T1 = k} + logP{T1 = k} + logP{C = k + l})

=
K
∑

k=0

K
∑

l=0

n2kl(log
l
∏

b=0

(1 − λT2|T1=k(b)) + log λT1
(k) + log ST1

(k) + logP{C = k + l})

=
K
∑

k=0

K
∑

l=0

n2kl

(

l
∑

b=0

log(1 − λT2|T1=k(b)) + log λT1
(k)

+
k−1
∑

a=0

log(1 − λT1
(a)) + logP{C = k + l}

)

L3 =
n
∑

i=1

1{δi = 3}logP{T1 = y1i, T2 = y2i, T3 > y3i, C − (y1i + y2i) = y3i}

=
K
∑

k=0

K
∑

l=0

K
∑

m=0

n3klm(logP{T3 > m|T1 = k, T2 = l} + logP{T2 = l|T1 = k} + logP{T1 = k}

+ logP{C = k + l + m})

=
K
∑

k=0

K
∑

l=0

K
∑

m=0

n3klm(log
m
∏

c=0

(1 − λT3|T1=k,T2=l(c)) + log λT2|T1=k(l) + log ST2|T1=k(l)

+ log λT1
(k) + log ST1

(k) + logP{C = k + l + m})
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=
K
∑

k=0

K
∑

l=0

K
∑

m=0

n3klm

(

m
∑

c=0

log(1 − λT3|T1=k,T2=l(c)) + log λT2|T1=k(l)

+
l−1
∑

b=0

(1 − λT2|T1=k(b)) + log λT1
(k)

+
k−1
∑

a=0

log(1 − λT1
(a)) + logP{C = k + l + m}

)

L4 =
n
∑

i=1

1{δi = 4}logP{T1 = y1i, T2 = y2i, T3 = y3i, C ≥ y1i + y2i + y3i}

=
K
∑

k=0

K
∑

l=0

K
∑

m=0

n4klmlogP{T3 = m|T1 = k, T2 = l} + logP{T2 = l|T1 = k}

+ logP{T1 = k} + logP{C ≥ k + l + m})

=
K
∑

k=0

K
∑

l=0

K
∑

m=0

n4klm(log λT3|T1=k,T2=l(m) + log ST3|T1=k,T2=l(m))

+ log λT2|T1=k(l) + log ST2|T1=k(l)

+ log λT1
(k) + log ST1

(k) + logP{C ≤ k + l + m})

=
K
∑

k=0

K
∑

l=0

K
∑

m=0

n4klm

(

log λT3|T1=k,T2=l(m) +
m−1
∑

c=0

log(1 − λT3|T1=k,T2=l(c))

+ log λT2|T1=k(l) +
l−1
∑

b=0

(1 − λT2|T1=k(b))

+ log λT1
(k) +

k−1
∑

a=0

log(1 − λT1
(a)) + logP{C ≥ k + l + m}

)

We can rewrite L grouping terms that only depend on λT1
or on λT2|T1=k

for k = 0, . . . , K or on λT3|T1=k,T2=l for k, l = 0, . . . , K or on C. Let denote
by LT1

,LT2|T1
,LT3|T1,T2

and LC , the new terms, respectively, and we get

L = LT1
+ LT2|T1

+ LT3|T1,T2
+ LC (18)

Maximizing (18) for a fix time t = 0, . . . , K we obtain

λ̂T1
(t) =

d1t

r1t

λ̂T2|T1=k(t) =
d2kt

r2kt

, k = 0, . . . , K
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λ̂T3|T1=k,T2=l(t) =
d3klt

r3klt

, k, l = 0, . . . , K (19)

where d. and r. denote the number of events and the number of individuals
at risk at time t, respectively, for the conditioned samples T1, T2|T1 = k and
T3|T1 = k, T2 = l.

Replacing estimators (19) in (16) and (17) we obtain estimates for ST3|T1
(c|a)

and ST1
(a), and consequently for S13(a, c).

3.2 Burke’s extension to two consecutive gap times

In what follows we propose an estimator for the bivariate distribution func-
tion for two successive failure times. This estimator extends Burke’s ideas
(1988). In this subsection we are in the same conditions and using the same
notation as in subsection 2.3.

In particular recall that we are assuming that the follow-up time is subject
to independent right censoring by C, which implies that T1 and T1 + T2 are
independent of C but T2 is subject to right censoring by C − T1. This
assumption can be equivalently expressed as either one of the following three
assumptions:
Assumption A1: Prob{T1 < t1|C = c} = F1(t1) for all t1 and c
Assumption A2: Prob{C > u + v|T1 = u, T2 = v} = Prob{C > u + v}
Assumption A3: dProb{T1 ≤ u, T2 ≤ v|C ≥ T1 + T2} = dF (u, v)

Define the subdistribution function

F̃ (t1, t2) = Prob{Y1 ≤ t1, Y2 ≤ t2, δ = 3} = Prob{Y1 ≤ t1, Y2 ≤ t2, D1 = D2 = 1}

which can be naturally estimated from the empirical subdistribution function

Fn(x, y) =
1

n

n
∑

i=1

1{δi = 3}1{Y1i ≤ x, Y2i ≤ y}

Proposition 1 If A2 holds, the subdistribution function F̃ can be expressed
as the convolution of F and G1:

F̃ (x, y) =
∫ x

0

∫ y

0
G1(u + v)dF (u, v)
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Proof 1

F̃ (x, y) = Prob{Y1 ≤ x, Y2 ≤ y, δ = 3} = Prob{T1 ≤ x, T2 ≤ y, T1 ≤ C1, T2 ≤ C2}
= Prob{T1 ≤ x, T2 ≤ y, T1 + T2 ≤ C1}
=

∫ x

0

∫ y

0
Prob{C1 ≥ u + v|T1 = u, T2 = v}dF (u, v)

=
∫ x

0

∫ y

0
G1(u + v)dF (u, v)

where last equality follows from A2.

Proposition 2 If A3 holds, the bivariate distribution function F for the ran-
dom vector (T1, T2) can be expressed in terms of the subdistribution function
F̃ and the survival for C1: G1:

F (x, y) =
∫ x

0

∫ y

0
{G1(u + v)}−1dF̃ (u, v) (20)

Proof 2

F (x, y) =
∫ x

0

∫ y

0
dF (u, v) =

∫ x

0

∫ y

0
dProb{T1 ≤ u, T2 ≤ v|C1 ≥ T1 + T2}

=
∫ x

0

∫ y

0

dProb{T1 ≤ u, T2 ≤ v, C1 ≥ T1 + T2}
Prob{C1 ≥ u + v} (21)

=
∫ x

0

∫ y

0

dF̃ (u, v)

G1(u + v)

where last equality follows from A3.

