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Abstract

Activity-Based Computing [1] aims to capture the state a tlser and its en-
vironment by exploiting heterogeneous sensors in orderdeige adaptation to
exogenous computing resources. When these sensors atedttathe subject’s
body, they permit continuous monitoring of numerous phiggjical signals. This
has appealing use in healthcare applications, e.g. theieagadn of Ambient In-

telligence (Aml) in daily activity monitoring for elderlygople. In this paper,
we present a system for human physical Activity Recognif®R) using smart-

phone inertial sensors. As these mobile phones are limitéshins of energy and
computing power, we propose a novel hardware-friendly @ggn for multiclass
classification. This method adapts the standard Suppotbiétachine (SVM)

and exploits fixed-point arithmetic. In addition to the e¢leamputational advan-
tages of fixed-point arithmetic, it is easy to show the regeddion effect of the
number of bits and then the connections with the Statistiearning Theory. A
comparison with the traditional SVM shows a significant immment in terms
of computational costs while maintaining similar accuraelich can contribute
to develop more sustainable systems for Aml.

1 Introduction

Since the appearance of the first commercial hand-held mphibnes in 1979, it has been observed
an accelerated growth in the mobile phone market which fehel by 2011 near 80% of the world
population [2]. This shows that in a very short time, mobiwides will become easily accessible to
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virtually everybody. Smartphones, which are a new germraif mobile phones, are now offering
many other features such as multitasking and the deployofesmtvariety of sensors, in addition
to the basic telephony. Current efforts attempt to incaxpoall these features while maintaining
similar battery lifespans and device dimensions.

The integration of these mobile devices in our daily life apidly growing. It is envisioned that
such devices will seamlessly keep track of our activitiegrh from them, and subsequently help
us to make better decisions regarding our future actions J3iis is one key concepts in which
Aml relies on. In this paper, we employ smartphones for husetivity Recognition with poten-
tial applications in assisted living technologies. We take account current hardware limitations
and propose a new alternative for AR that requires less ctatipnal resources to operate since
it is based on just fixed-point arithmetic. Less computatiarsources means not only speed but
also less power consumption and this is a key issue in snargshapplications [4]. Adopting a
fixed point arithmetic has also a strong connection with tledlem of regularization and Statistical
Learning Theory (SLT) [5] as described in [6] and [7].

AR aims to identify the actions carried out by a person givesetaof observations of itself and
the surrounding environment. Recognition can be accohgisfor example, by exploiting the
information retrieved from inertial sensors such as acoeteters [8]. In some smartphones these
sensors are embedded by default and we benefit from this $sifslaa set of physical activities
(standing, walking, laying, walking, walking upsta&mdwalking downstairsby processing inertial
body signals through a supervised Machine Learning (MLptlgm for hardware with limited
resources.

This paper is structured in the following way: The state efdt regarding previous work is depicted
in Section 2. The description of the adopted methodologyrésented in Section 3. There, the
experimental set up for capturing the data, the mathentatészription for the proposed Multiclass
Hardware Friendly Support Vector Machine (MC-HF-SVM) ahe tonnection with the SLT are

explained. Experimental results and conclusions of tlésaech are described in Sections 4 and 5.

2 Related Work

The development of AR applications using smartphones hasaedvantages such as easy device
portability without the need for additional fixed equipmesmd comfort to the user due to the un-
obtrusive sensing. This contrasts with other establishedypproaches which use specific purpose
hardware devices such as in [9] or sensor body networks Miijough the use of numerous sensors
could improve the performance of a recognition algorithrig unrealistic to expect that the general
public will use them in their daily activities because of thifficulty and the time required to wear
them. One drawback of the smartphone-based approach isrtbegy and services on the mobile
phone are shared with other applications and this becortieatiin devices with limited resources.

ML methods that have been previously employed for recogmitnclude Naive Bayes, SVMs,
Threshold-based and Markov chains [10]. In particular, vakenuse of SVMs for classification
as it was also used in [11] and [12]. Although it is not fullgat which method performs better for
AR, SVMs have confirmed successful application in seveedaincluding heterogeneous types of
recognition such as handwritten characters [13] and spédgh

In ML, fixed-point arithmetic models have been previouslydéd [15, 16] initially because devices
with floating-point units were unavailable or expensivee possibility of retaking these approaches
for Aml systems that require either low cost devices or tovalbad reduction in multitasking mobile
devices has nowadays become particularly appealing. Aagtial. in [17] introduced the concept
of a Hardware-Friendly SVM (HF-SVM). This method exploitsefil-point arithmetic in the feed-
forward phase of the SVM classifier, so as to allow the use isfdtgorithm in hardware-limited
devices. In this paper, we extend this model for multicldassification and we show, both in theory
and with the experimental results, how the number of bitestrong regularization effect.

