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Competing Risks Methods1

N. Porta, G. Gómez, M.L. Calle and N.Malats

Abstract: Competing risks data usually arises in studies in which the failure of an individual may be
classified into one of k (k > 1) mutually exclusive causes of failure. When competing risks are present,
classical survival analysis techniques may not be appropriate to use. The main goal of this paper
is to review the specific methods to deal with competing risks. To this aim, we first focus on how
to specify a competing risks model, which is the structure of observed data in this framework, and
how components of the model are estimated from a given random sample. In addition, we discuss
how to correctly interpret probabilities in the presence of competing risks, and regression models are
considered in detail. To conclude, we illustrate the problem with data from a bladder cancer study.

Keywords: Competing risks; cause-specific hazards; cumulative incidence function.

1 Introduction

Though classical survival analysis methods for exploring time-to-event data are well developed, there
are complex situations where such techniques are not appropriate. One of such situations is competing
risks. Competing risks data arises when an individual may fail from different causes. The occurrence
of a failure due to a specific cause may or may not preclude the occurrence of failures due to other
causes. Competing risks methods deal with both situations by analyzing the time to the first event
happening.

Examples of competing risks data are found nowadays in many fields. In a demographic study where
the leading causes of death are registered -heart disease, cancer,...- the interest might focus on
analyzing each of them separately. In a clinical trial addressed to find the benefits of a new drug to
prevent myocardial infarction, patients with coronary heart disease are followed during two years. The
failure of interest is myocardial infarction though patients may die from other causes. In reliability,
failure may correspond, for example, to breakdown of a mechanical device where there are several
causes for the failure, such as vibration or corrosion. Hence, the distinguishing feature of a competing
risks setting is that for each individual, besides a lifetime T, there is a mode failure C, and a joint
model for T and C is needed.

The joint distribution of (T,C) might be completely specified through the cause-specific hazard, that
is, the instantaneous risk of failing at a given time from a given cause, among all individuals at risk
at that time. The joint distribution can also be specified through the cumulative incidence function,
representing the probability of failing from a given cause before a specific time. These two functions
represent distinct quantities, and estimating one or the other depends on the research question of
interest. Moreover, modelling these two functions leads to different types of regression models when
covariates are present.

This report is organized as follows. In Section 2, we specify the competing risks model. We introduce
the notation and the key concepts in Subsections 2.1 and 2.2. We derive the likelihood function and
obtain non-parametric estimates given a random sample in Subsections 2.3 and 2.4. In Section 3
we define survival-like functions in the framework of competing risks, and discuss how to correctly
interpret these quantities. In Section 4, we revise regression modelling of competing risks when
covariates are present. Specifically, in Subsection 4.1, models based on the cause-specific hazards
are considered. In Subsection 4.2, the most popular model based on cumulative incidence function,

1Partially supported by Grant 050831 from La Marató de TV3 Foundation and by grant MTM2005-0886 from the
Ministerio de Ciencia y Tecnologı́a. Núria Porta is a recipient of a research fellowship from DURSI.
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Fine and Gray (1999)’s model, is explained with some detail. Finally, in Section 5, the reviewed
methodologies are illustrated with data from a bladder cancer study.

2 Competing risk data

2.1 Model specification

Define, for each individual, the pair (T,C), where T is the failure time, and C is the failure cause.
T is assumed to be a continuous and positive random variable, while C takes values in the finite
set {1, . . . , k}. Assume that the individual fails from one and only one cause. The joint distribution
of (T,C) is completely specified through either the cause-specific hazards, λ j(t), or through the
cumulative incidence functions, F j(t).

The cause-specific hazard function for the jth cause is defined as

λ j(t) = lim
∆t→0

Pr
(
T < t + ∆t,C = j|T ≥ t

)

∆t
j = 1, . . . , k

and represents the rate of occurrence of the jth failure.

The cumulative incidence function from type j failure is defined by

F j(t) = Pr(T ≤ t,C = j) j = 1, . . . , k, (2.1)

and corresponds to the sub-distribution function for the probability of a subject failing from cause j
in the presence of all the competing risks.

