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ABSTRACT
A dynamic memory is a storage medium
constituted by an array. of cells and
an interconnection network between them. It is

characterized by the constant circulation of the
stored data. The concern 1is to design the
interconnection network in order to have small
access times and a simple control of the memory.
Several interconnection schemes have been proposed
in the literature.

This paper presents a quite general model for
such structures that greatly facilitates both the
design and the control of the memory. It is shown
that most known proposals of dynamic memory
interconnection networks are particular instances
of the model and that it leads to some new ones.

1. INTRODUCTION

Bulk memories are traditionally implemented as
magnetic disks and drums, where data are stored at
fixed locations on a magnetic surface that moves
respect to a read/write mechanism. The use of
dynamic storage technologies —such as magnetic
buble or CCD memories— has been proposed to allow
a sharp reduction of the access times. The reason
is that, instead of a mechanical movement, dynamic
memories require the movement of the data within
the storage medium itself. This already happens in
MOS shift registers, where data are cyclically
displaced at unit-time intervals until they reach a
read/write port. But with such a structure it is
impossible to obtain reduced values of the access
time for large memories. Stone [13] was the first
to propose a more general model for dynamic
memories. Since then there have been many different
proposals: Aho and Ullman [1], Kluge [8], Lenfant
[10], Morris, Valiere III and Wisniewski [11], Wong

and Tang [15], Iyer and Sinclair [7] and the
authors [3], [4]. Besides, several patents have
been registered [2], [5] and [6]. Most of these

organizations are compared in the tutorial of Iyer
and Sinclair [8].

A dynamic memory is intended for a set of
fixed size data items. The memory consists of
cells, each storing one datum, and an
interconnection network between them. The network
allows the movement of the data from a cell to a
neighbouring one at unit-time intervals. The result
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of all the data transfers during such an interval
is a permutation of the contents of the memory.
Only a small number of these permutations are
available. They are called memory transformations.
Therefore, in a dynamic memory we must distinguish
between the physical address of a datum, which is
its current physical location, and its logical
address which can be thought of as its initial
location.

To access a requested datum, it must be sent
to a specific cell, called the read/write (r/w)
cell, where data can be read or written. To this
end the following steps must be carried out:

(1) to find its physical address from its
logical address and some additional information
about the memory transformations that have been
applied to the memory;

(2) to determine the sequence of memory
transformations that route it to the r/w cell.

The control problem in a dynamic memory
consists of this two steps and its study is the
main objective of this paper.

In many instances, access to a block of
contiguous data items is required. Aho and Ullman
propose in [1] the use of a pair of memory
transformations for a memory of N=2"-1 cells that
allows sequential access to a block of data. The
blocks can be as large as the size of the memory,
and the corresponding sequence of memory
transformations is then called a tour. The
existence of tours for dynamic memories of size
N=2" has been studied by Stone in [14] and by
Morris, Valiere III and Wisniewski in [11].

The plan of the paper is as follows. In
Section 2 we present the mathematical formulation
of the problem togheter with the mathematical
background required through the paper. Section 3
contains the main theoretical results. Finally, the
aim of Section 4 is twofold: firstly, to show how
the theory developed in Section 3 applies to most
known proposals of dynamic memory organizations,
and secondly to illustrate its power in the
designing of new ones.

2. MATHEMATICAL MODEL

In our formulation, the dynamic memory network
is modelled by a directed graph, called a digraph
for short, in which the vertices represent the
storing cells and the arcs the links between them.

A digraph D=(V,A) consists of a set V=V(D) of
points called vertices and a set A=A(D) of arcs or

directed lines between vertices. The number of
vertices N=|V| 1is the order of the digraph. If
[x,y] is an arc from a vertex x to a vertex y, it
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is said that x is adjacent to y and also that y is
adjacent from x. We allow D to have loops, that is
[x,x] arcs, but not parallel arcs, so that there is
at most one arc from each vertex to any other. The
sets of vertices adjacent to and from a vertex x
are denoted by I (x) and I''(x) respectively, and
their cardinalities & (x)=|"(x)| and &' (x)=|I"(x)|
are the in- and out-degree of x. A digraph is
regular of degree 8 or &-regular if the in- and
out-degree of all vertices equals 8. For instance,
the complete symmetric digraph on & vertices Ka, in

which each vertex is adjacent to any other one
including itself, is &-regular. See Ka in Fig. 1.

