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ABSTRACT 

The estimation of soil and rock parameters based on field instrumentation 
data is a common procedure in geomechanics. The use of system ident$cation 
and optimization techniques allows the performance of this type of analyses in 
a more rational and objective manner. In this paper a probabilistic formulation 
for the backanalysis problem is presented. The procedure described involves 
the evaluation of the measurement covariance matrices, which are derived for 
some geotechnical instruments used in jield instrumentation. The algorithm 
used to solve the mathematical problem of optimization is also presented, as 
well as its coupling to aJinite element code. The algorithm requires the compu- 
tation of the sensitivity matrix, which can be evaluated “exactly” in terms of 
thefinite element method. Finally, a synthetic example, based on the excavation 
of a tunnel, is presented in which the elastic modulus E and the Ko parameter 
of the material are identljiedfrom measured displacements. The eflect of the 
number of measurements and their error structure is also discussed. 

INTRODUCTION 

Determination of parameters in geotechnical engineering has been tradi- 
tionally carried out based on the results of laboratory or in situ tests [l]. 
There is merit, however, in using for the same purpose, observations and 
measurements carried out during the construction of the geotechnical struc- 
tures themselves. By using field instrumentation results to estimate geo- 
technical parameters it is possible to take into account the large scale 
structure of the soil or rock which is outside the possibilities of the other 
procedures of parameter determination. 
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In fact, backanalysis of the behaviour of real structures has always been an 
important part of the best geotechnical engineering practice [2-71. In recent 
times, however, the adoption of system identification [8] approaches and 
optimization techniques has allowed a more systematic and rational 
approach to this problem. 

Although there have been significant contributions in this field using a 
deterministic point of view, there are important advantages in using a prob- 
abilistic approach [9,10]. In this paper, a probabilistic framework based on 
the concept of maximum likelihood, that represents a conceptual alternative 
to the more classical Bayesian approach, will be proposed. 

The aim of the approach is to compute the parameters that maximize the 
likelihood of obtaining the field measurements actually observed. The back- 
analysis problem becomes equivalent to the minimization of an objective 
function which depends on the values of field observations. Classical func- 
tion minimization techniques can be applied. In this paper, the constitutive 
model that defines the behaviour of the material is linear. However, the 
resulting optimization problem is non-linear so that iterative function mini- 
mization procedures must be used. The backanalysis involving non-linear 
constitutive laws is outside the scope of this paper [I 1,121. 

It is important to note that the process of parameter estimation is carried 
out in the context of a specified model that includes geometry, boundary 
conditions and constitutive laws for the materials. Because of the complexity 
of real engineering situations it is almost unavoidable that a numerical 
approach is required in practice to define the model. The parameter identifi- 
cation procedure is able to provide information on the structure and cap- 
abilities of the model. The topic of model identification, however, is not 
treated in this contribution [13,14]. 

The paper presents the basic formulations of the backanalysis problem in a 
maximum likelihood framework. Appropriate covariance matrices for the field 
measurement errors for various geotechnical instruments are then computed. 
Because of the need of defining the geotechnical model numerically, the 
question of the coupling of the minimization procedure to the finite element 
method is addressed. Afterwards the reliability of the parameters obtained 
and its relationships with the measurement errors is discussed. Finally, the 
performance of the procedure is illustrated by means of a synthetic example. 

In a companion paper an application to a real case involving the excava- 
tion of a tunnel in overconsolidated materials is described. 

BASIC FORMULATION 

Assume that a deterministic model relates some unknown parameters, p, 

and a certain set of variables, x. The measurements are represented by x*. 
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Then the differences between measurements and predictions of the model 
(x*-x) are considered as an error, that can be defined in a probabilistic 
manner. 

The best estimation of the parameters is then found by maximizing the 
likelihood, L, of a hypothesis, p, given some set of error measurements, (x* - 
x). The likelihood of a hypothesis [15, 161 is proportional to the conditional 
probability of x* given a set of parameters p: 

L = w-(x*/P) 

where k is a proportionality constant. This formulation has theoretical and 
conceptual advantages [ 171: 

- It is not necessary to define the probability of a hypothesis, which has 
become a controversial concept in probability theory. 