The cause-specific cumulative hazards Λ j(t), the overall hazard λ(t), the overall cumulative hazard
Λ(t) and the overall survival function S(t) are defined, respectively, as:

Λ j(t) =

∫ t

0
λ j(t) j = 1, . . . , k,

λ(t) = lim
∆t→0

Pr(T < t + ∆t|T ≥ t)
∆t

=

k∑

j=1

λ j(t),

Λ(t) =

∫ t

0
λ(u)du =

k∑

j=1

Λ j(t), and

S(t) = Pr(T > t) = e−Λ(t).

The survival function can be factorized into the following k functions S j(t) = e−Λ j(t) as follows

S(t) = e−
∑k

j=1 Λ j(t) =

k∏

j=1

e−Λ j(t) =

k∏

j=1

S j(t). (2.2)

Caution is needed when interpreting functions S j(t). Despite having the mathematical properties of
continuous survivor functions, they are not the survivor functions of any observable random variables.
Moreover, S j(t) , 1− F j(t), as we shall see in future sections 2.3 and 3, where more details are given
on their interpretation.

2



The subdensity functions f j(t) from cause j, the marginal distribution F(t) of T, and the marginal
distribution of C are respectively given by:

f j(t) =
d
dt

F j(t) = λ j(t)S(t),

F(t) = P(T ≤ t) =

k∑

j=1

F j(t), and

π j(t) = Pr(C = j) = lim
t→∞

F j(t) j = 1, . . . , k.

The cumulative incidence function for cause j, F j(t), can be obtained from the cause specific hazard
λ j and the overall survival function S(t) from the relationship:

F j(t) =

∫ t

0
λ j(u)S(u)du j = 1, . . . , k. (2.3)

2.2 Alternative representations of competing risks

A different way of describing a competing risks situation with k causes of failure is to consider a
failure time T j for each cause, j ∈ {1, . . . , k}. These times are latent variables corresponding to
the hypothetical failure times if the other causes of failure were not present. It has been argued
that multivariate models F(t1, . . . , tk) could be specified for the joint distribution of T1, . . . ,Tk (see
Kalbfleisch and Prentice, 2002; Lawless, 2003; Andersen et al., 2002 for further references). How-
ever, when all risks are present only T = min(T1, . . . ,Tk) can be observed, together with C = j, such
as T = T j, and an identifiable problem is found (Tsiatis, 1975; Cox and Oakes, 1984). F(t1, . . . , tk)
is inestimable solely based on these observations. Two different distributions for F(t1, . . . , tk) may
result in the same marginal for (T,C). Only under strong assumptions such as independence the mul-
tivariate distribution is identifiable. However, this assumption is untestable based solely on observed
competing risk data.

On the other hand, competing risks can be viewed as a special case of a multi-state model
(Andersen et al., 2002). In this case the multi-state model has one transient state ’Alive’ and k
absorbing states ’Failure from cause 1’, . . . , ’Failure from cause k’. The process is Markovian, and
in this setting, the goal is to model the transitions between states, through the probabilities Phj(s, t),
probability of being in state j at t, provided that at time s, the state h was occupied. Note that
P0 j(0, t) = P(T ≤ t,C = j) are the cumulative incidence functions as defined in section 2.1, whereas
the intensity transition functions are the cause-specific hazards.

2.3 Likelihood function

Consider a random sample of n individuals, (T1,C1), . . . , (Tn,Cn), where Ti is the time of failure and
Ci is the cause of failure for subject i. For each individual, there exists a non-negative right censoring
time Vi. Let δi = I(Ti ≤ Vi) be the censoring indicator, and define C̃i = δiCi. C̃i is the cause of
failure for failing individuals or 0 for censored individuals. The observed data for each individual are
given by

{Yi = min(Ti,Vi), δi, C̃i, i = 1, . . . ,n}.
In the following, these conditions are assumed:
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H1) Vi is independent of (Ti,Ci).

H2) If Yi = Ti (Ti is not censored), then Ci is observed (we exclude cases when the time of failure
is observed, but no information about the cause of failure is available).

H3) The supports of T and V are disjoint.

To derive the likelihood function, the contribution of each individual must be taken into account. To
further clarify this point, we first develop the likelihood function for n = 1, and then for n > 1.