Only strongly connected digraphs are considered
here; this means that for any pair of vertices x, y
there is a (directed) path from x to y. The number
of arcs of a shortest path from a vertex x to
another vertex y is called the distance d(x,y) from
x to y. Finally, we recall that in a &-regular
digraph (3>1) there are at most

1+3+3%+. .. +8* = (8 1-1)/(5-1) (1)

vertices at distance at most k of a given one.

vertex to

The distance from one another
measures the access time required to send a datum
between the corresponding cells of the memory. The
networks to be considered correspond to regular
digraphs of degree & and the memory transformations
to a decomposition into permutations of the digraph
in the sense defined next.

A decomposition into permutations of a
&-regular digraph D=(V,4) is a set (71; 0sisé-1} of

permutations of the vertices of V that satisfies
(a) 7,(x) e I'(x) ()
(b) 7:(") # 1j(x) for i#j. (3)

It is easily shown that any 3-regular digraph can
be decomposed (usually in several ways) into
permutations. For; instance, if we identify the set
of vertices of KS with the set of integers modulo

3, V(K;)=15, the permutations defined by
0si=3-1 (4)
1 shows this

7,(x) = x+i,
form a decomposition of K;. Fig.
decomposition of K;. See [3] for more details. A

decomposition assoclates a permutation to every arc
of D:

lx,y] —> 7, if 7=y

which is actually an (arc-)coloring of D, since
different permutations are associated to the § arcs
to and from any vertex.

As it is seen in the next section, a useful
way to obtain a digraph decomposed into
permutations consists in identifying its vertex set
V with the set of elements of a group G. Besides
the standard notions, the following concepts from
group theory are required.

If G 1is a finite group generated by
A=(ao,a1,‘..,aa_1), its Cayley diagram with respect

to A, DA(G)’ is the

vertices represent the elements of G and where
there is an arc [g,h] labelled (or colored) a, iff

3-regular digraph whose

h=a‘g for some aieA.

Given two groups G and H together with an
homomorphism of H into the set of automorphisms of
G, M: H— Aut G, ﬂ(h)=nh, the (external)

semidirect product G X H is the group with set of
elements {(g,h) ; geG, heH} and composition rule

* =
(gl,hl) (ga,hz) (gluhi(gz),hihz). (5)
It coincides with the direct product GxH iff 1=0,

that is, when M(h) is always the identity ¢. In
this paper H will already be a subgroup of Aut G,

so that, with T the canonical embedding, (5)
becomes

» = »

(g,,m)*(g,m,) (g (g,),mm). (5")

A permutation group £ on a set V is called
transitive if, glven any pair of elements x,yeV,
there exists a permutation oeX such that o(x)=y.
The permutations of = that fix a given element xeV
form a subgroup Stz(x), called the stabilizer of x
in £. If £ is transitive its order is given by
|]=|V]|Stg(x)| for any xeV.

3. CONTROL OF THE MEMORY

The number of different states of a dynamic
memory is the order of the group generated by the
memory transformations. We begin this section by

characterizing this group.
Given a set V together with a set

{7’; 0sis3-1} of permutations of V that satisfy
(3), we can consider the 3-regular digraph (V,(z'i))

that has V as set of vertices and where, in wiew of

(2), each -vertex x is adjacent to the vertices
1‘(x). 0sis=é-1. A useful way to exploit this idea

consists in considering V as the set of elements of
a group G, that is, each vertex of V stands for an
element of G. Then we have the following natural
ways of defining permutations in V:

(a) multiplication by an element g of G: y(x)=gx;
(b) by means of an automorphism m of G: ¥(x)=n(x).

Of course, we can also combine them. Thus, given
g‘eG and u‘eAut G for 0sisd-1, we can form the

permutations

71(x) = g‘u‘(x) VxeV, 0sisé-1 (8}
and the digraph D=(V,(1l)) that has the decom-
position into permutations (-x‘; 0sis3-1}. We assume
that the g, and the m have been so chosen that D

is strongly connected.
Let z=<1o,11. v

group generated by 10, ‘Ily---
characterize Z, let H=<lt°,‘l[

'76-1> be the permutation
V5.4 In order to

R S
1 - 23
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Theorem 1. The permutation group % is isomorphic to
a subgroup of the semidirect product G X H.

Proof. Since
7‘(71(x)) = glnx(gjnj(x)) = g;"x(gj)";"J(X) =
= g'n’ (x) (7)

with g’=gln‘(gj), 1!’=1rlnj, every permutation o€l is
given by

o(x) = gn(x) (8)
for some geG, meH. Then the inJjection

S —GxH, o — (g,m) (9)

is easily seen to be well defined and is a group
homomorphism since, from the above calculation, if

o (g1’"1) and o, (gz,na) then

= *
oo, (g1"1(gz)’"1"z) (gl,nl) (gz,nz). .