- It does not require the model to reproduce the true system exactly 

[181. 
- The model parameters are considered fixed, but uncertain due to lack 

of information. This allows to introduce in a systematic way the prior 
information on the parameters available. Examples of this may be seen 
in Cividini et al. [9] and Gens et al. [lo]. 

If the model is considered to be correct, differences between field mea- 
surements and model predictions are due to an error measurement. There- 
fore the probability of measuring x* given a set of parameters, p, is the 
probability of reproducing the error measurements x*-x. Assuming that 
probability distribution as multivariate Gaussian, it is possible to write: 

P(x* - x) = J&-J exp[ - i (x* - x)‘(C,)-‘(x* - x)] (2) 

where 

(x*-x) = the vector of differences between measured and computed 
values using a fixed model 

C, = the measurements covariance matrix, which represents the 
structure of the error measurements 

m = the number of measurements. 

( )’ is used to indicate a transposed matrix, and the likelihood is now pro- 
portional to the value expressed by eqn (2). Maximizing L is equivalent to 
minimize the support function: 

S= -21nL (3) 
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Note that the likelihood is a function on the parameters, taking into account 
that a model relating state variables x and parameters p has been specified: 

x = WP) (4) 

It follows from the above remarks that 

S= (x*-x)Cxpl(x* -x)+ln(C,I+mln(27r) -2lnk (5) 

On the assumption that the error structure is fixed, only the first term of eqn 
(5) has to be minimized, and in this case the objective function becomes: 

J = (x* - x)‘C,-‘(x* - x) (6) 

The case in which the error structure is not fixed is outside the scope of this 
paper, and will be treated elsewhere. If the measurements are independent 
and its errors have a gaussian distribution of probability with the same var- 
iance, the matrix C, has the form: 

c, = a21 (7) 

where I is the identity matrix. In this case eqn (6) represents a least squares 
criterion and the objective function is reduced to the simplest expression: 

J = (x* - x)~(x* - x) (8) 

If the m measures are obtained from Y independent instruments with indi- 
vidual covariance matrices (C,), eqn (6) can be written as 

J=>:( XT - Xi)'(Cx),'(Xf - Xi) (9) 
i=l 

which is the most general form of the objective function that will be used in 
this paper. 

COVARIANCE MATRICES 

The objective function selected to identify parameters in a geotechnical 
framework involves the covariance matrix of the measurements, as shown in 
eqn (6). If an instrument performs independent measurements, then the 
covariance matrix will be diagonal, as indicated in eqn (7). 
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However, in some instruments designed for linewise observations [19], the 
errors of the measurements are not independent. For instance, if an inclin- 
ometer device is used to measure horizontal displacements along a borehole, 
the value of the displacement j (and therefore its error) is based on all the 
previously measured displacements. 

In this section, the covariance matrices for three instruments performing 
linewise observations - sliding micrometer, inclinometer and deflectometer 
[19] - are obtained. 

In order to do that, it is useful to express the covariance matrix for each 
instrument as 

where 4 is a scale factor which represents the global variance of the mea- 
surements made using the instrument i, and (E& contains the error structure 
of the instrument which depends on the apparatus itself. Obviously, if the 
measurements are independent and have the same variance, E, is the identity 
matrix, as shown in eqn (7). 

Sliding micrometer 

It is assumed that the line over which the measurements are performed is 
divided in p sections of length li. The sliding micrometer will measure the 
change of length, ei, between adjacent measuring points. Then, the long- 
itudinal displacement of measurement point n, v,, will be 

n ._ 
v, = c Ei + A (11) 

i=l 

where A is an integration constant. To compute the covariance matrix, it is 
logical to assume that the primary measurements Ei, are independent, with a 
variance u2. Taken the integration constant A as exactly known (we are 
interested now in the general structure of C,), an element of the covariance 
matrix can be written as 