The subdistribution function F̃ (x, y) can be naturally estimated from the
empirical subdistribution function

Fn(x, y) =
1

n

n
∑

i=1

1{δi = 3}1{Y1i ≤ x, Y2i ≤ y}.

Since C1 = C is the elapsed time from randomization to closing the study,
it is observed for all individuals and therefore G1 can be estimated by the
corresponding empirical survival function

Gn(x) =
1

n

n
∑

i=1

1{C1i ≤ x}.

The estimation of F is now accomplished plugging Fn(u, v) and Gn(u+v)
into the integral (21).
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4 Multivariate Survival Data

Multivariate survival data refers to a sequence of survival random variables,
T1, T2, T3, . . . , Tm, collected on the same individual. In this section we con-
tinue the approach, and extend the notation, taken in Sections 2 and 3 where
the random variables are sequentially observed and hence subject to the de-
pendent censoring caused by the date in which the follow–up is closed.

4.1 Notation

The multivariate distribution of (T1, T2, T3, . . . , Tm) will be characterized by
the marginals and the conditional laws. Denote by fj, Sj and λj, j =
1, . . . ,m the marginal density, survival and hazard function of Tj. Denote
by STj |Tj−1,...,T1

and λTj |Tj−1,...,T1
, j = 2, . . . ,m the conditional survival and

hazard function of the random variable Tj conditioned to Tj−1, . . . , T1. We
use the symbol [ ] for the joint laws.

As in most clinical trials the survival data is subject to right censoring.
We will assume that closing the study is the only cause of censoring, and thus
independent of all other survival and covariate information. As in Section 2,
denote by C the elapsed time from randomization to closing the study and
by G1 the corresponding survival function. Note that C will be considered
itself a random variable due to the large period of recruitment and that C
acts on the sum T1+ . . .+Tm. Censoring due to lost-of-follow-up or withdraw
is non considered here. However, if it does occur, it will most probably be
informative.

Again, as discussed in Section 2, subsequent times Tj (j = 2, . . . ,m),
depend on their previous times in the sense that Tj can be only observed if
T1 + . . . + Tj−1 ≤ C.

We introduce the following censoring variable

δ =







































1 if C < T1

2 if T1 ≤ C < T1 + T2

3 if T1 + T2 ≤ C < T1 + T2 + T3

. . . if . . .
m if T1 + T2 + . . . + Tm−1 ≤ C < T1 + T2 + . . . + Tm

m + 1 if T1 + T2 + . . . + Tm ≤ C.

That is, a given individual can only belong to one of the m+1 stages defined
by δ. In Stage 1 (δ = 1): all the durations are right–censored. In Stage 2
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(δ = 2): T1 is observed while T2 is right–censored by C − T1. In Stage 3
(δ = 3): T1 and T2 are observed while T3 is right–censored by C − (T1 + T2).
Finally, in Stage m + 1 (δ = m + 1): T1, . . ., Tm are observed.

The observed random variables for each individual are Y1 = min(T1, C),
Y2 = min(T2, C − T1)1{T1 ≤ C}, Y3 = min(T3, C − (T1 + T2))1{T1 + T2 ≤
C}, . . ., Ym = min(Tm, C−(T1 + . . .+Tm−1))1{T1 + . . .+Tm−1 ≤ C} together
with δ. Thus the observed information for a given individual is summarized
by (y1, y2, . . . , ym, δ).

We will assume that we have a sample and that the observable data are
{(y1i, y2i, . . . , ymi, δi), i = 1, . . . , n}.

To have a clear picture of the implications of the censoring mechanism
we define auxiliary censoring random variables C1 = C, C2 = C − T1,
Cj = C − ∑j−1

l=1 Tl, j = 3, . . . ,m and describe the joint distribution for
(T1, T2, . . . , Tm, C1, C2 . . . , Cm).

Proposition 3

[T1, . . . , Tm, C1, . . . , Cm] = [T1, . . . , Tm, C]∆m . . . ∆3∆2∆1

where

∆j = ∆j(cj|t1, . . . , tj−1) =

{

1 if cj = C − (t1 + . . . + tj−1)
0 if otherwise.

Proof 3 Straightforward multiplication rules allow to factorize the joint den-
sity:

[T1, . . . , Tm, C1, . . . , Cm] = [Tm|T1, . . . Tm−1, C1, . . . , Cm][T1, . . . Tm−1, C1, . . . , Cm]

= [Tm|T1, . . . Tm−1, C1, . . . , Cm][Cm|T1, . . . Tm−1, C1, . . . , Cm−1]

. . . [C3|T1, T2, C1, C2][T2|T1, C1, C2][C2|T1, C1][T1|C1][C1]

Since C1 = C is known and Cj is function of T1, . . . , Tj−1, last expression
becomes proportional to the joint density of [T1, . . . , Tm] and [C]. Indeed,

[T1, . . . , Tm, C1, . . . , Cm] = [Tm|T1, . . . Tm−1, C][Cm|T1, . . . Tm−1]

. . . [C3|T1, T2][T2|T1, C][C2|T1][T1|C][C]

= [Tm|T1, . . . Tm−1, C][C −
m−1
∑

l=1

Tl|T1, . . . Tm−1]

. . . [C − (T1 + T2)|T1, T2][T2|T1, C][C − T1|T1][T1][C]

= [Tm|T1, . . . Tm−1, C] . . . [T3|T1, T2, C][T2|T1, C][T1|C][C]∆m . . . ∆3∆2∆1

= [T1, . . . , Tm, C]∆m . . . ∆3∆2∆1.
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4.2 Likelihood Function

If we are interested in the joint behaviour of (T1, . . . , Tm), the contribution to
the likelihood of a given subject in terms of the observables (y1, y2, . . . , ym+1, δ)
can be one of the following:

P1 = Prob{T1 > y1, C = y1}
P2 = Prob{T1 = y1, T2 > y2, C − y1 = y2}
P3 = Prob{T1 = y1, T2 = y2, T3 > y3, C − (y1 + y2) = y3}
. . . . . .