Sample of size n = 1:

Only one individual is observed with data (Y, δ, C̃). Two scenarios are then possible:

A) The individual is not censored, δ = 1 =⇒ (Y, δ, C̃) = (y, 1, j), j , 0 (H2):
For the discrete case,

P{y, 1, j} = P(Y = y, δ = 1,C = j) = P(T = y,T ≤ V,C = j) = P(T = y,V ≥ y,C = j)
=
H1

P(T = y,C = j)P(V ≥ y).

If T and V are continuous random variables, and q(v) and Q(v) are the density and survival
functions for V, the contribution of the individual to the likelihood function would be given by
f j(y)Q(y).

B) If the individual is censored, δ = 0 =⇒ (Y, δ, C̃) = (y, 0, 0):
For the discrete case,

P{y, 0, 0} = P(Y = y, δ = 0, C̃ = 0) = P(Y = y, δ = 0) = P(V = y,T > V) = P(V = y,T > y)
=
H1

P(T > y)P(V = y).

If T and V are continuous random variables as defined in A), the contribution of the individual
to the likelihood function would be S(y)q(y).

Therefore the likelihood function for a given individual has the form L = ( fc(y)Q(y))δ(S(y)q(y))1−δ.

Sample of size n > 1:

We evaluate the contribution of each individual to the likelihood. If subject i fails at yi by cause
ci = j, then his/her contribution to the likelihood will be given by f j(yi), the cause-specific density
function for cause j. On the other hand, if individual i is censored at time yi, the individual is still
at risk for any cause and hence his/her contribution to the likelihood is given by the overall survival
S(yi).

The likelihood function for the sample is given by

L =

n∏

i=1

fci(yi)δiS(yi)1−δi

n∏

i=1

Q(yi)δiq(yi)1−δi .

Since the censoring time V is independent from the failure time T, and their supports are disjoint (as-
sumptions H1 and H3 respectively), the censoring terms in the likelihood do not provide information
on the failure process and can be removed. The likelihood function is then proportional to

L ∝ L =

n∏

i=1

fci(yi)δiS(yi)1−δi .
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Denote by δi j = I(Ci = j), where δi =
∑k

j=1 δi j. If δi = 1, then it exists some j with δi j = 1. From the

factorization of the survival S(t) =
∏k

j=1 S j(t) (see (2.2)), and defining g j(t) = −S′j(t) = λ j(t)S j(t),
the likelihood function can be rewritten as product of k separate components for each failure cause:

L =

n∏

i=1


k∏

j=1

f j(yi)δi j

 S(yi)1−δi =

n∏

i=1


k∏

j=1

(
λ j(yi)S(yi)

)δi j

 S(yi)1−δi

=

n∏

i=1




k∏

j=1

(
λ j(yi)S(yi)

)δi j




k∏

j=1

S j(yi)1−δi





=

n∏

i=1

k∏

j=1

λ j(yi)δi j


k∏

`=1

S`(yi)δi j

 S j(yi)1−δi



=

n∏

i=1

k∏

j=1

λ j(yi)δi jS j(yi)δi jS j(yi)
∑
`, j δi`+1−δi

=

n∏

i=1

k∏

j=1

g j(yi)δi jS j(yi)1−δi j =

k∏

j=1


n∏

i=1

g j(yi)δi jS j(yi)1−δi j

 =

k∏

j=1

L j. (2.4)

Expression (2.4) provides a factorization of the overall likelihood L in terms of cause-specific likeli-
hoods L j. Note that L j corresponds to the likelihood it would be obtained from sample {(Yi, δi j), i =
1 . . . ,n} if failure times from other causes were considered as censoring times, and where the cor-
responding hazard, density and survival functions being, respectively, λ j(t), g j(t) and S j(t). This
factorization shows how λ j(t) and Λ j(t) are directly estimable from data (Yi, δi j), by treating failures
from other causes at Yi as censored observations. However, as we have already mentioned, S j(t) does
not correspond to ANY observable random variable, that is, it does not exist any observed random
variable U j such that P(U j > t) = S j(t).