(CJij = COV[Vi, Vi] = COV [ 2 Ei, 2 Ej] = 2 k COV(Ei, Ej) 

m=l ?I=1 m=l n=l 

=dekbmn = 2 min(i,j) 
m=l n=l 

(12) 

and the corresponding element of the matrix E,: 
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(Ex)ij = min(i,j) (13) 

If the variance of the integration constant A is taken into account, then 

(EJij = min(i, j) + (F) (14) 

Inclinometer 

The inclinometer measures slopes o’i in fixed points along a line, and it is 
used to compute the horizontal displacements along a vertical line. The value 
ai is assumed to be small. Then the displacement perpendicular to the line 
measurement can be computed as 

n 

un = c aili + B (15) 
i=l 

where Ii is the length between two consecutive points of measurement, and B 
is an integration constant that expresses the horizontal movement of the 
initial point. Assuming that the value of B is exactly known, the C, matrix 
for an inclinometer will be 

Cij = COV [Ui, Uj] = COV [ 2 Cimlm, k 
m=l 

.;, 41 = i: f: cov(a,, 4lrn4 
m=l n=l 

i i min(i.i) (16) 
= o2 c 2 ImlnS*, = o2 c- 1; 

m=l n=l m=l 

If the integration constant is not fixed, the elements of the E, matrix are 

(&)ijzmpl;+ (Y) 
m=l 

(17) 

Deflectometer 

The deflectometer can measure slope changes Ki in some points along a line. 
Then the displacement perpendicular to this line is given by 

(18) 
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where C and D are integration constants. Without these constants, the 
covariance matrix is in this case: 

and when the integration constants have their own variance, 

Invariance of J 

The covariance matrices described in previous section have been derived 
assuming that displacements are the variables used in the identification pro- 
blem. An alternative approach is to choose directly as the basic measurement 
variables the values of Ei, ai and IFS. Whatever approach is used, the objective 
function to be minimized must remain the same. 

Suppose that there is a linear relationship between the two kinds of mea- 
surements. For instance, in the inclinometer case: 

Ui = Wijf3j (21) 

where W can be obtained from eqn (15). Assuming, for simplicity, B = 0: 

Wij = 2 .lmSmj (22) 
m=l 

The two objective functions available for the identification problem will be: 

JI = Ax’C,‘Ax ; J2 = Aa’(-$)Aa (23) 

where Ax = (x* - x) and Aa = ((x* - LX). Using eqn (21): 

J2 = Ax’($WWt)-‘Ax (24) 
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and it can be seen that 

(25) 

which coincides with the measurement covariance matrix for an inclin- 
ometer, as indicated in eqn (16). 

This proof can be generalized to any other instrument, taking into account 
the fact that 

c, = cov[u, ll] = cov[wa, wa] = WW’cov[a, a] = ww’(u21) = u2WW’ 

(26) 

Hence, Ji = J2 and the objective function is invariant with respect to using 
any linear combination of measurements. Usually, displacements are taken 
as state variables, in order to simplify the coupling of the identification 
method with a finite element code and, therefore, the appropriate measure- 
ment covariance matrix should be used. 

NUMERICAL IMPLEMENTATION 

Minimization algorithm 

The solution of the identification problem defined above requires the mini- 
mization of a suitable function. Without losing generality, we can seek the 
minimum of eqn (6) instead of eqn (9). This can be achieved by means of a 
wide range of unconstrained optimization algorithms, according to the par- 
ticular expression of the objective function. In general it is necessary to 
choose between methods that only need evaluations of the function (i.e. 
downhill simplex used in [20]) and methods that also require computations 
of the derivative of that function. In general, algorithms using the derivative 
of the objective function are expected to be more powerful than those using 
only the values of the function. 

In this work, a Gauss-Newton algorithm has been adopted, because of its 
good convergence properties when seeking the minimum of functions such as 
eqn (6), and because the derivatives obtained are also useful in providing 
information on the reliability of the parameters identified. 