Pm = Prob{T1 = y1, . . . , Tm−1 = ym−1, Tm > ym, C − (y1 + . . . + ym−1) = ym}
Pm+1 = Prob{T1 = y1, . . . , Tm = ym, C > y1 + . . . + ym}.

For instance, an individual in Stage 4 has reinitiated treatment for the second
time before the study ends and has T1 = t1 < C, T2 = t2 < C − t1, T3 =
t3 < C − (t1 + t2), T4 > C − (t1 + t2 + t3) and δ = 4 (See Figure 1). For this
individual

P4 = Prob{T1 = y1, T2 = y2, T3 = y3, T4 > C − (y1 + y2 + y3)}

Figure 1: Stage 4: T1 = t1 < C, T2 = t2 < C − t1, T3 = t3 < C − (t1 + t2),
T4 > C − (t1 + t2 + t3) and δ = 4
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The likelihood for the observable data for a given individual is the product
of the probability of the m + 1 different situations. Note that every subject
will only contribute to one of these m + 1 factors.

Lik = P
1{δ=1}
1 P

1{δ=2}
2 P

1{δ=3}
3 . . . P

1{δ=m+1}
m+1 (22)

Each term in (22) can be factorized following the usual rules. That is, for
any 1 ≤ j ≤ m

Pj = Prob{T1 = y1, . . . , Tj−1 = yj−1, Tj > yj, C − (y1 + . . . + yj−1) = yj}

29



= Prob{Tj > yj|T1 = y1, . . . , Tj−1 = yj−1}
· Prob{T1 = y1, . . . , Tj−1 = yj−1, C = y1 + . . . + yj−1 + yj}

where in last equality C−(y1 + . . .+yj−1) = yj can be omitted as it is proved
in Proposition 3. Completing the factorization we have

Pj = Prob{Tj > yj|T1 = y1, . . . , Tj−1 = yj−1}Prob{Tj−1 = yj−1|T1 = y1, . . . , Tj−2 = yj−2}
· . . . Prob{T2 = y2|T1 = y1}Prob{T1 = y1}Prob{C = y1 + . . . + yj}
= STj |T1,...,Tj−1

(y+
j |y1, . . . , yj−1)λTj−1|T1,...,Tj−2

(yj−1|y1, . . . , yj−2)STj−1|T1,...,Tj−2
(yj−1|y1, . . . , yj−2)

· . . . λT2|T1
(y2|y1)ST2|T1

(y2|y1)λT1
(y1)ST1

(y1)Prob{C = y1 + . . . + yj}

where last expression is given in terms of the survivals and the conditional
hazards. Note that an individual whose δ = j, will contribute to the estima-
tion of the following functions: STj |T1,...,Tj−1

, λTj−1|T1,...,Tj−2
, STj−1|T1,...,Tj−2

In order to derive the likelihood function for the observable sample
{(y1i, y2i, . . . , ym+1i, δi), i = 1, . . . , n}, we introduce some straightforward no-
tation: for any 1 ≤ j ≤ m, the probability Pj for the ith individual is given
by:

Pji = STj |T1,...,Tj−1
(y+

ji|y1i, . . . , y(j−1),i)λTj−1|T1,...,Tj−2
(y(j−1),i|y1i, . . . , y(j−2),i)

· STj−1|T1,...,Tj−2
(y(j−1),i|y1i, . . . , y(j−2),i)

· . . . λT2|T1
(y2i|y1i)ST2|T1

(y2i|y1i)λT1
(y1i)ST1

(y1i)Prob{C = y1i + . . . + yji}.

The likelihood for the sample can be rewritten as

Lik(sample) =
n
∏

i=1

P
1{δi=1}
1i P

1{δi=2}
2i P

1{δi=3}
3i . . . P

1{δi=m+1}
m+1,i , (23)

and collecting terms

Lik(sample) =
n
∏

i=1

m
∏

j=1

{STj |T1,...,Tj−1
(y+

ji|y1i, . . . , y(j−1),i)λTj−1|T1,...,Tj−2
(y(j−1),i|y1i, . . . , y(j−2),i)

· STj−1|T1,...,Tj−2
(y(j−1),i|y1i, . . . , y(j−2),i)

· . . . λT2|T1
(y2i|y1i)ST2|T1

(y2i|y1i)λT1
(y1i)ST1

(y1i)Prob{C = y1i + . . . + yji}}1{δi=j}.

Last expression can be grouped differently in terms of the different con-
ditional laws.
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4.3 Modelling the time dependencies via Partial Like-
lihood

The expressions corresponding to Pj will depend on the assumptions we are
making concerning the renewal times T1, T2, . . . , Tm. We assume now that
these times hold a second order Markov property and that their hazards are
proportional. Under these assumptions a simplified likelihood function is
given as well as a proposal for a partial likelihood.

The assumption of a second order Markov implies that the conditional dis-
tribution of Tj given T1, . . . , Tj−1 only depends on Tj−2 and Tj−1.That is, the
conditional distributions satisfy the following equalities: [Tj|T1, . . . , Tj−1] =
[Tj|Tj−2, Tj−1], j = 3, . . . ,m.

In order to characterize the joint density of (T1, T2, . . . , Tm, C1, C2 . . . , Cm),
we only need the conditional density function of T2 given T1, named g2

and the conditional densities of Tj given Tj−2 and Tj−1, denoted by gj, for
j = 3, . . . ,m. Denote by G2 and Gj the corresponding distribution functions.

The contributions given by (22) are therefore proportional to

P1 = S1(C)

P2 =
(∫ ∞

C−t1
g2(t2|t1)dt2

)

f1(t1) = G2(C − t1|t1)f1(t1)

. . . = . . .

Pm =

(

(
∫ ∞

C−(t1+...+tm−1)
gm(tm|tm−1, tm−2)dtm

)

gm−1(tm−1|tm−2, tm−3) . . . g2(t2|t1)f1(t1)

Pm+1 = gm(tm|tm−1, tm−2) . . . g2(t2|t1)f1(t1).

Then the likelihood for a given individual reads as

Lik = S1(C)1−δ1 (G2(C − t1|t1)f1(t1))
δ1(1−δ2) × . . . ×

× (Gm(C − (t1 + . . . tm−1)|tm−1, tm−2)gm−1(tm−1|tm−2, tm−3) . . . g2(t2|t1)f1(t1))
δ1...δm−1(1−δm)

× (gm(tm|tm−1, tm−2) . . . g2(t2|t1)f1(t1))
δ1...δm ,

and rearranging terms

Lik = S1(C)1−δ1f1(t1)
δ1G2(C − t1|t1)δ1(1−δ2)g2(t2|t1)δ1δ2 . . .