For convenience we identify ¥ and its image I’
in G \M H, that is, we identify every permutation
oef with the pair (g,m)eG X\ H given by (8). Since
the digraph D is supposed to be strongly connected,

the group ¥’ is transitive. It follows that its
order satisfies
|z ] = ne (10)

where N=|V|=|G| and ¢ = [Stz,[x)l for any xeG. For
x=e, the identity of G, this subgroup L'=Stz,(e)

consists of the elements of £’ of the form (e, n),
since (g,n)(e)=e & g=e. From (10) it follows that
the number of right (or left) cosets of L’ in %’
equals N.

At every instant the state of the memory is
completely determined by a permutation or memory
address map ¢€EZ, such that o(x) is the physical
address of the datum with logical address x. By
(8), o is determined in turn by the pair geG, neH.
To obtain m we need a simulator of the group H, but
g can then be deduced from the knowledge of the
logical address s of the datum which is presently
at the r/w cell w, for o(s)=gn(s)=w leads to

yw(n(s))-1=w1r(s_1). In other words, the memory
acts as a simulator of the group G. Now the
physical address of a datum with logical address x
is given by

o(x) = wnls n(x) = wn(s " x) (11)
Reciprocally, with y=¢(x), this results in
o My) = st v ly) (12)

for the memory configuration 0"1 which gives the
logical address of the datum in any cell y. Note
also that when I’ 1is a proper subgroup of G X H
this calculation uses redundant information.

Once the physical address y=o0(x) of the
requested datum x is known, the next problem is how

to transfer it to the r/w cell w. From the
considerations above there are ¢ different
permutations 1:=(g1_, nT)eZ’ such that (gr’"r) (y)=

- _ -1_ -1
—grnt(y)—w. This means g_r-w(nr(y)) —wnt(y ), so
that they all have the form

Gy ™),m) e = (13)

for & choices of meH.

In the digraph (V,{W‘)) that models the

dynamic memory, the required path from y to w
corresponds to any factorization of one of these ¢
permutations as a product of the LA Of course, in

order to reduce the access time, the number of
factors should be minimized both by an adequate
choice of m in (13) and when factorizing. This is
illustrated in the next section.

Besides sending the datum at y to w, it is
often required that the memory attains a given
state. For instance, when accessing a block of data
its ordering should not be modified. This can be
accomplished whenever the choice n=¢ is allowed in
(13), for then the permutation applied to the

-1
memory is X —> gx, with g=wy . Other
possibilities are illustrated in the next section.

4. DYNAMIC MEMORY ORGANIZATIONS
The first part of this section shows how the

theory developed in the preceding one applies to
most known proposals of dynamic memories. We begin
with a simple but interesting example.

Cayley diagrams

When G 1is a finite group generated by

A={a ,a,...,a,  } and we choose g=a, m-=t,
0’1 3-1 11 i

0=i<5-1, so that 7l(x)=aix, 0=i=<§-1, the

corresponding digraph, D=(V, (7‘} ), which is

d-regular and strongly connected, is the Cayley
diagram DA(G)' Since H={c¢} is the trivial group, we

obtain ¥=G and so ¢=1.

Therefore, the corresponding dynamic memory
has the least possible number of states, N=|G], and
it can be controlled with just the information of
the contens of the r/w cell. Indeed, if the datum
at w was initially at s, the permutation applied to
the memory has been ws . It follows that any other
datum that was initially at x must be now at
o(x)=ws 'x or, reciprocally, that the contents of
the cell y has logical address o (y)=sw 'y. It can
be sent to the r/w cell by the permutation wy_l. As
Z=G, a shortest path corresponds to a minimal
factorization of wy €G in terms of the generators.
This is easy for some Cayley diagrams but is not
solved for others.

De Bruijn digraphs

The well-known de Bruijn digraphs B(8,n) are
set up on the set of N=3" vertices
V=(x=x°x1. LoX x‘ela} by the adjacency rules

n-1
[x,y} € A(B(8,n)) & y-= X Xy X X, 5

It is noteworthy that the number of different
states |E| of a dynamic memory modelled by these
digraphs is at least ns". Indeed, because of the
loop at vertex 00...0, there always exists a
permutation ¥ that fixes it: 9(00...0)=00...0.
Then, the n permutations 7, 72,...,7" also fix this
vertex and are necessarily different since
77(00...01)#57(00...01) for p#q, 1=p,q=n. Thus &n
and [Z|=n5n for any decomposition into permutations
of B(8,n). We next describe a structure that
attains this bound.