2.4 Nonparametric estimation

Consider a random sample with observed data {(Yi, δi, C̃i), i = 1, . . . , k}, defined as in the previous
section 2.3. Let 0 < y1 < · · · < yN be the ordered distinct observed time points. We define the
following quantities:

• di j is the number of subjects failing from cause j at time yi,

• di =
∑k

j=1 di j is the number of subjects failing at time yi from any cause,

• ni =
∑n
`=1 I`(yi), with I`(t) = I(y` ≥ t), is the number of individuals at risk at yi, that is, alive

and uncensored just prior to this time.

The estimate of the cause-specific hazard for cause j at time yi is given by λ̂ j(yi) =
di j

ni
, and it is 0 at

any other time. Hence, the Nelson-Aalen estimator for the cumulative cause-specific hazard function
is given by

Λ̂ j(t) =
∑

i:ti≤t

di j

ni
j = 1, . . . , k,
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with variance estimated by

V̂ar[Λ̂ j(t)] =
∑

i:ti≤t

di j

n2
i

j = 1, . . . , k.

The overall survival function for T can be obtained by using the Kaplan-Meier estimate:

Ŝ(t) =
∏

i:yi<t

(
1 − di

ni

)δi

.

Alternatively, S(t) can be obtained through Ŝ(t) = exp
[
−∑k

j=1 Λ̂ j(t)
]
.

Since the cumulative incidence function for cause j can be obtained from the cause specific hazard

trough F j(t) =
∫ t

0 λ j(u)S(u)du (2.3), a natural non-parametric estimate of F j(t) is

F̂ j(t) =

∫ t

0
λ̂ j(u)Ŝ(u)du =

∑

i:yi≤t

di j

ni
Ŝ(y−i ) j = 1, . . . , k.

3 Interpreting probabilities in competing risks

We have reported in the previous sections how to specify a competing risk model through the
cause-specific hazards λ j(t) or via the cumulative incidence functions F j(t), and how to estimate
non-parametrically them. Compared to classical survival analysis, it seems odd to use the cumulative
incidence function F j(t) instead of some type of cause-specific survival function for cause j. In classical
survival analysis, a lifetime endpoint T is usually described by its survival function S(t) = P(T > t),
which satisfies that S(t) = 1 − F(t), F(t) being its distribution function. The survival function could
be derived from the hazard function of T, λ(t), by

S(t) = e−
∫ t

0 λ(u)du.

By analogy, in competing risks, given the cause-specific hazard for cause j, λ j(t), a similar function
S j(t) could be considered for each cause of failure:

S j(t) = e−
∫ t

0 λ j(u)du = e−Λ j(t),

(see (2.2)). However, these functions do not have the usual meaning of a survival function in the
classical approach. Furthermore, the functions S j(t) do not correspond to the complementary of the
incidence function F j(t), that is, S j(t) , F j(t), neither to the joint probability of failing from cause
j after t, P(T > t,C = j). These considerations lead us to define two more functions that may play
the role of cause-specific survivals.

On one hand, we define S∗(t) as the complement of the cumulative incidence function

S∗j(t) = 1 − F j(t),

on the other hand, and by analogy with the definition of F j(t), we define

S̃ j(t) = P(T > t,C = j).

These two new functions are, as it was S j(t), survival-like functions, that is, functions which satisfy the
mathematical properties of a survival function. In the following, we will deepen on the interpretation
of these three functions,S j(t), S∗j(t) and S̃ j(t), and argue why they are not proper survival functions,

and which is the relationship among them. For this matter it is worthwhile to remind that a function
S(t) is a survival function if
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i. it is defined in [0,∞),

ii. it is non-negative and non-increasing,

iii. it is right-continuous,

iv. S(0) = 1 and limt→∞S(t) = 0.

In addition, S(t) is a survival function of a random variable T if S(t) = P(T > t).

3.1 Interpretation of function S∗j(t) = 1 − Fj(t)

S∗j(t) = 1 − F j(t) represents the probability of not failing from cause j before t. It is not a proper

survivor function because

lim
t→∞

S∗j(t) = 1 − lim
t→∞

F j(t) = 1 − P(C = j),

which is strictly positive if there are at least two causes of failure. Moreover,

S∗j(t) = 1 − F j(t) = 1 − F(t) +
∑

`, j

F`(t) = S(t) +
∑

`, j

P(T ≤ t,C = `).

That is, the probability of not failing from cause j before t is the sum of the probability of having
not failed for any cause by t plus the probability of having failed before t from other causes than j.
This probability S∗j(t) is used to build Fine and Gray’s regression model for the cumulative incidence

function (see 4.2.1).