Gm(C − (t1 + . . . tm−1)|tm−1, tm−2)
δ1...δm−1(1−δm)gm(tm|tm−1, tm−2)

δ1...δm

= S1(C)1−δ1f1(t1)
δ1

m
∏

j=2

Gj(C −
j−1
∑

l=1

tj|tj−1, tj−2)
δ1...δj−1(1−δj)gj(tj|tj−1, tj−2)

δ1...δj
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which is equivalent to

Lik = S1(y1)
1−δ1f1(y1)

δ1
m
∏

j=2

Gj(yj|yj−1, yj−2)
δ1...δj−1(1−δj)gj(yj|yj−1, yj−2)

δ1...δj

(24)

if we use the compact notation (y1, δ1, y2, δ2, . . . , ym, δm).
The likelihood is now rewritten in terms of the corresponding hazard and

cumulative hazard functions. Denote by h1, h2, . . . , hm and by H1, H2, . . . , Hm

the hazards and cumulative hazards. Since

f1(t1) = h1(t1)S1(t1), g2(t2|t1) = h2(t2|t1)G2(t2|t1)
gj(tj|tj−1, tj−2) = hj(tj|tj−1, tj−2)Gj(tj|tj−1, tj−2), j = 2, . . . ,m

S1(t1) = exp{−H1(t1)}, G2(t2|t1) = exp{−H2(t2|t1)}
Gj(tj|tj−1, tj−2) = exp{−Hj(tj|tj−1, tj−2)}, j = 2, . . . ,m

The likelihood function given by equation (24) becomes after substitution

Lik = h1(y1)
δ1 exp{−H1(y1)}

×
m
∏

j=2

hj(yj|yj−1, yj−2)
δ1...δj exp{−Hj(yj|yj−1, yj−2)}δ1...δj−1 .

If instead of assuming a second order Markov property we would assume
that renewal times are independent, then the likelihood function is equal to

Lik = S1(y1)
1−δ1f1(y1)

δ1
m
∏

j=2

Sj(yj)
δ1...δj−1(1−δj)fj(yj)

δ1...δj

Suppose now that we have a proportional hazards model for each time Tj

conditioned to Tj−1 and Tj−2:

h1(t1) = λ01(t1)

h2(t2|t1) = λ02(t2)e
β21t1

hj(tj|tj−1, tj−2) = λ0j(tj)e
βj1tj−1+βj2tj−2
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Assuming that λ01(t) = . . . = λ0m(t) = λ0(t) and denoting by Λ0(t) the
baseline cumulative hazard function, (25) becomes equal to

Lik = (λ0(y1))
δ1 exp{−Λ0(y1)}

×
(

λ0(y2)e
β21y1

)δ1δ2 (

exp{−Λ0(y2)e
β21y1}

)δ1

×
m
∏

j=3

(

λ0(yj)e
βj1yj−1+βj2yj−2

)δ1...δj
(

exp{−Λ0(yj)e
βj1yj−1+βj2yj−2}

)δ1...δj−1

=
m
∏

j=1

(λ0(yj))
δ1...δj exp{−Λ0(y1)}

(

exp{−Λ0(y2)e
β21y1}

)δ1

×
m
∏

j=3

(

exp{−Λ0(yj)e
βj1yj−1+βj2yj−2}

)δ1...δj−1

(25)

×
m
∏

j=2

eyj−1δ1...δjβj1

m
∏

j=3

eyj−2δ1...δjβj2

If we define β22 = 0 (we can also choose β11 = β12 = 0) then we have a
more compact notation since we can write last expression (25) as

Lik =
m
∏

j=1

(λ0(yj))
δ1...δj exp{−Λ0(y1)}

m
∏

j=2

(

exp{−Λ0(yj)
2
∏

l=1

eβjlyj−l}
)δ1...δj−1

m
∏

j=2

2
∏

l=1

eyj−lδ1...δjβjl .

The likelihood function for the observed sample is then a product over
the n individuals of (26).

A partial likelihood is constructed via the product over every time Tj,
j = 2, . . . ,m of the following quantities:

n
∏

i=1





eβj1ti
j−1

+βj2ti
j−2

∑n
i∗=1 J i∗

j (tij)e
βj1ti∗

j−1
+βj2ti∗

j−2





δi
1
...δi

j

(26)

where J i∗
j (t) = 1{T i∗

j ≥ t}. Each term in equation (26) is the relative
contribution-hazard of a subject i that has failed at time ti

j with respect to
all the other subjects at risk at time ti

j.
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The partial likelihood would then be defined as

L =
m
∏

j=2

n
∏

i=1





eβj1ti
j−1

+βj2ti
j−2

∑n
i∗=1 J i∗

j (tij)e
βj1ti∗

j−1
+βj2ti∗

j−2





δi
1
...δi

j

. (27)
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5 Bayesian approach for modelling trends and

time dependencies

There are several ways of jointly modelling the longitudinal data and the
survival time. The most common methods consist on specifying a linear
mixed-effects model for the covariate process and a Cox proportional haz-
ards model for the survival. Generalization to multiple longitudinal data is
however complicated by the need to model the joint relationship among all
the covariates and the difficulty derived of high-dimensional integration in
the likelihood (Song, Davidian and Tsiatis, 2002).

An interesting issue to investigate when analyzing recurrent events is
whether or not exists a trend between the consecutive observed times. In
the Tibet clinical trial this is an important question which needs an answer.
Observing a trend of longer and longer times without treatment, would rep-
resent a very good behavior of the interruption treatment associated with a
strengthening of the immunologic system. On the contrary, a trend of smaller
and smaller times without treatment, or larger and larger times with treat-
ment, would be possibly associated with a deterioration of the immunologic
system.

To investigate the trend between consecutive times we propose two al-
ternatives. First, we model the time dependencies via indicators within a
proportional hazards model. Then, the observed times are used to model
the dependency between consecutive times. In both cases, after assuming
a specific model for T1, inferences on the parameters of interest could be
performed either by a maximum likelihood method or through the posterior
distribution following a Bayesian approach.