Assuming that the relationship between measured variables and para- 
meters [eqn (4)] is in general non-linear, the form of a minimization algo- 
rithm will be defined in terms of an iterative procedure: 

P~+I = ok + AP/~ , J(P~+,) G J(P~ (27) 
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where Apk is the advance vector in the parameters space, computed in itera- 
tion k using a suitable algorithm. 

The Gaus-Newton method [21, 221 is based on an expansion of the 
objective function into a Taylor series, and gives the value of Ap in each 
iteration according to: 

Ap = (Atc;'A)-'~tC;lA~ 

where Ax = (x* - x) and the matrix 

(28) 

is called the sensitivity matrix. If the number of measures is m and the number 
of parameters is n, the size of this matrix is m x n. 

In general Gauss-Newton algorithm tends to exhibit a rapid convergence in 
this kind of problem, although it can be unstable sometimes. In those cases, an 
improvement of the algorithm proposed by Levenberg and Marquardt [23] 
has been used, in which eqn (28) is changed into: 

Ap = (AT;*A+ $'A~C$AX 

where p is an arbitrary real number and I is the identity matrix. If p + 0, the 
Gauss-Newton procedure is obtained. As p increases, the parameters’ cor- 
rection provided by eqn (30) becomes smaller and tends towards the gradient 
direction of the objective function. 

The algorithm has to decide on the value of p in each iteration, depending 
on the behaviour of the procedure. If the value of J becomes smaller, p 
decreases, reaching 0 (or a very small value) at the minimum. However, if J 
increases, ~1 is also increased until a smaller value of the objective function is 
obtained. There is not a common procedure for evaluation of p and some- 
times trial identifications must be performed in advance. In the examples of 
this paper, an initial value pi = 10 was used and for the next values the fol- 
lowing criteria was employed: pu,+ 1 = pu, * 10 if J,+ 1 > J,, otherwise 
P,+I = UO, wh ere n is the number of iterations. 

Coupling to the finite element method 

A general identification procedure for geomechanical problems should be 
associated with a numerical model relating measurements and parameters. In 
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this approach, the finite element method has been coupled to the identifica- 
tion techniques described above. 

We assume that the measured values are nodal displacements. The process 
can be generalized to the case in which relative displacements between two 
arbitrary points are considered. 

The finite element method formulated in terms of displacements gives a 
linear system of equations: 

Kx = f (31) 

where K is the global stiffness matrix, x the vector of nodal displacements, 
and f the nodal forces vector. The K matrix can be computed as 

K= 
J 

B’DBdV (32) 
V 

where B is the geometry matrix relating strains and nodal displacements and 
D contains the constitutive law as a relationship between stresses and strains. 
The vector of nodal forces is defined as 

f= J N’odS 
s 

(33) 

where N is the shape function matrix, and o, for an excavation problem, is 
the vector of stresses acting on the excavation boundary, S. 

The displacements can be computed from eqn (31) and then can be com- 
pared with the values measured, in order to check the identification process. 

Using the finite element method and the Gauss-Newton algorithm, the 
procedure used to estimate parameters is as follows: 

(4 
(b) 
cc> 
(4 

Assume a set of initial parameters po. 
Calculate the stiffness matrix K. 
Solve the direct problem and compute displacements x, x = K-If. 
Calculate the differences between the measured and the computed 
values, x-x*. 
Evaluate a new set of parameters p by means of eqn (28). 
Check convergence. If Ap is still large or the norm of (x - x*) has 
not stabilized, the procedure starts again from step (b). 

Computation of the sensitivity matrix 

Note that computation of A = ax/ap is needed in step (e) - eqn (28). One 
possibility for determining it is to apply a finite differences technique. Alter- 
natively, an “exact” procedure to evaluate the sensitivity matrix, using the 
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finite element approximation, is presented. It will be shown later that this 
procedure is also more efficient in terms of computing time. 