The SVM algorithm was originally proposed only for binargssification problems but it has been
adapted using different schemes for multiclass problenoh s in [13]. In particular, we have

chosen the One-Vs-All (OVA) method as its accuracy is corplarto other classification methods
as demonstrated by Rifkin and Klautau in [18], and becawske#rned model uses less memory
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Figure 1: Activity Recognition process pipeline.

when compared for instance to the One-Vs-One (OVO) methbik i$ advantageous when used in
limited resources hardware devices.

3 Methodology

3.1 Experimental Setup

The experiments have been carried out with a group of 30 tedua within an age bracket of 19-48
years. Each person performed the six activities previomsntioned wearing the smartphone on
the waist. The experiments have been video-recorded tlitddeithe data labeling. The obtained
database has been randomly partitioned into two sets, wit@®re of the patterns has been used
for training purposes and 30% as test data: the trainingsgben used to train a multiclass SVM
classifier which is described in the following section. A Samg Galaxy S2 smartphone has been
exploited for the experiments, as it contains an acceletema@d a gyroscope for measuring 3-axial
linear acceleration and angular velocity respectively ebrstant rate of 50Hz, which is sufficient
for capturing human body motién

For AR purposes, we have developed a smartphone applidagi®ed on the Google Android Op-
erating System. The recognition process starts with theisitign of the sensor signals, which
are subsequently pre-processed by applying noise filtatstean sampled in fixed-width sliding
windows of 2.56 sec and 50% overlap. From each window, a veétd7 features is obtained by
calculating variables from the accelerometer signals éntitthe and frequency domain (e.g. mean,
standard deviation, signal magnitude area, entropy, kfgaiacorrelation, etc.). Fast Fourier Trans-
form is used for finding the signal frequency componentsaliinthese patterns are used as input
of the trained SVM Classifier for the recognition of the aitiéds. The entire AR process pipeline is
as shown in Figure 1.

3.2 The Multiclass HF-SVM model

Consider a dataset consisting @iatterns where each one is a pair of the tgpeg y;) Vi € {1, ...,1},
x; € R, andy; = +1. A standard binary SVM can be learned by solving a Convex Caingd
Quadratic Programming (CCQP) minimization problem whggiven by the following formulation
[17]:

1

min §aTQa —rTa Q)
0<wo; <C Vie{l,..,1}, 2
yTa=0, 3

whereC' is the regularization parameter, = 1 Vi € {1,...,1} andQ is the symmetric positive
semidefinitd x I kernel matrix where,;; = y;y; K (z;, ;).

The dataset obtained in this session of experiments will be soon availablethen site
http://www.smartlab.ws/ with a detailed description of the data that have lodlented.



After solving this CCQP problem, the; Vi € {1, ...,{} values can be found and used to predict the
class of any new pattern using the Feed-Forward Phase (BRR)lation of the SVM:

l
f@) =" yioiK (@i, ) + b, 4
=1

whereb is the bias term and is obtained by using the method proposd®].

Clearly, this output is not valid for use in a fixed-point hnitetic approach as thesgvalues are in-
trinsically real numbers ranging between zero ahdHence a normalization procedure is proposed
that will not affect the sign of the classifier output but oty magnitude, maintaining the perfor-
mance of the SVM as it is known that the class is only deterthinethe feed-forward function sign.
The HF-SVM described in [17] proposes a new ve@and it is defined as:

2k 1
ﬁi*aiT

wherek is the number of bits and; € N°. Also the bias ternd of the FFP formulation is removed

since we use an RBF kernel such as the Laplacian that hagenfi@ dimension and the bids
becomes unnecessary [5]. The modified formulation is:

mﬁin %ﬁTQ,B —-s'g (6)
2k —1

Vie{1,..,1}, (5)

0<p; <

Vie{l,..,1}, @)
wheres; = (28 —1) /C Vi € {1,...,1}. Note that the cost function keeps unchanged but Eq. (3)
disappears.

Lastly, to hold true the assumption of having a FFP with ontgger values, the kernél (-, -) and
the input vectorr are also represented withandwv bits respectively [17]:
0< K(z;,x) <1—-2"" Vie{l, .. l}, (8)
0<x,; < 1-27" Vie {1,...,l} Vj € {1,...,m}. 9)

The modified FFP formulation with th@ vector is:

!
f@) = ybiK (z;,@). (10)
i=1

We opted for a Laplacian kernel, instead of the more congaatiGaussian kernel, as it is more
convenient for hardware limited devices because it can biéyeaamputed using shifters:

K (z;,2;) = 2~ wi—2;ll; (11)
wherey > 0 is the kernel hyperparameter and the norm is expressgd|gs= > . | |z|.