We have chosen a Bayesian approach as an interesting alternative to max-
imum likelihood methods since it provides a direct probabilistic interpreta-
tion of the posterior distribution and allows the incorporation of prior beliefs
about the distribution function. Furthermore, nowadays, the implementa-
tion of the Bayesian approach is much more easily-approached because of
the Markov chain Monte Carlo algorithms and their implementation with
programs such as Winbugs.

We describe both approaches assuming a Weibull model for T1.

35



5.1 Modelling time dependencies via indicators

Following the notation from Section 4, let λ1(t) the hazard function of T1

and, for j = 2, . . . ,m, λj|j−1,...,1 the conditional hazard of Tj given all previous
times Tj−1, . . . , T1. We define recurrently these conditional hazards as

λ2|1(t|t1) = λ1(t) · eθ1

λ3|2,1(t|t1, t2) = λ2|1(t|t1) · eθ2

...

λj|j−1,...,1(t|t1, . . . , tj−1) = λj−1|j−2,...,1(t|t1, . . . , tj−2) · eθj−1 ,

which is equivalent to

λj|j−1,...,1(t|t1, . . . , tj−1) = λ1(t) · eθ1+...+θj−1 ; j = 2, . . . ,m. (28)

Note that eθ1 = λ2(t|t1)/λ1(t) is the risk factor between T2 and T1 and
eθ2 = λ3(t|t1, t2)/λ2(t|t1) is the risk factor between T3 and T2. In general, eθk

is the risk factor between consecutive times Tk and Tk+1. A positive value
θk > 0 means that times Tk+1 tend to be smaller than times Tk.

The likelihood function for this model is given in equation (22). The
different contributions into the likelihood for a given individual are:

P1 = Prob{T1 > F} = S1(y1)

P2 = Prob{T1 = t1, T2 > F − t1} = f1(y1)S2|1(y2) = λ1(y1)S1(y1)(S1(y2))
exp{θ1}

P3 = Prob{T1 = t1, T2 = t2, T3 > F − (t1 + t2)} = f1(y1)f2|1(y2)S3|2,1(y3) =

= λ1(y1)S1(y1)λ2|1(y2)S2|1(y2)S3|2,1(y3) =

= λ1(y1)S1(y1)λ1(y2)e
θ1(S1(y2))

exp{θ1}(S1(y3))
exp{θ1+θ2}

. . . = . . .

Pm = Prob{T1 = t1, . . . , Tm−1 = tm−1, Tm > F − (t1 + . . . + tm−1)}

= e(m−2)θ1+(m−3)θ2+...+θm−2λ1(y1)λ1(y2) . . . λ1(ym−1) ·

·S1(y1)(S1(y2))
exp{θ1}(S1(y3))

exp{θ1+θ2} . . . (S1(ym))exp{θ1+...+θm−1}

Pm+1 = Prob{T1 = t1, . . . , Tm = tm} =
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= e(m−1)θ1+(m−2)θ2+...+θm−1λ1(y1)λ1(y2) . . . λ1(ym) ·

·S1(y1)(S1(y2))
exp{θ1}(S1(y3))

exp{θ1+θ2} . . . (S1(ym))exp{θ1+...+θm−1},

where fj|j−1,...,1 and Sj|j−1,...,1 are the conditional density and survival func-
tions, respectively, of Tj given all previous times Tj−1, . . . , T1, for j = 2, . . . ,m.

We assume a Weibull distribution for T1 with the following parameteri-
zation (the one used by the Winbugs):

λ1(t) = γλtγ−1

We denote this by T1 ∼ Weib(γ, λ) where γ is the shape parameter and λ is
the scale parameter.

Under modelization (28) the conditional hazards have the form

λj|j−1,...,1(t|t1, . . . , tj−1) = λ1(t) · eθ1+...+θj−1 = γλtγ−1 · eθ1+...+θj−1

which correspond to a Weibull distribution with shape parameter γ and scale
parameter λeθ1+...+θj−1 .

Therefore, to obtain the posterior distributions of γ, λ and θj, j ∈
{1, . . . ,m − 1} using the Winbugs program we only need to specify the fol-
lowing conditional distributions, indicating that the last time Tm is always
right censored:

T1 ∼ Weib(γ, λ)

T2|T1 ∼ Weib(γ, λeθ1)

T3|T2, T1 ∼ Weib(γ, λeθ1+θ2)

. . .

Tm|Tm−1, . . . , T2, T1 ∼ Weib(γ, λeθ1+θ2+...+θm−1) right censored at F − (t1 + . . . + tm−1)

and prior distributions for γ, λ and θj, j ∈ {1, . . . ,m − 1}.
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The following code corresponds to a Winbugs program to analyze the first
consecutive 4 times assuming diffuse Gamma prior distributions for both γ
and λ and diffuse normal distributions for θj, j ∈ {1, . . . ,m − 1}.

model weibull1_4;

{

for(i in 1:n4){ # individuals with observed T_1, T_2, T_3 and T_4

t1[i] ~ dweib(gam,lambda);

t2[i] ~ dweib(gam,lambda2);

t3[i] ~ dweib(gam,lambda3);

t4[i] ~ dweib(gam,lambda4);

}

for(i in n4+1:n3){ # individuals with right censored T_4

t1[i] ~ dweib(gam,lambda);

t2[i] ~ dweib(gam,lambda2);

t3[i] ~ dweib(gam,lambda3);

t4[i] ~ dweib(gam,lambda4) I(c4[i],);

}

for(i in n3+1:n2){ # individuals with right censored T_3

t1[i] ~ dweib(gam,lambda);

t2[i] ~ dweib(gam,lambda2);

t3[i] ~ dweib(gam,lambda3) I(c3[i],);

}

for(i in n2+1:n1){ # individuals with right censored T_2

t1[i] ~ dweib(gam,lambda);

t2[i] ~ dweib(gam,lambda2) I(c2[i],);

}

for(i in n1+1:N){ # individuals with right censored T_1

t1[i] ~ dweib(gam,lambda) I(c1[i],);

}

lambda2<-lambda*exp(theta1);

lambda3<-lambda*exp(theta1+theta2);

lambda4<-lambda*exp(theta1+theta2+theta3);

theta1~ dnorm(alpha1,tau1);

theta2 ~ dnorm(alpha2,tau2);

theta3 ~ dnorm(alpha3,tau3);
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sumtheta12<-theta1+theta2;

sumtheta123<-theta1+theta2+theta3;

lambda ~ dgamma(1.0E-3, 1.0E-3);

gam ~ dgamma(1.0E-3, 1.0E-3);

alpha1 ~ dnorm(0, 1.0E-6);

tau1~ dgamma(1.0E-3, 1.0E-3);

alpha2 ~ dnorm(0, 1.0E-6);

tau2~ dgamma(1.0E-3, 1.0E-3);

alpha3 ~ dnorm(0, 1.0E-6);

tau3~ dgamma(1.0E-3, 1.0E-3);

}

# Constants:

list(N=96,n1=55,n2=28,n3=13,n4=7);

# Initial values:

list(alpha1=0, tau1=1, alpha2=0, tau2=1,alpha3=0, tau3=1,lambda=1, gam=1);

5.2 Modelling the time dependencies using durations

Consider a modelization similar to (28) but using the observed times to model
the dependency between consecutive times.