Deriving eqn (31) with respect to the parameters and rearranging, we 
obtain: 

It is assumed that the materials involved in the problem are linear isotropic 
elastic. The parameters to be identified are the Young’s modulus E, the 
Poisson’s ratio v and the coefficient of lateral pressure at rest Kc,. For the 
Young’s modulus and the Poisson’s ratio [lo], af/ap = 0, and 

since 

8K 

J 
B@BdI’ 

dp=. dp 

(35) 

Hence computing dK/dp is equivalent to find the stiffness matrix sub- 
stituting the aD/ap matrix for D, which allows an easy implementation in a 
finite element code. 

For instance, in a plane strain problem: 

dD 1 l-v V 0 
-= ilE (1 + v)(l l-v 0 (37a) - 2~) 0” 

0 ? 

8D E ( 
2V(2 - V) 1+2.7? 0 

-= 
au (l+G)(l-22y)2 

1+2v2 2V(2 - V) 0 ) (37b) 
0 0 -- (l-2v) 

2 

Note that if v is assumed known and is not being identified, aD/aE is 
constant and has to be calculated only once. 

For the identification of the K0 parameter, eqn (34) is used, resulting in: 

8X _&g 
aK0 0 

(38) 

since for a linear elastic material, aK/aKo = 0. 
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The excavation is simulated in one phase, by applying on the excavated 
boundary the opposite nodal forces to the initial stresses. So, using eqn (33), 
we obtain: 

af 
- = 
aK0 I N’%dS = 

s dK0 J N’cr*dS 0 
s 

where erg = (&$, c$, 0), CJ~ is the initial vertical stress at depth y and 

0; = (o$O,O) 

(3% 

(40) 

Note that to calculate dx/aKo, the finite element routines used to find 
nodal forces due to excavation are employed to compute af/G’& by chang- 
ing only the initial stress field from CO to o$. 

This procedure allows us the direct use of the finite element approximation 
in the computation of the sensitivity matrix, which is expected to reduce the 
numerical errors. Also it is generally more efficient than a finite differences 
technique which requires to solve n + 1 direct problems to estimate y1 deriva- 
tives, whereas here no additional systems have to be solved if the model is 
linear elastic. 

It should be pointed out that the evaluation of A in step (e) of the iteration 
procedure requires to K-’ to be known which has already been computed in (c). 
Actually, steps (d) to (f) are very fast, especially if the Poisson’s ratio v is not 
identified (that means, if it is assumed constant), and only the Young’s modulus 
E, and the K. parameter are involved in the process. For this particular case, 

K=Ek (41) 

where the k matrix depends on the geometry and boundary conditions of the 
problem, and it is constant in the iterative process. E is the Young’s modulus 
which changes in each iteration. Using eqns (36) and (38), it can be seen: 

ax x ax 1 1 af 
FE=2 ’ r3Ko -=Ek- - ~Ko 

where k-l& is constant in each iteration. 

RELIABILITY OF THE ESTIMATION 

(42) 

Useful information concerning the parameter identification problem is 
obtained by factorization of the sensitivity matrix A by eigenvalues and 
eigenvectors. This is due to the fact that the rectangular linear system 
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Ax = AAp (43) 

can represent a least squares problem defined by the objective function (8) 
[24,25]. A general decomposition of a m x n matrix can be made in the form 

A = UAV’ (44) 

where A is a diagonal matrix containing the k - non-zero eigenvalues (also 
called singular values) derived from the problem: 

Avj = ,+j , A’ui = Xivi (no summation) (45) 

where 

Xi=Xj, i=j, i<k; Xi=xj=O, i>k, j>k 

U and V are, respectively, m x k and n x k orthogonal matrices containing 
the measurement-space and the parameter-space eigenvectors corresponding 
to the non-zero eigenvalues. The “pseudoinverse” matrix of A (in the sense 
defined above) can be computed using the procedure defined by Lanczos [24] 
and Lawson and Hanson [25]: 

and therefore, 

H = VK’U’ (46) 

Ap = HAx = VA-‘UtAx (47) 

The eigenvectors can be used for a reparametrization of the problem as 
follows: 

Ap+ = V’Ap ; Ax+ = U’Ax (48) 

Then eqn (47) becomes: 

Ap+ = ,-‘A,+, i.e. Ap: = (1 /Xi) Ax+ (49) 