In our context we can consider V as the set of
elements of the direct product G=st...><Z5 with n

terms. If we now choose for all automorphisms LA

x €Z
n
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the perfect shuffle permutation

n o= S, 0si=3-1, S(xoxi...xn_l) =x. 1% (14)
and
gl = 00...0i, O=i=s-1,
so that (with additive notation)
7l(x)=71(xox1. . .xn_1)=x1. . .xn_lxoﬂ’, O=si=d-1. (15)

we obtain a decomposition into permutations of the
digraph (V,(7‘})=B(8,n). It follows that H=<S>=Cn

is the cyclic group with elements S, Sz..,.,S"=L,
so that |G~ H|=n3n, and then l2|5n5" because
22¥’cG X4 H. Being a decomposition into nper‘mul:a.tions
of B(3,n), we necessarily have |Z|=nd" as stated.
This corresponds to ZzG X H.

The control of the memory can then be achieved
with the knowledge of the logical address s of the
datum in the r/w cell w and the number p (mod n) of
shuffle permutations that have been applied to the
memory. Since each permutation .8 includes a

shuffle permutation, p can be obtained from a
cyclic register that counts modulo n the number of
permutations applied to the memory. Then (11), with
n=sP, gives

y = o(x) = w+SP(x-s), (16)
that is, Yo¥yr - yn_1=a'(x0xl. .. xn_1)=
=w +X -S W +X -8 W +X -5
O p p 1 p+1 p+1 n-1 p+n-1 p+n-1

is the present position of the datum with logical
address x. Then the following routing algorithm
sends it to the r/w cell in at most n unit-time

intervals:
While Yo¥,: - .yn_l=ﬂ00. ..0 do begin
Apply 7, where .i=—y0 (med 3);
LA PR AL AARES A

Note that, for 8=2, (16) may be written as

o(x) = waSP(sex) (17)

where @ stands for componentwise addition modulo 2.
This is the structure proposed by Morris, Valiere
III and Wisniewski in [11] for a memory of N=2"
cells, which 1is equivalent, except for the
numeration of the cells, to the one proposed by
Stone in [13,14). More precisely, Stone makes use
of the perfect shuffle (70) and the exchange

shuffle (arl) permutations, which correspond in our
formulation to no;n:l=s, g°=00...0 and g1=00...010.

The general case (8#2) described above has been
studied by the authors in [4].

In order to obtain squential access and tours
in memories based in such organizations see [16].

The memory of Aho and Ullman

" The structure proposed by Aho and Ullman in
to Gz, N=8"-1, 822, and

(no(x)=6x, go=0)
7l(x)=x—1 (n1=c. g1=-1). Then H=C_ is the cyclic

[1]

permutations

corresponds

7, (x)=8x and

s 2 3 n_
group with elements LA L =L, and
¥=G X H. Therefore, the control of the memory
requires, besides the knowledge of the logical

address of the datum in the r/w cell, the number p
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(mod n) of permutations n applied to the memory.

Then, (11) and (12) give respectively

o(x) w+n2(x—s) = w+s"(x-5)
oy = s+u:'p(y—w) = s+8" P(y-w).

To transfer the datum at y to w without
altering the ordering of the memory, write y-w in

base & as y-w=rn_16n +.. .+r16+ro and notice that
k__k k

rks —no( rk)—'zro(rk). Therefore, the req_llnr‘ed

permutation, given by (13) with =a=¢, (wy ",i)=

=(w-y, n:)=(—(y-w),n:) can be obtained as
0 1
0’1

This structure has been slightly improved by
Stone in [14], and Wong and Tang in [15] who
replace no by n: ¢ for different values of c.

0Odd-sized memories

Another structure, proposed by Morris, Valiere
II1 and Winiewski in [11] for any odd number of
cells N=2m-1 and for d&=2, corresponds in our
formulation to G=ZN, uo(x)=1tl(x)=2x, go=0 and gl=1.

This leads to 7°(x)=2x (Out shuffle permutation)
(In shuffle Then
Z=G X H and HEC,I, where n is the power to which 2

and 71(x)=2x+1 permutation).

bglongs modulo N, that is, the minimum 2 such that
2 =1 (mod N). As before, if p is the number of
permutations modulo n applied to the memory, (11)
and (12) lead to

ol(x) w+1tg(x—s) = we2P(x-5);
o Hy) = s+n:'p(y—w) = 542V P(y-w).