As in previous sections, let λ1(t) be the hazard function of T1 and, for
j = 2, . . . ,m, λj|j−1,...,1 the conditional hazard of Tj given all previous times
Tj−1, . . . , T1. We define recurrently these conditional hazards as

λ2|1(t|t1) = λ1(t) · eθ1t1

λ3|2,1(t|t1, t2) = λ2|1(t|t1) · eθ2t2

...

λj|j−1,...,1(t|t1, . . . , tj−1) = λj−1|j−2,...,1(t|t1, . . . , tj−2) · eθj−1tj−1

Which is equivalent to

λj|j−1,...,1(t|t1, . . . , tj−1) = λ1(t) · eθ1t1+...+θj−1tj−1 ; j = 2, . . . ,m. (29)

As before, the likelihood function for this model is given in equation (22).
The different contributions into the likelihood for a given individual are:
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P1 = S1(y1)

P2 = λ1(y1)S1(y1)(S1(y2))
exp{θ1t1}

P3 = λ1(y1)S1(y1)λ1(y2)e
θ1t1(S1(y2))

exp{θ1t1}(S1(y3))
exp{θ1t1+θ2t2}

. . . = . . .

Pm = e(m−2)θ1t1+(m−3)θ2t2+...+θm−2tm−2λ1(y1)λ1(y2) . . . λ1(ym−1) ·

·S1(y1)(S1(y2))
exp{θ1t1}(S1(y3))

exp{θ1t1+θ2t2} . . . (S1(ym))exp{θ1t1+...+θm−1tm−1}

Pm+1 = e(m−1)θ1t1+(m−2)θ2t2+...+θm−1tm−1λ1(y1)λ1(y2) . . . λ1(ym) ·

·S1(y1)(S1(y2))
exp{θ1t1}(S1(y3))

exp{θ1t1+θ2t2} . . . (S1(ym))exp{θ1t1+...+θm−1tm−1},

To analyze model (29) from a parametric Bayesian approach we need
to specify each conditional distribution. As before, we assume a Weibull
distribution for T1:

λ1(t) = γλtγ−1

and

λj|j−1,...,1(t|t1, . . . , tj−1) = λ1(t) · eθ1+...+θj−1 = γλtγ−1 · eθ1t1+...+θj−1tj−1

which corresponds to a Weibull distribution with shape parameter γ and
scale parameter λeθ1t1+...+θj−1tj−1 .

To obtain the posterior distributions of γ, λ and θj, j ∈ {1, . . . ,m − 1}
using the Winbugs program we only need to specify the following conditional
distributions, indicating that the last time Tm is right censored:

T1 ∼ Weib(γ, λ)

T2|T1 ∼ Weib(γ, λeθ1t1)

T3|T2, T1 ∼ Weib(γ, λeθ1t1+θ2t2)

. . .

Tm|Tm−1, . . . , T2, T1 ∼ Weib(γ, λeθ1t1+θ2t2+...+θm−1tm−1) right censored at F − (t1 + . . . + tm−1)

and prior distributions for γ, λ and θj, j ∈ {1, . . . ,m − 1}.
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6 Review of Multivariate Regression Survival

Models

6.1 Introduction

Multivariate survival data arise when each subject in a given study may
experience multiple events. Multiple events may be ordered or unordered. We
restrict this paper to the analysis of ordered events which includes recurrent
events of the same type, such as, repeated myocardial infarction attacks,
and ordered events of different types, like infection with HIV and subsequent
AIDS diagnosis. We review some of the contributions of the analysis of
multivariate survival data when the scientific interest center on the effects of
covariates on the risk of failure.

Models for multivariate survival time data can be classified as

1. parametric models which specify the structure of the dependence through
the joint distribution of the multivariate data,

2. regression models based on models for the marginal hazard functions
and

3. frailty models where the dependence is specified via random effects in
the model.

Both the first and last approaches rely on parametric assumptions which are
difficult to validate. For this reason in this paper we restrict our revision
to the second category which includes the marginal approach due to Wei,
Lin & Weissfeld (1989), the multiplicative intensity model by Andersen and
Gill (1990) and the conditional approach by Prentice, Williams & Peterson
(1981), referred hereafter as WLW, AG and PWP, respectively. All these
methods are sometimes called marginal approaches. That is, on one hand,
they model the marginal distribution of each failure time variable and, on
the other, the regression parameters are estimated ignoring the dependence
between related failure times with corrected variance. In this review we will
use the term ”marginal approach” only when referring to WLW.

The main differences between these three methods are based on the fol-
lowing three points: the assumption on the dependence structure among
failures, the definition of the risk sets and the computation of the standard
error of the proposed estimates.
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6.2 Regression models for a sequence of survival times
based on the marginal distributions

Let U1, . . . , Um, such that U1 < . . . < Um, be the times of m consecutive
events. The times are measured from the same origin, for instance, from
the beginning of the study. Let Zji(t) be a vector of covariates for the ith

subject at time t. The multivariate distribution of (U1, U2, · · · , Um) will be
characterized by the marginals and the conditional laws. Denote by Fj, fj, Sj

and λj, j = 1, · · · ,m the marginal distribution, density, survival and hazard
function of Uj.

As in most clinical trials the survival data is subject to right censoring.
We will assume that closing the study is the only cause of censoring, and thus
independent of all other survival and covariate information. Denote by C the
elapsed time from randomization to closing the study. Censoring indicators
are defined as µj = 1{Uj ≤ C}, for j = 1, . . . ,m. Note that µj = 1
implies µ1 = · · ·µj−1 = 1. Denote by Xj = min{Uj, C}, j = 1, · · · ,m. In
addition to censoring we also have to deal with missing data. The observation
of subsequent times Uj, (j = 2, · · · ,m) depends on their previous times in
the sense that Uj is only observed if Uj−1 ≤ C. We define a missing data
indicator, Rj , as Rj = 1 if Uj is observed or censored and Rj = 0 when Uj is
missing. In this last case, we set, for notational convenience, Xj = Xj−1 and
µj = 0, though these cases will make no contribution to the estimations.