Equation (49) shows how a linear combination of the measurements (given 
by the U eigenvectors) is directly and uniquely related to a linear combina- 
tion of parameters (given by the V eigenvectors) through the inverse of the 
corresponding eigenvalues. Furthermore, the value of Ai will determine the 
variance of the corresponding linear combination of parameters. If the mea- 
surements are statistically independent, then the variances of the increment 
of parameters can be directly evaluated: 
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Therefore 

var(Apr) = ($)var(Axt) 
i 

var(Api) = $ ($)var(A$) 
J 

(50) 

(51) 

This is, in fact, a lower bound, because of the linearity assumed in the cal- 
culation of the variances. Using the decomposition of matrix A shown in eqn 
(44), eqn (51) can be written as 

varAp = (A’ A))’ (varAx+) (52) 

where varAp and varAx are vectors of variances of Api and Axi, respectively. 
The factorization of the sensitivity matrix A and the results shown above 

can be generalized if the maximum likelihood criterion is used. In this case 
matrix A’ instead of A is used, computed from the factorization: 

AC,-‘A = A’Att (53) 

and eqn (52) generalizes to 

varAp = (AC-‘A)-‘(varAx+) (54) 

Therefore, in a maximum likelihood approach, the covariance matrix of the 
identified parameters C, can be computed as: 

C, = (AC-‘A)-’ (55) 

This matrix agrees with the inverse of the Fisher information matrix [26], and 
represents the reliability of the parameters estimated in terms of their covar- 
iances. It is again a lower bound of the variances, because of the linearity 
assumed in its computation. 

The information density matrix can be defined as Q = AH in the least 
squares case or Q = A’H’ if the generalization to the maximum likelihood 
criterion is used. The information density matrix represents the inter- 
dependency of the observations established by the model and the redundancy 
of the data. When the number of measurements coincides with the number of 
parameters, Q becomes the identity matrix. 

Matrices C, and Q are very useful to assess the reliability of the identifi- 
cation result and to examine the relation between measurements and para- 
meters defined by the structure of the model. 
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SYNTHETIC EXAMPLE 

15 

Description of the problem 

To illustrate the performance of the formulation presented above, a synthetic 
problem based on a tunnel excavation case is presented. We suppose that the 
material is linear elastic, homogeneous and isotropic, with a Poisson’s ratio 
equal to 0.49 in order to simulate undrained conditions and a specific weight 
of y = 20 KN/m3. The parameters to be identified are the Young’s modulus 
and the K0 coefficient defined using total stresses. Figure 1 shows the finite 
element mesh corresponding to this example, and the 12 nodes used as mea- 
surement points. Horizontal displacements in points 1 to 7 could represent 
values obtained by means of an inclinometer device, whereas vertical dis- 
placements in points 8 to 12 could represent measurements from a extens- 
ometer. Excavation is made in one step, and due to the symmetry, only half 
of the geometry is considered. 

I 135 nl I 

Fig. 1. Finite element mesh of the synthetic example. 
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For the analysis, the displacements corresponding to the parameters 
E = 10 MPa and K0 = 1 are assumed as input data. The values of these 
theoretical measurements are presented in Table 1. The identification proce- 
dure must be able to obtain those parameters from the information provided 
by the measurements. As it is a synthetic case, there is no measurement error 
and the measurements covariance matrix is assumed to be the identity 

TABLE 1 
Computed Displacements Used as Measurements in the Synthetic Example 

Horizontal movements 

Point Displacement (cm) 

Vertical movements 

Point Displacement (cm) 

1 0.316 8 -3.598 
2 0.556 9 -3.905 
3 2.038 IO -4.935 
4 3.550 11 -6.321 
5 4.550 12 -7.048 
6 3.920 
7 2.421 

0 p=o 0 pi=10 

Fig. 2. Contours of the objective function and paths of the iterative procedure. VI and V2 are 
the directions of the sensitivity matrix eigenvectors in the minimum. 



Estimation of parameters in geotechnical backanalysis - I 17 

matrix. The effect of the error structure on the identification process will be 
considered later. 