3.2 Interpretation of function S̃j(t) = P(T > t,C = j)

By analogy with the way cumulative incidence functions F j were defined, S̃ j(t) = P(T > t,C = j)
represents the probability of failing from cause j after t. It is not a proper survivor function because

S̃ j(0) = P(C = j)

which is strictly below 1 if there are at least two causes of failure.

The relationship with F j(t) is given by

S̃ j(t) = P(T > t,C = j) = Pr(T > j|C = j)P(C = j) =
[
1 − P(T ≤ t|C = j)

]
P(C = j)

= P(C = j) − P(T ≤ t,C = j) = P(C = j) − F j(t).

Hence, it behaves like a complementary probability for F j(t), complementary on the probability of
failing from cause j, P(C = j). Note as well that S(t) could be decomposed in terms of S̃ j(t) as
follows:

S(t) = 1 − F(t) = 1 −
k∑

j=1

F j(t) = 1 −
k∑

j=1

P(C = j) +

k∑

j=1

P(T > t,C = j) =

k∑

j=1

S̃ j(t).

The expression of S(t) as a sum of S̃ j(t) is indeed different from the alternative decomposition

S(t) =
∏k

j=1 S j(t) (see (2.2)), and shows that S̃ j(t) and S j(t) are different.
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A consistent estimate for S̃ j(t) is given by

̂̃S j(t) =
1
n

n∑

i=1

I(Yi > t,Ci = j) j = 1, . . . , k.

Despite these are estimable functions and could specify the competing risks model, they have been
scarcely used in the competing risks literature (Peterson, 1976).

3.3 Interpretation of function Sj(t) = e−Λj(t)

We have came across functions S j(t) repeatedly in the previous sections. Firstly, we encountered
them in the factorization of the survival function S(t) (2.2). Later, in the factorization of the
likelihood function (2.4), where S j(t) corresponds to the survival function obtained from the the
cumulative hazard function Λ j(t), the cumulative risk when failure times from other causes are
treated as censoring times. The functions S j(t) hold the mathematical properties of a survival
function, however they are not survival functions of any observable random variable.

When failures from other causes are treated as censored observations, the assumption of independence
between failure time and censoring time is possibly violated. Thus, only when distinct causes of failure
are assumed to be independent, 1−S j(t) is fully interpretable as the probability of failing from cause
j if the other causes of failure were removed (Gooley et al., 1999).

Often 1 − S j(t) has been used incorrectly to estimate F j(t), partly because of the availability of
software to obtain the Kaplan-Meier estimate for S j(t):

KM j(t) =
∏

i:yi<t

(
1 − d ji

ni

)δi j

,

where di j, ni and δi j are defined in section 2.4 and failures from other causes are treated as censored
observations. However, 1−KM j(t) provides a biased estimate of the cumulative probability of failure
from type j, F j(t) (Putter et al., 2007). This is clear intuitively since S j(t) only depends on the cause-

specific hazard λ j(t), whereas F j(t) depends on all cause-specific causes λ̂`(t), ` ∈ {1, . . . , k} through
the survival function S(t) (see 2.3). Moreover, 1 − KM j(t) as an estimate of 1 − S j(t) overestimates
the probability of failure from cause j, F j(t). This is reasonable, because if an individual failing from
other causes is treated as a censored observation, one assumes that the individual WILL fail from
the cause of interest j somewhen in the future, which in some situations may be unfeasible: if an
individual dies due to cancer, he/she would not certainly die (again) due to a heart attack. By
censoring individuals, we expect a higher incidence of failures. In effect, there always exist t∗ > 0
such as

F j(t∗) =

∫ t∗

0
S(u)λ j(u)du <

∫ t∗

0
S j(u)λ j(u) = 1 − S j(t∗).

Proof:

• It always exists ` , j and t∗ > 0 such as Λ`(t∗) =
∫ t∗

0 λ`(u)du > 0. That is, there exists at least
one other cause of failure with at least one failure. Otherwise, there are not competing risks
in our data.

• Therefore, Λ(t∗) =
∑k

m=0 Λm(t∗) > Λ j(t∗).