Memories of Lenfant

Let R1' Ra’ Ceey Rn, N, R‘>1, N>1, be integers
such that R1R2. .. Rnsl (mod N). The structures
proposed by Lenfant in [10] correspond in our

formulation to G=Z , n=t, g=-1 and m (x)=R x,
N 0 0 3 1

gj=0, 1= j<3-1, where (Rx ,Rl yee

1 2

R } is the set
1
5-1
in R, R,...,R.
1 2 n
organizations work as fast cyclic shift registers
and are therefore suitable for sequential access.
Some similar topologies with better access times
are considered by Serra, Lladé and Fiol in [12].
We propose in what follows two new structures.
The first one may be seen as a modification of the
memory of Aho and Ulman for 8=2 that improves the
worst-case access time for random access so that
bound (1) is attained. The second construction is
suitable for modelling a dynamic memory able to
handle mvectors.

of different integers These

An optimal size memory
According to (1) for &=2 and k=n-1, there are

at most 2™1 cells at distance sn-1 of a given one.

This bound can be attained with the choice G=Zn,

=2"-1 and permutations defined by

2x (no(x) =2x, &

0)
0
2x-1 » & = -1).

'Jo(x)

n

(18)
(3 -

vl(x) (1:1



Fig. 2 shows the decomposition into
permutations when n=3.
01
Y0 2
———— Q10
~ / A2
"1 2 -
—— < 00T
Vo
Fig. 2 100

As in the case of the memory of Aho and Ullman
H=<no>s=.cn, Z=G X H and

y = o(x) = wtnP(x-5) = w+2P(x-5) (19)

but p (mod n) is now the number of all permutations
applied to the memory, since as well ¥, 3 7,
involve a n, permutation.

To control the memory, both to calculate
y=0(x) and to route the datum at y to the r/w cell,
it is convenient to represent the different
addresses in base 2 (exceptionally 11...1, that
should correspond to 2"-1, stands for 0) and to use
one’s complement arithmetic as Stone does in [14].
We thus consider the group of order 2"-1 that has
as elements the n-length sequences of 0's and 1's
different from 00...0, with one’s complement
addition which we represent by e. The identity
element is 11...1 and the inverse for any other

element XX ...X is XX . ..X _. The
01 n-1 01 n-1

permutat ions 7, and 7, of (18) are now

70(x0x1...xn_1) = S(xoxl...xn_l) = Xeex X
y(xx...x )=x...x x ®11...10 (20)
1 01 n-1 1 n-1 0

since 11...10 is -1 in one’s complement addition,
and (19) becomes

=0XX ...X =
-1 (01 )

Y= ‘yoyl' ’ 'yn n-1
= P o o e
=W W,...W ©5FS (xoxl. <X OS5, .. .sn_l).
If we place the r/w cell at w=100...0 any

datum can easily be routed from y=y°y1...yl_‘_l to w

in at most n-1 steps. The idea is to shift the last
1 in the y sequence (there will always exist one)
to the first position using either 70 or 71 so as

to make it be repeatedly followed by 0’s.
Vectorial dynamic memories

We Just sketch a second construction of a
dynamic memory which is able to handle m-vectors.

Given a strongly connected &-regular digraph
D=(V,A) with a decomposition into permutations
{yi; 0=i=8-1} that generate a group ¥, consider the

digraph D.=(V.,A‘) where V‘=meV and each vertex

(a,x) is adjacent to the & vertices (a+l,y) for
[x,yleA. The decomposition into permutations of D
leads naturally, to the decomposition into
permutations of D defined by

7,((a, %)) = (a+1,7 (x)), Osiss-1. (21)

A consequence of this definition 1is that the

projection
o: v — v, ®((a,x)) = x (22)

is a digrap;\ hompmorphism that transforms the
permutation 7, of D into the permutation ¥, of D.

For D=B(8,n) with the decomposition into

permutations (151, the above construction results
in the digraph D that is able to model a dynamic
memory to store 3" m-vectors. Using the projection
® we can consider that each vector is stored in a
cell of a memory modelled by the digraph B(§,n).
Therefore, the control of D for vectors is
equivalent to the control of B(3,n). Besides, the
use of the permutations 7, does not modify the

cyclic order of the components of each vector.
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