AN APPLICATION OF FUNCTIONAL ANALYSIS IN A PREDATOR - PREY SYSTEM

PRIMITIVO B. ACOSTA-HUMANEZ

School of Mathematics, Sergio Arboleda University, Bogota D.C., Colombia.
primitivo.acosta@usa.edu.co

ABSTRACT. In this paper I want to show some advantages of the Geometric Iteration to a possible study of a predator-prey system. The Geometric Iteration presents characteristics such as continuity, derivability and integrability which could allow to analyze when a predator can still reach it is prey even when the prey has a initial advantage.

AMS (MOS) Subject Classification. 26A18.

1. PRELIMINARIES

I can start assuming a predator-prey system whose motivation was the model established in [4]. We can suppose that two animals make the same number of jumps or strides per minute, but one of them makes bigger jumps than the other. Also, both animals are encouraged or discouraged. The length of the initial jump of the predator is b and its factor of encouragement is q, while the length of the initial jump of the prey is a and its factor of encouragement is p, but both of them have periods of run m and l respectively. We will imagine a planet in which the predators and the preys move by jumps of incremental or decremental longitude using the Geometric Iteration, which will be defined below. We could consider $a, b \in \mathbb{R}^+ = \mathbb{R}^+ \cup \{0\}, m, l \in \mathbb{Z} = \mathbb{Z}^+ \cup \{0\}, p, q \in \mathbb{R}$, but only we will discuss some special cases. In some cases, we assume that the prey has k steps ahead of the predator as initial advantage; in other cases, it is said that both animals are persistent all times no matter if our prey has an initial advantage. We will work at the second case and we will give the following definition to determine one kind of displacement, velocity or acceleration of the creatures.

Definition 1.1. Given $a \in \mathbb{R}_+, p \in \mathbb{R}$, $|a| + |p| \neq 0$, define the first geometric of p on a by $G_{(p, 1)}(a) = a^p$. Recursively, for $n \geq 2$, define the nth geometric of p on a by

$$G_{(p, n)}(a) = a^p G_{(p, n-1)}(a)$$

(1)

The next lemma give us another way to obtain recursively the nth geometric of p on a.

Lemma 1.2. $\forall n \geq 2, a \in \mathbb{R}_+, p \in \mathbb{R}$.

Proof. It is follow by induction on n. □

Definition 1.3. Given \(G(p,n)(a) \) as in 1.1, let \(m \in \mathbb{Z}^+ \) define the \(m \)-geometric iteration of \(p, n \) on \(a \) by

\[
G^m(p,n) = G(p,n) \circ G^{m-1}(p,n)
\]

where \(G^0(p,n) = G(p,n) \).

2. PROPERTIES OF THE GEOMETRIC ITERATION

In this section we establish some analytic and algebraic properties for Geometric Iteration.

Lemma 2.1. Let \(a \in \mathbb{R}_+, p \in \mathbb{R}, l \in \mathbb{Z}_+ \) be fixed, \(|a|+|p| \neq 0 \). Then \(\forall n \in \mathbb{N} \), we have \(G^l(1,n)(a) = a^{n+1} \)

\[
G^l(p,n)(a) = a \left(\frac{1-p}{1+p} \right)^{l+1}, p \neq 1.
\]

Proof. Using 1.1 and induction on \(n \). □

Theorem 2.2. If \(G^l(p,n)(a) \) is as in 2.1, \(|p| < 1 \), then

\[
G^l(p,n)(a) \rightarrow a \left(\frac{1}{1+p} \right)^{l+1} \text{ whenever } n \rightarrow \infty.
\]

Proof. By 2.1, we can write \(G^l(p,n)(a) = a \left(\frac{1-p}{1+p} \right)^{l+1} \), now we can see clearly that \(\lim_{n \rightarrow \infty} G^l(p,n)(a) = a \left(\frac{p}{1+p} \right)^{l+1} \). □

Definition 2.3. \(G^l_p(a) := a \left(\frac{p}{1+p} \right)^{l+1} \) is called the convergence of the \(l \)-geometric iteration of \(p \) on \(a \).

Theorem 2.4. \(G^l(p,n) \) and \(G^l_p \) are automorphisms defined onto \(\mathbb{R}_+ \) with the product.

Proof. Let be \(H_1 := G^l(p,n) \), \(H_2 := G^l_p \), clearly \(H_1(ab) = H_1(a)H_1(b), H_2(ab) = H_2(a)H_2(b), H_1(\mathbb{R}_+) = \mathbb{R}_+, H_2(\mathbb{R}_+) = \mathbb{R}_+ \), \(H_1(a) = H_1(b) \Leftrightarrow a = b, H_2(a) = H_2(b) \Leftrightarrow a = b \), finally \(H_1^{-1}(a) = H_1(a^{-1}) \) and \(H_2^{-1}(a) = H_2(a^{-1}) \). □

Theorem 2.5. Let be \(G^l(p,n) \) and \(G^l_p \) as in 2.2, \(K_1 = \{ G^l(p,n) : p \in \mathbb{R}, l \in \mathbb{Z}_+ \} \), \(K_2 = \{ G^l_p : p \in \mathbb{R}, l \in \mathbb{Z}_+ \} \), then \((K_1, \circ) \) and \((K_2, \circ) \) have the structure of an abelian group, where \(\circ \) is the composition of functions.