Starting with the p. values: E = 5 MPa and & = 0.5 the identification 
procedure has achieved the minimum in 4 or 5 iterations. Figure 2 shows the 
iterative process on the objective function J(E,&), using both, the Gauss- 
Newton algorithm (p = 0) and the Levenberg-Marquardt algorithm (initial 
value of p = 10). 

Figures 3 and 4 show the evolution of the iteration procedure. It can be 
seen that, in this simple case, there are not too many differences between the 
algorithms. In general, the Levenberg-Marquardt algorithm is slower but 
more robust than the Gauss-Newton, especially if the number of parameters 
to be identified is large. 

Finally, Fig. 5 shows the coefficients of the information density matrix of 
some measurements. The importance of the measurements 5 (maximum hori- 
zontal movement) and 12 (maximum vertical movement) is clearly shown, 

IO0 

t. 

0 0 

D-----13 

J Gauss-Newton 

J Marquardt 

p Marquardt 

lo-‘+ , , , , , , , 
1 2 3 4 5 6 7 

ITERATION 

103 

10’ 

10-l 

1o-3 = 

1o-5 

lo-’ 

1O-9 

Fig. 3. Evolution of objective function in the iterative process using Gauss-Newton and 
Marquardt algorithms. 
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8 
m 
% 

w 

7 

6 

5 

m K, v=O 

o---+ E pi=10 

1 d LL I/ c-----a K, pi=10 

“i 
I I 

I I I I I I I I 

1 2 3 4 5 6 7 0 
ITERATION 

0.9 

0.8 

y” 

0.7 

0.6 

I.5 

Fig. 4. Evolution of the parameters in the iterative process using Gauss-Newton and Mar- 

quardt algorithms. 

which means they are the observations that provide more information in this 
particular case. The study of this matrix can be useful to check which mea- 
surements are more important, and at what points the field instrumentation 
should be installed. It must be noticed, however, that the components of this 
matrix depend on the value of the parameters. Therefore, it is necessary to 
have some suitable prior information about the parameters involved in the 
problem. 

Influence of the number of measurements 

If the number of measurements in this latest example is increased, we can 
expect an improvement in the identification results. Obviously that will 
depend on the kind of information added, i.e. displacements of nodes far 
from the tunnel will provide little additional information on the problem. 

In order to show the effect of the number of measurements involved in the 
results of the identification procedure, four cases based on the above example 
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Fig. 5. Coefficients of the information density matrix for some measurements in the minimum 
of the objective function. 

have been considered. All of them use a diagonal measurements covariance 
matrix: 

(a) Only two measurements on the excavation boundary are available: 
vertical displacement of point 12 and horizontal displacement of 
point A (Fig. 1). In this case the problem becomes exactly deter- 
mined, thus only two variables (E and Ke) are unknown. 

(b) Twelve measurements are used, corresponding to the example related 
above. 
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Twenty four measurements are available, as shown in Fig. 6. Points 
l- 15 correspond to horizontal displacements and points 16-24 refer 
to vertical ones. 
Fifty five measurements are available: 24 of them are the same as 
used in case (c), and the rest are horizontal and vertical displace- 
ments from points distributed on the excavation boundary. 

The estimation of parameters is achieved in a few iterations in all cases. 
Some differences can be seen in the reliability of the solution for a fixed 
measurement error, represented by the parameters covariance matrix. As was 
expected (Fig. 7) the variances of the parameters identified, computed using 
eqn (55), are smaller when 55 measures are used [case (d)]. The case (a) pro- 
vides a direct solution (equal number of measurements and unknowns), but 
the biggest uncertainty on the results. 