The complete learning process for each SVM consists of paifig grid search model selection
of the C' and~ hyperparameters that converge with the minimum validagioor. A k-fold cross
validation withk = 10 is employed for each hyperparameter pair.

The output of the FFP varies depending on each learned SVMhasdthese are not normalized.
Our extension of this binary problem for the multiclass casgloys the OVA method in which each
classcis compared against the other classes. This evidentlynesjaimethod to allow comparability
between the output of each SVM. For this reason, we have daptedmpute probability estimates
for each SVMp, () and choose the one with the highest probability as the actaséc* of each
test pattern.

We have developed the following approach using the J.Rlatéthod for estimating probability
estimates [20]. The training dataset and the learned SVMetrer@ employed to fit the output of
the FFPf (x) with a sigmoid function of the form:

1

p(x) = 1+ e(Af@)1B)’ (12)
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in whichp () is the probability estimate, andl and B are parameters which are properly fitted on
the available learning samples.

Taking into account that we have the fixed-point arithmeggtriction, the sigmoid function cannot
be directly applied ory (x). To solve this, we have designed a method based on Look-blega
(LUTs). By defining a fixed number of bits it is possible to map the probability estimajegr)
given f (x) without requiring floating-point arithmetic. It has beersebved that = 8 is suitable
for this application and it only requires a LUT with 256 elettse

3.3 HF-SVM and Statistical Learning Theory

In this section we try to investigate how the adoption of adip@int arithmetic affects the general-
ization ability of a classifier in the form of Eq. (10). In orde do this we describe each parameter
(; as an integer value df bits:

k—1
Bi=> b2, (13)
=1

whereb’ is a binary valued variable/ € {0,1} and therefores; can be expressed as an integer

variable such thad < 3; < 2¥ — 1. Since eachb{ belongs to a finite set, for a fixed training set
of cardinality! and a fixed kernel (with its hyperparameter), the number afsifiers that we can
represent is finite. According to the notation of [5] we CHI} the number of classifiers that we

can built witht?, i € {1,...,1} andj € {0,...,k —1}. Consequently we can exploit the well
known Vapnik's generalization bounds for finite hypothesits [5] which useW} as measure of
complexity. Let theni” the number of nonzero parametess # 0, then:

d?

Nk, d°) < ; (dlﬁ) [(2k R 1)‘”} , (14)

where we take into account the fact that if all the parameter®ven numbers, they can be divided
by two without changing the class estimate. If, inste#dis the number of nonzero parameters,

b # 0, then

ik
N (k,d") < ( db). (15)

=1
In the Statistical Learning Theory framework and in pafcin the Structural Risk Minimization
framework [5] we have to define a nested structure of the tngsi$ setg#; C Hs C ...) with
increasing complexity before seeing the data. Then thergkration capability of a model can
be controlled by choosing the appropriate set by finding #& bompromise between complexity
and learning error. In this way a good generalization cdiploin previously unseen data can be
guaranteed [5, 21].

In our case the complexity of the class can be defined thromghquantities,k andd® (or d°).
Starting from the se{, with complexityN}(l, 1) we can increase the complexity by increasing the

number of bitst — & + 1 or by decreasing the sparsity of the representafionl® — d”, d® + 1.
In other words we have to search the best class which is marsesps possible (smalléf or d®)
and represented with the minimum number of Bits

Obviously a classifier that belongs to a space with smallemtexity is also more energy efficient
respect to the one that belongs to a space with higher comyplex

Increasing the complexity of the space has also direct cuesee on the generalization ability of
the classifier since according to the bound of Vapnik [5],ahtiolds with probability 1 — §):

In |NL(k,d)| —In (6
7T§U+J [ f( 2;} @ (16)

wherer is the generalization error ands the error obtained by the learning machine on the dataset.
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Figure 2: Comparison between the MC-SVM and the MC-HF-SVMsSification test error for the
MC-HF-SVM with different values ok against the MC-SVM which is represented with= 64
bits.

The result is similar to what is presented in [7] and [6]. Timportant results of this section is that
the number of bits in the HF-SVM have a strong regularizatifiect with an impact on the gen-
eralization ability on a classifier. Between two classifi@thvapproximately the same performance
we have to choose the one that can be represented whit lesgenuoirbits since it is more energy
efficient and it has more capacity of performing well on poergly unseen data.