• Being g(u) = e−u non-increasing and Λ j(u) non-negative,

S j(t∗) = e−Λ j(t∗) > e−Λ(t∗) = S(t∗). �
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4 Regression modelling of Competing risks

In a survival analysis with competing risks, two different regression modelling strategies are possible:
modelling the cause-specific hazards or modelling the cumulative incidence functions.

When the cause-specific hazards are modelled, each hazard is analysed separately by treating indi-
viduals failing from other causes as censored observations, as follows from the factorization of the
likelihood function (see 2.3). This approach is appropriate when determining factors associated to
the risk of a specific cause of failure is of interest.

On the other hand, the cumulative incidence functions are used to determine factors associated to
the incidence of a given cause. This analysis does not treat individuals failing from other causes as
censored observations.

In the following sections, three specific models are revised: Cox’s proportional hazards model
(Prentice et al., 1978) and Aalen’s additive model (Aalen, 1993), which specify models for the cause-
specific hazards, and the approach given by Fine and Gray (1999), which is based on the cumulative
incidence functions.

4.1 Modelling the cause-specific hazards λ j(t)

4.1.1 Cox’s proportional hazards model

The classical regression analysis of competing risks establishes a Cox proportional hazards (PH)
model (Prentice et al., 1978) for each cause-specific hazard:

λ j(t|Z) = λ0 je
β′jZ j = 1, . . . , k,

where Z is a p×1 vector of covariates and βj is a p×1 vector of regression coeficients for each cause.
Each cause of failure is analysed separately, treating individuals failing from other causes as censored
observations. The effect of the covariates is assumed to act multiplicatively on an unknown baseline
hazard function λ0 j. As in classical PH analysis, the validity of the models does not depend on the
true form of the baseline hazard, provided the multiplicative form of the model is correct. The PH
assumption is a strong one that must be carefully checked for each cause.

Estimation of the regression parameters β j is based on the partial likelihood approach. Let’s suppose
that a censored random sample (yi, δi, δici), i = 1, . . . ,n, yields N distinct observed times of failure
t1 < · · · < tN and n − N censored times (no ties considered here). Consider the probability that an
individual fails by cause j at time ti , given that one of the individuals at risk (alive and uncensored)
at time ti fails by cause j:

eβ
′
jZi

∑n
`=1 Y`(ti)e

β′jZ`
,

where Y`(t) = I(t` ≥ t). The partial likelihood function is defined only in the N times of failure,
yielding:

L(β1, . . . ,βk) =

n∏

i=1

k∏

j=1


eβ
′
jZi

∑n
`=1 Y`(ti)e

β′jZ`


δi j

=

k∏

j=1

L j(β j) (4.1)

where δi j = I(Ci = j). The risk set can be diminished by the occurrence of an event from any cause.
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Maximizing each factor in (4.1) provides an estimator β̂ j consistent and asymptotically normal under

suitable conditions, and score, information and likelihood ratio statistics based on L(β̂ j) behave as if
they were deduced from ordinary likelihood.

Given β̂ j, the generalized Nelson-Aalen estimates for the cause-specific baseline cumulative hazard
functions are:

Λ̂0 j(t) =
∑

i:t`≤t


δi j

∑n
`=1 Y`(ti)e

β̂′jZ`

 j = 1, . . . , k.

Inference for the β j’s and for the Λ0 j’s can be conducted then as in the standard Cox model where
a single cause of failure is considered. Overall survival and cumulative hazard functions for T given
Z are obtained by

Ŝ(t|Z) = exp


−

k∑

j=1

Λ̂0 j(t)e
β̂′jZ


and

Λ̂ j(t|Z) = Λ̂0 j(t)e
β̂′jZ j = 1, . . . , k.

Finally, the cumulative incidence function F j(t|Z) can be obtained by plugging-in the previous esti-
mates in equation (2.3):

F̂ j(t|Z) =

∫ t

0
Ŝ(u|Z)dΛ̂ j(u|Z)

=
∑

i:ti≤t

δi j exp

−
k∑

`=1

Λ̂0`(u)eβ̂
′
`Z


eβ̂
′
jZ

∑n
r=1 Yr(ti)e

β̂′jZr

The methodology proposed is completely standard, but some caution is needed when interpreting
the models. Even when only one cause of failure is of interest, it is not sufficient to perform a single
analysis for this cause. It is necessary to model all causes of failures in order to perform a full and
appropriate interpretation of the failure process (see section 5.2.1 for an example).