Fig. 6. Position of the measurement points in the synthetic examples (c) and (d). 
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The coefficients of the information density matrix for measurements A and 
B have been plotted in Fig. 8(a) and (b). Of course, if only two measures are 
used, the information is concentrated at points A and B. However, if 55 
measurements are considered, the information is distributed along the loca- 
tions close to the measurement point with a much higher level of inter- 
dependence between observations. 

lnclmometer Contour Extensometer Contour 

HORIZONTAL MEASUREMENTS VERTICAL MEASUREMENTS 

Fig. 8(a). Coefficients of the information density matrix in the minimum corresponding to 
point ‘A’, for different numbers of measurements. 
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Fig. 8(b). Coefficients of the information density matrix in the minimum corresponding to 
point ‘B’, for different numbers of measurements. 

Influence of the covariance matrix 

The importance of using the complete measurements covariance matrix can 
be demonstrated by means of this synthetic example. To this end, only a set 
of 15 horizontal displacements from previous example (c) have been con- 
sidered. They were perturbed with a noise which was generated taking into 
account the measurement process of the inclinometer device. 

It was assumed that the standard deviation of the slopes measured was 

ga = 0.005 rad, and that error generated by standard random techniques was 
propagated to the horizontal displacements. 

Two analyses have been carried out using this perturbed input data. The 
first one uses the full covariance matrix as defined in eqn (17). The second 
one considers E, = I. As the values used as measurements have the inclin- 
ometer error structure, the analysis performed using the full covariance 
matrix should give (on average) better results. 

The parameter estimation process should provide the values E = IOMPa, 
K0 = 1, and the results of the iterative process indicate that the complete 
covariance matrix provides better results in the parameters identified. In Fig. 
9(a) and (b) the objective function using full and identity covariance matrices 
has been depicted. Note that the minimum obtained using the wrong matrix 
(E, = I) is far from the actual parameters point. When the full matrix is 
used, the error structure is well represented and the minimum obtained is 
close to the real one. Taking into account the formulation described in the 
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Fig. 9(a). Contour lines of the objective function using the full measurements covariance 

matrix. 

1 1.5 

% 

Fig. 9(b). Contour lines of the objective function using the identity measurements covariance 

matrix. 
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above sections, this fact should be expected, although only in a probabilistic 
sense. Figure 10 shows the evolution of the iteration process, starting from 
E = 5 MPa and I& = 0.5, gives a result in 4 or 5 iterations. 

w8 
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5 

o----o C, diagonal 

1 2 3 4 5 6- 

ITERATIONS 

12 3 4 5 6 

ITERATIONS 

Fig. 10. Evolution of the parameters during the iterative process using full and identity 
measurements covariance matrices. 
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In a real backanalysis problem, matrix C, can be evaluated using the 
information available from the measurement devices and the procedure 
described above. However, an alternative way to compute its value is to 
introduce it as a new parameter in the identification procedure. This method 
[lo] is outside the scope of this paper and is treated elsewhere. 

CONCLUDING REMARKS 

The problem of parameter estimation has been formulated in a maximum 
likelihood framework. This approach has some advantages, i.e. allows the 
introduction of the error structure of the measurements in a consistent way 
and provides an estimation of the reliability of the parameters identified. 
Furthermore, the least squares criterion, commonly used in simple estima- 
tion problems, can be considered as a particular case of this formulation. 

The probabilistic framework requires the use of the measurements covar- 
iance matrix, which has been computed for three instruments used in prac- 
tical geotechnical problems: sliding micrometer, inclinometer and 
deflectometer. 

This approach results in a mathematical problem of minimization of a 
suitable objective function, that can be performed by means of any available 
optimization algorithm. In particular, Gauss-Newton and Levenberg-Mar- 
quardt algorithms have been used in this paper, as they have proved to be 
convenient in these cases. 

The identification process requires the computation of the sensitivity 
matrix A defined as derivatives of the measured variables (displacements) 
with respect to the parameters. A procedure to calculate that matrix using 
the finite element method in linear models is described. 

Finally, a synthetic example has illustrated the features of the identifica- 
tion procedure, which provides a consistent framework to solve this kind of 
problem in a systematic manner, considering the error structure of the mea- 
surement process. The effect of the number of measurements and the influ- 
ence of the covariance matrix on the solution has been examined in this case. 

An example, involving the identification of parameters in a real tunnel 
excavation problem, is described in a companion paper. 
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