Finally we want to point out that the bound of Eq. (16) is vesgde since it is data independent.
Data dependent bounds have been developed in the last tes[2@a 23] that give more tight
bounds on the generalization ability of the classifier andelsnown to perform well on real world
problems [21, 24]. For these reasons a very interesting wiriesearch will be to understand how
the fixed—point arithmetic can influence the estimation esthbounds.

4 Experimental results

For evaluating the performance of the MC-HF-SVM, a set ofegkpents were carried out using the
AR dataset described in this paper. They consisted of legrf8/M models with different number

of bits k for 8 estimation and then comparing their performance in termesifdata error against

the standard floating-point Multiclass SVM (MC-SVM). Theudts of this comparison are depicted
in Figure 2.

The experiment shows that for this dataset 6 bits are sufficient for achieving a performance
comparable with the MC-SVM approach that uses 64-bit flgagaint arithmetic. The test error
remains stable (around 1% variation) fovalues from 64 to 6 bits, but it increases noticeably to
15% when it reaches 5 bits. Moreover, it is also seen from thptgthat some values éfproduced
smaller errors than the one obtained with the MC-SVM. Thidifig coincides with the discussion
of Section 3.3: smaller number of bits can increase the géimation ability of the classifier. Then
the truncation of the model parameters produces a regatemizeffect.

The classification results of the MC-SVM and the MC-HF-SVMtwk = 8 bits? for the test
data are depicted by means of a confusion matrix in Table 2amdhere estimates of the overall
accuracy, recall and precision are also given. 789 test lsamere evaluated with approximately
equal number of samples per class. Both confusion matrie@s similar outputs varying slightly
in the classification accuracy of the activitislking downstairsandwalking upstairs They also
expose some false predictions mostly in the dynamic aietivit Static activities instead perform
better, particularly théaying activity which obtained an accuracy of 100%.

2\We decide to show the result fér= 8 since the 8 bits fixed-point arithmetic is already implemented on
almost all new smartphones.



Method ., MC-SVM
e £ § £ o ol =
= Z s 2 c £ g
N T 2 5 = 8
Activity = -) a ) ) 3 x
Walking 109 0 5 0 0 0| 95.6
Upstairs 1 95 40 0 0 0 | 69.8
Downstairs 15 9 119 0 0 0 83.2
Standing 0 5 0 132 5 0 93.0
Sitting 0 0 0 4 108 0 96.4
Laying 0 0 0 0 0 142 | 100
Precision% 87.2 87.2 72.6 97.1 95.6 10Q 89.3

Table 1: Confusion Matrix of the classification results oa thst data using the traditional floating-
point MC-SVM. Rows represent the actual class and columesthdicted class. The diagonal
entries (in bold) show the number of test samples corretdlysified.

Method MC-HF-SVM k = 8 bits

o 2 g 2 o0 o S
Activity = =) o) N 0 a @
Walking 109 2 3 0 0 0| 95.6
Upstairs 1 98 37 0 0 0 72.1
Downstairs 15 14 114 0 0 0| 79.7
Standing 0 5 0 131 6 0 92.2
Sitting 0 1 0 3 108 0 96.4
Laying 0 0 0 0 0 142 100
Precision% 87.2 81.7 74.0 97.8 94.7 100 89.0

Table 2: Confusion Matrix of the classification results oa tbst data using the MC-HF-SVM with
k = 8 bits. Rows represent the actual class and columns the pedditass. The diagonal entries
(in bold) show the number of test samples correctly claskifie

5 Conclusions

In this paper, we proposed a new method for building a mal&ISVM using integer parameters.
The MC-HF-SVM is an appealing approach for use in Aml systéonshealthcare applications
such as activity monitoring on smartphones. This altevedtiat employs fixed-point calculations,
can be used for AR because it requires less memory, proctssoiand power consumption. It
provides accuracy levels comparable to traditional apgres (or greater) such as the MC-SVM
that uses floating-point arithmetic. In addition the fixemlrp arithmetic produces a regularization
effect that affects the generalization ability of the potiie model that we are building and increases
the accuracy of the model itself on previously unseen data.

The experimental results confirm that even with a reductiobits equal to 6 for representing the
learned MC-HF-SVM model parametg, it is possible to substitute the standard MC-SVM. This
outcome brings positive implications for smartphones bsedt could help to release system re-
sources and reduce energy consumption. Future work wiligmtea publicly available AR dataset
to allow other researchers to test and compare differemilegmodels.
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