4.1.2 Aalen’s additive hazards model

Cox methodology has been widely discussed, becoming the standard analysis to perform in regression
modelling (see Lawless, 2003, for example). However, in long follow up studies, it is natural to think
that the effect of a covariate in the hazard can change over time. In this situation, models with
constant parameters along time, such as the Cox model, may be inappropriate. An alternative is
found in the methodology proposed by Aalen (1993, 2001), in which an additive hazards model for
each cause-specific hazard is specified:

λ j(t|Z(t)) = β j0(t) + Z(t)tβ j(t) j = 1, . . . , k

where Zt(t) = [Z1(t), . . . ,Zp(t)] is a p-vector of (possibly time-dependent) covariates and βt
j(t) =

[β j1(t), . . . , β jp(t)] are unknown parameter functions. Unlike in the Cox setting, this model assumes
that the covariates act in an additive manner on the unknown baseline hazard function. This effect
is assessed through the time-dependent functions β j(t), so its variation along time can be explored.

Least-squares techniques are used to derive estimates of the cumulative effects

B(t) = (B0(t),B1(t), . . . ,Bp(t)) =

(∫ t

0
β0(u)du,

∫ t

0
β1(u)du, . . . ,

∫ t

0
βp(u)du

)
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because they are easier to obtain, and then estimates of β(t) can be obtained by the slopes of B̂(t),
or by using a kernel smooth estimator based on them.

Counting processes notation will be used to derive those estimates. Consider the ith individual, and
define:

• For each cause j, N ji(t) = I(Yi ≤ t,Ci = j) is the function determining if the jth cause of failure
already occurred at time t.

• Consider N j(t) = (N ji(t), i = 1, . . . ,n)′.

• The risk indicator for the ith individual is defined as Yi(t) = I(Yi ≥ t).

• Consider the n × (p + 1) design matrix X(t) with the ith row given by

Xi(t) = Yi(t)(1,Zi1(t), . . . ,Zip(t)).

So Xi(t) = (1,Zi1(t), . . . ,Zip(t)) if subject i is at risk at time t, and a (p + 1)-zero vector if the
subject is not at risk.

The least-squares estimates of B j(t) = (B j0(t),B j1(t), . . . ,B jp(t)) for the regression parameters for
cause j are given by:

B̂ j(t) =

∫ t

0
X−(u)dN j(u) ≈

∑

yi≤t

X−(ti)I j(yi), j = 1, . . . , k

where X−(t) = (X(t)′X(t))−1X(t)′ is a generalized inverse of X(t), and I j(t) is the n × 1 vector with

the ith component equal to 1 if the ith subject fails due to cause j at t, 0 otherwise. Note that the
estimator B̂ j(t) only exists up to the smallest time tr at which X(tr)′X(tr) becomes singular.

The estimated variance-covariance matrix of B j(t) is

Σ̂ j(t) =
∑

yi≤t

X−(yi)ID
j (ti)X−(yi)′

where ID
j (yi) is a diagonal matrix, and the elements in the diagonal are I j. Other choices of the

generalized inverse of X(t) can be used, including those that leads to weighted least squares. As in
the previous section, the cumulative incidence function is derived by using the cause-specific hazards
and baseline cumulative hazards estimates from the additive model.

Consider the problem of testing the hypothesis of no regression effect for one or more covariates
for the jth cause of failure: H0 : β j`(t) = 0 for all t in the observed period, and ` in some set
L ⊂ {1, . . . , p}. Aalen (1993) proposed the following test statistic vector

Uj =
∑

yi

W(yi)X−(yi)I j(yi)

where W(t) is a (p + 1) × (p + 1) diagonal weight matrix . The (` + 1) element of Uj is the test
statistic used for H0 : β j`(t) = 0. The covariance matrix of Uj is given by

V j =
∑

yi

W(yi)X−(yi)ID
j (yi)X−(yi)′W(yi)

11



Different choices of the weight matrix can be considered. Aalen (1993) proposed

W(t) = {diag[[X′(t)X(t)]−1]−1},

while Klein and Moeschberger (1997) proposed to use a weight function constant for all sub-hypotheses,
such as number at risk at time t or any other constant.