Proof. Take \(e_1 = G^l(1,n) \in K_1, e_2 = G^l_l(1,n) \in K_2 \), 2.1 and 2.3. □

Now we will see the main theorem, which involve analytical and topological structures. I omit the proof because it is very long, but is completely made in [1].
Theorem 2.6. Let $l \in \mathbb{Z}^+,$ $p \in \mathbb{R}, \forall n,$ $G^l_{(p,n)} : A \rightarrow B,$ where $A, B \subset \mathbb{R}^+$ are compact sets, $G^l_{(p,n)}, \frac{dG^l_{(p,n)}(x)}{dx}, \int_0^x G^l_{(p,n)}(t)dt,$ are sequences of homeomorphisms onto compact subsets. If $|p| < 1$ then, $G^l_{(p,n)}(x), \frac{dG^l_{(p,n)}(x)}{dx}, \int_0^x G^l_{(p,n)}(t)dt$ converge weakly, strongly and uniformly to $G^l_p(x),$ \left(\frac{p}{1-p}\right)^{l} \frac{G^l_{(p,n)}(x)}{x}, \left(\frac{1-p}{p'+(1-p)}\right)xG^l_p(x)$ respectively. Furthermore $G^l_p(x),$ \left(\frac{p}{1-p}\right)^{l} \frac{G^l_{(p,n)}(x)}{x}, \left(\frac{1-p}{p'+(1-p)}\right)xG^l_p(x)$ are homeomorphisms onto compact subsets. These homeomorphisms are uniformly and completely continuous.

This theorem show that $G^l_{(p,n)}$ could be defined in zero, but is not continuous in zero.

Corollary 2.7. If $-1 < p < 1$ then the following statements hold
(i) $\lim_{l \to -\infty} G^l_p(x) = 1,$ $-1 < p < \frac{1}{2},$
(ii) $\lim_{l \to -\infty} G^l_p(x) = x,$ $p = \frac{1}{2}$ and
(iii) $\lim_{l \to -\infty} G^l_p(x) = \infty,$ $p > \frac{1}{2}.$

3. ONE APLICATION OF THE GEOMETRIC ITERATION

Thanks to Theorem 2.6 is possible to apply the geometric iteration in a model predator-prey where the $catchup$ between predator and prey is studied instead of the populational behavior of the species. Suppose that we have two animals that take the same number of jumps per minute and their displacement is given by the Geometric Iteration. If the prey jump has length $a,$ it is factor of encouragement is given by $p,$ and those of the predator have length $b,$ it is factor of encouragement is gived by $q,$ but both of them have periods of run l and m respectively. Let us assume that the prey starts k steps ahead of the predator. After n steps the distance between the two is

(6) $G^l_{(p,n+k)}(a) - G^m_{(q,n)}(b).

Let us suppose that both animals run all the time, now the distance between the two is

(7) $G^l_p(a) - G^m_q(b).

In both cases, we have to study the necessary conditions for the prey to run away from the predator. Derivation and integration are necessaries to determine their speeds and other applications.

Note that if $a = 3, b = 2, p = \frac{1}{3}, q = \frac{1}{5}, l = m = 0,$ on the graphs, we observe that the prey has run away from it is predator, because for all $n \in \mathbb{N}, G^l_p(a) - G^m_q(b) > 0.$ It means that the prey and predator starts from zero without advantage. No matter if the predator and prey run all the time, the predator will never catchup our prey, because the predator was unattentive when the hunt started.

4. REMARK

We can observe that if $p = \frac{\alpha}{\beta},$ whenever $\alpha \in \mathbb{Z}$ and $\beta \in \mathbb{Z}^*,$ then $G_{(p,n)}(f(x))$ converges uniformly to $(f(x))^{\alpha/\beta},$ but if $\alpha = \beta - 1$ then $G_{(p,n)}(f(x))$ converges uniformly to $(f(x))^\alpha.$ The functions $G_{(p,n)}(f(x))$ stick onto $(f(x))^{\alpha/\beta},$ peculiarly
$G_{(p,n)}(f(x))$ stick on $f(x)$. The fixed points of $G_{(p,n)}(f(x))$ are obtained when $(f(x))^{\frac{1}{p-n}} = x$. We can see that if $f(x) = x$, then $G_{(p,n)}(f(x))$ has as fixed points to 0 and 1. For $G_{(f(x),n)}(a) = a^{f(x)^{\frac{1}{1-(f(x))^n}}}$, whenever $|f(x)| < 1$ we can see that $G_{f(x)}(a) = a^{\frac{1}{f(x)}}$. In the previous theorems we defined mappings on \mathbb{R}_+, but there is no problem if are they defined on \mathbb{C} and take $a = re^{i\theta}$. We can apply the Geometric iteration in other fields, for example financial problems and market behavior. There are some open questions such as:

The differential equation $\frac{dG}{dt} = a^p G$, with initial condition $G_1 = a^p$ has an unique solution. What is the solution?

The family of curves $G = ((1 - p) a^p t + c)^{\frac{1}{1-p}}$, sastisfies $\frac{dG}{dt} = a^p G^p$. In what points $G = ((1 - p) a^p t + c)^{\frac{1}{1-p}}$ is solution to $\frac{dG}{dt} = a^p G$?

5. ACKNOWLEDGEMENT

Thanks to Sergio Arboleda University for financial support.

Thanks to professors Jairo Charris, Jesús Hernando Pérez, Reinaldo Núñez, Joaquín Luna, Carlos Ochoa and Alberto Cordonet for their contributions in this paper.

Thanks to the organizing committee of icsa-4, especially to the professor M. Sambandham to give me the opportunity to participate in the meeting.

REFERENCES