Suppose that there are n subjects. The observable data for subject i is
given by (X1i, µ1i, Z1i, R1i, · · · , Xmi, µmi, Zmi, Rmi), for i ∈ {1, . . . , n}.

The methods considered in this section are based on a likelihood func-
tion (see (31)) which is built taking into account: 1) the specification of
the marginal distributions for Uj (see (30)) and 2) a working independence
assumption concerning the failure times. Furthermore, inferences are per-
formed using standard univariate methods to estimate the corresponding
regression parameters assuming the Uj are independent. When the consec-
utive times are not independent it is necessary to develop specific variance
estimation procedures.

Marginal distributions for each specific failure time Uj are assumed to
follow a proportional hazards model,

λji(t; Zji(t)) = λ0j(t) exp{βjZji(t)}, j = 1, . . . ,m, (30)
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with corresponding partial likelihood function given by

Lj(β) =
n
∏

i=1

{

exp{βjZji(yji)}
∑n

k=1 Hjk(yji) exp{βjZjk(yji)}

}µjiRji

where Hki(t) is the risk-set indicator of individual i for the kth failure.
Under the working independence assumption, that is, assuming that the

consecutive times U1, . . . , Um are independent and independent censoring,
the overall partial likelihood function can be factorized as the product of the
marginal partial likelihoods, that is:

L(β) =
m
∏

j=1

n
∏

i=1

{

exp{βjZji(yji)}
∑n

k=1 Hjk(yji) exp{βjZjk(yji)}

}µjiRji

. (31)

When U1, . . . , Um are not independent given covariates, expression (31)
does not correspond to the correct partial likelihood function and is referred
to as a pseudolikelihood function. However, if the marginal models are cor-
rectly specified, the estimator β̂ which satisfies the pseudolikelihood score
equation, U(β) = 0, is a consistent estimator of the parameter β (Lin, 1994).

As mentioned in the introduction the most common approaches follow-
ing this working independence assumption are the marginal approach due to
Wei, Lin & Weissfeld (WLW), the independent increment method by An-
dersen and Gill (AG) and the conditional approach by Prentice, Williams
& Peterson (PWP). The three methods base the inferences on the pseudo-
likelihood function (31) and they differ in the way the risk-set indicators are
defined, in the use of the individual’s history data and in the use of different
time scales.

6.2.1 Wei, Lin and Weissfield approach

The method proposed by Wei, Lin and Weissfield models the marginal distri-
bution of each failure time with a Cox proportional hazards model. The re-
gression parameters are estimated by maximizing the pseudolikelihood func-
tion (31) which is equivalent to the maximization of each failure-specific
partial likelihood. Moreover an estimator of the standard errors of the re-
gression parameter estimates is based on a sandwich estimator given in Wei,
Lin and Weissfield paper.

This approach is similar to the competing risks approach because treats
the ordered event as if they were unordered. That is, it is assumed that an
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individual is at risk of event j during its follow-up irrespectively that the
event j − 1 has occurred or not. However WLW follows a competing risk
approach. The risk-set indicator of individual k for the jth failure time is
defined as

Hjk(t) = I(Xjk ≥ t).

WLW method does not use any information on the individual’s history
data and is only appropriate for analyzing total times, that is, times measured
from the same origin.

6.2.2 Prentice, Williams and Peterson approach

The method proposed by Prentice, Williams and Peterson is called the con-
ditional approach because it uses information on the individual’s history. It
is based on a stratified Proportional Hazards model (Cox, 1972) where the
hazard at time t is assumed to depend on the covariate process up to time t
and, the counting process defined by the number of failures prior to time t.
The regression parameters are estimated by maximizing the pseudolikelihood
function (31), as in WLW method, but now, the covariate process, Zki(t),
may contain information on the past individual’s history. In particular, ap-
propriate time dependent covariates may be used to capture the dependence
between the sequence of survival times. Also the risk-set indicator contains
information on the individual’s past history since it is assumed that an in-
dividual cannot be at risk of event j until event j − 1 has occurred. In this
case, the risk-set indicator of individual k for the jth failure time is defined
as

Hjk(t) = I(Xj−1,k < t ≤ Xjk).

This approach also allows to analyze the effect of covariates on the gap
times between consecutive events. For this time scale, the hazard function
(30) takes the form

λji(t; Zji(t)) = λ0j(t − tk−1,i) exp{βjZji(t)}, j = 1, . . . ,m. (32)

We define by Tji = Xji − Xj−1,i the elapsed or gap time between the occur-
rence of event j − 1 and event j. Gap time Tji is right-censored when Uji

is. When Uji is missing, Rji = 0 and the value of the corresponding gap
time Tji is also equal to zero by definition because, as we mention before, in
this case we set Xji = Xj−1,i. However, these cases do not contribute to the

44



inferences. The corresponding pseudolikelihood function for analyzing gap
times can be written as

L(β) =
m
∏

j=1

n
∏

i=1

{

exp{βjZji(yji)}
∑n

k=1 H∗
jk(xji) exp{βjZjk(yj−1,k + xji)}

}µjiRji

(33)

where the risk-set indicator of individual k for the jth failure time is defined
as

H∗
jk(t) = I(Tjk ≥ t).

6.2.3 Andersen and Gill approach

The approach by Andersen and Gill is appropriate when one is interested in
the overall effect of covariates for recurrences of the same nature. AG can
be seen as a particular case of PWP where the marginal distributions are
assumed to have identical baseline hazard functions:

λji(t; Zji(t)) = λ0(t) exp{βZji(t)}, j = 1, . . . ,m. (34)

In this case the overall pseudolikelihood function is given by:

L(β) =
m
∏

j=1

n
∏

i=1

{

exp{βZji(yji)}
∑n

k=1

∑m
l=1 Hlk(yji) exp{βZlk(yji)}

}µjiRji

(35)

where, as in PWP, the risk-set indicator of individual k for the j th failure
time is defined as

Hjk(t) = I(Xj−1,k < t ≤ Xjk).

A gap time version of AG model is also possible following similar steps
as in PWP model.

6.2.4 Possible biased inferences

Each of the three methods described above may have potential biases if some
hypotheses are violated.

If the different consecutive survival times are conditionally independent
given covariates, then data is missing at random:

Rji = P (Tj missing | U1, . . . , Uj−1, Z1i, . . . , Zji) = P (Tj missing | Z1i, . . . , Zji)
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However, when an important covariate is not included in the model, then
the consecutive survival times are not conditionally independent and there-
fore data is not missing at random. In this case the estimations performed
with any of the above methods might be biased.

Thernau & Grambsch (2000) pointed out, using simulated data, that the
omission of a covariate can cause bias on the estimated parameters of the
other covariates included in the model. They establish a model with two
covariates (treatment and a per-patient covariate) and only treatment is in-
cluded in the model. Then they obtain a slight biased estimated parameter
when the method used is the AG while for the marginal and conditional
methods the estimation is seriously biased. They argue that in the condi-
tional model bias is due to loss of balance in the later strata and for the
marginal model, ignoring a covariate may violate the proportional hazards
assumption. Finally their work includes a brief comparison of the quality of
estimators when it is considered only the time until the first event. In this
case when a covariate is omitted the estimator is biased and the magnitude
of this bias is something between the AG and the conditional models.

Another source of biased inferences may be the violation of the propor-
tional hazards assumption. It is necessary to check if this assumption is
reliable. As we pointed out all of the three methods establishes a propor-
tional hazards model for each specific failure time.

6.3 Computational aspects

The models described in section 6.2 can be fitted using both SAS and S-Plus
system softwares. Each model requires an specific data set structure which
reflects the different definitions of the risk-sets.

To describe the different data sets we consider the following example
with three individuals: First subject experiences one event at time 12 and
was followed until time 45. Second subject has two events at times, 8, 32
and a follow–up to time 58. Third subject was followed during 50 days and
did not experienced any event.

The data set corresponding to this example is given in Tables 1 and 2.
Table 1 structures the data as it is required for PWP and AG approaches,
while Table 2 is appropriate for WLW approach.

The main differences in these tables is on the number of rows correspond-
ing to a given individual. That is, if an individual experiences two events (see
the individual with id = 2) then for the PWP model it defines three rows,
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Table 1: PWP and AG data set structure for total time scale

id start stop status enum
1 0 12 1 1
1 12 45 0 2
2 0 8 1 1
2 8 32 0 2
2 32 58 0 3
3 0 50 0 1

Table 2: WLW data set structure for total time scale. Since individual 2
experiences two events, every subject is described with three lines

id start stop status enum
1 0 12 1 1
1 0 45 0 2
1 0 45 0 3
2 0 8 1 1
2 0 32 1 2
2 0 58 0 3
3 0 50 0 1
3 0 50 0 2
3 0 50 0 3

one for each of the three time intervals, but if an individual experiences only
one event then it has one or two rows depending on the total follow-up time.
However if the method applied is WLW, then all the individuals has the same
number of rows defined by the maximum number of events that have the in-
dividual with the maximum number of events. In our example all individuals
have three rows defined by two events and the follow–up time.

Table 1 will be substituted by Table 3 if we are interested in the gap time
scale and the methods of PWP and AG are used.

Consider, in addition, a time dependent covariate x(t) which represents
the time of a specific intervention. x(t) is equal to zero until the time of the
intervention; at this time, and thereafter, x(t) is set to one. The intervention
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Table 3: PWP and AG data set structure for gap time scale

id start stop status enum
1 0 12 1 1
1 0 33 0 2
2 0 8 1 1
2 0 24 0 2
2 0 26 0 3
3 0 50 0 1

times for each individual are 25, 20 and 41, respectively. The data set cor-
responding to this example is in Table 4 for the methods PWP and AG and
Table 5 for the WLW approach. These data sets are builded in a similar way
than in the case of using time-dependent covariates in the standard survival
analysis of a univariate time. That is, it is needed a record for each value of
the time-dependent covariate.

Table 4: PWP and AG data set structure for total time scale

id start stop status enum x
1 0 12 1 1 0
1 12 25 0 2 0
1 25 45 0 2 1
2 0 8 1 1 0
2 8 20 0 2 0
2 20 32 1 2 1
2 32 58 0 3 1
3 0 41 0 1 0
3 41 50 0 1 1
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Table 5: WLW data set structure for total time scale

id start stop status enum x
1 0 12 1 1 0
1 0 25 0 2 0
1 25 45 0 2 1
1 0 25 0 3 0
1 25 45 0 3 1
2 0 8 1 1 0
2 0 20 0 2 0
2 20 32 1 2 1
2 0 20 0 3 0
2 20 58 0 3 1
3 0 41 0 1 0
3 41 50 0 1 1
3 0 41 0 2 0
3 41 50 0 2 1
3 0 41 0 3 0
3 41 50 0 3 1

6.3.1 S-Plus and SAS codes

In this section we present the SAS and S-Plus codes to obtain the estimates
coming from the methods described above. We point out that in both soft-
wares these methods may be implemented using the standard procedures for
the analysis of univariate survival data.

In S-Plus the statements are based on the coxph function and the differ-
ences among the AG, conditional and marginal models are as follows:

• afit <- coxph(Surv(start,stop,status)∼ cov1 + cov2 + cluster(id), data=data1)

• cfit <- coxph(Surv(start,stop, status)∼ cov1 + cov2 + cluster(id)

+ strata(enum), data=data1)

• wfit <- coxph(Surv(time,status)∼ cov1 + cov2 + cluster(id) + strata(enum),

data=data2)
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Using the SAS system software the code is based on the phreg procedure.
In what follows we present the code to implement the AG, the conditional
and the marginal methods:

• proc phreg data=data1; model (start, stop) * status(0) = cov1 cov2; run;

• proc phreg data=data1; model stop*status(0)=cov1 cov2; strata enum; run;

• proc phreg data=data2; model stop*status(0)=cov1 cov2; strata enum;

id id; run;

Standard errors have to be corrected using the sandwich formulae.

For the marginal model due to Wei, Lin & Weissfeld (1989) there is also
a macro (WLW macro given, for instance, in Allison (1995)) for the SAS
software, producing tests and partial likelihood estimates. Standard errors
are already corrected. The macro incorporates a SAS/IML program (see
SAS/STAT Software: Changes and Enhancements, Release 6.10)
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