Additive models are a convenient option when proportional hazards do not hold. The effect of the
covariates along time can be assessed graphically by plotting the excess cumulative risk B̂(t) for each
covariate and comparing the estimates for each competing risks and for overall survival. Though
these models are very flexible and easy to implement, they are less used than Cox model because
inference regarding its nonparametric terms is not fully developed and it is not included in standard
statistical software. See Martinussen and Scheike (2006) for further details.

4.2 Modelling the cumulative incidence functions F j(t)

The modelling of the cause-specific hazards applies when the goal is to assess if a factor is associated
with the risk of a specific cause of failure. However, when the goal is to compare the observed
incidence of events from a given cause between groups, the cumulative incidence functions should
be used.

Estimates of these functions can be obtained via

F̂ j(t|Z) =
∑

ti≤t

λ̂ j(ti|Z)Ŝ(t|Z),

where λ̂ j(t|Z) are the estimated hazards resulting from Cox’s or Aalen’s analyses, and ti the distinct
failure times. The overall survivor function is

Ŝ(t|Z) = exp


−

k∑

j=1

∑

ti≤t

λ̂ j(ti|Z)


.

The problem with this approach is that no direct estimate for the effect of a covariate in the cumulative
incidence function F j(t) is given. Although the effect of the covariates on the cause-specific hazard
λ j(t|Z) is directly given by β j, the effect on the cumulative incidence function F j(t) combines the

effect β j together with the overall effect on Ŝ(t|Z). Moreover, it is not possible to test for significant
effects on the sub-distribution functions, because some covariates can have a significant effect on
the hazard, but not on the F′js. In order to be able to perform model selection and obtain estimates

for the effects of the covariates on the cumulative incidence functions, models based directly on the
sub-distribution functions have been proposed.

4.2.1 Fine and Gray’s model

Fine and Gray (1999) considers a new function, the sub-hazard γ j(t) derived from the sub-distribution
function:

γ j(t|Z) = lim
∆t→0

Pr
(
T < t + ∆t,C = j

∣∣∣ Z, {T ≥ t or (T < t and C , j)}
)

∆t

=
f j(t|Z)

1 − F j(t|Z)
j = 1, . . . , k.
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This would be the hazard obtained from F j if it were a proper distribution. The conditional expression
includes two different scenarios: i) the event has not occurred at time t, ii) the event has occurred
from a different cause before t. Thus, the risk set at time t is formed by two types of individuals,
corresponding to the two different scenarios. Contrary to the analyses based on the cause-specific
hazards, a patient failing from other causes would not be removed from the risk set at his/her
time of failure. The sub-distribution function is expressed in terms of the sub-hazards as F j(t|x) =

1 − exp
(
−

∫ t
0 γ j(t|x)

)
.

Fine and Gray proposed to fit the subhazard with a Cox model, that is

γ j(t|x) = γ0 j(t)e
β′jx, j = 1, . . . , k,

where the covariates are linear on a complementary log-log transformed cumulative incidence function.
When censoring is absent or is always observable, Fine and Gray (1999) showed that the partial
likelihood approach is valid for estimation. In the case of right-censoring, they developed a weighted
score function based on the non-censored case to deal with dependent censoring. If there are N
failures at the times t1 < t2 < · · · < tN, the partial likelihood was defined by

L̃(β j) =

N∏

i=1


eβ
′
jZi

∑
`∈R̃i

wi`e
β′jZ`

 .

Now the risk set for cause j at time ti is R̃i = {` : t` ≥ ti or (t` ≤ ti and C , j)}, where subjects
experiencing a competing cause remain in the risk set. The weight wi` given to such an individual
is G̃(ti)/G̃(min(t`, ti)), where G̃ is the survivor function for the censoring distribution. An individual
satisfying t` ≥ ti is given a weight of 1.

4.2.2 Other models based on F j

Other models have been proposed in line with Fine and Gray’s work. Fine (2001) considered a model
for the transformation of the cumulative incidence functions

g(F j(t|Z)) = α j(t) − β′jZ,

where g(·) is a known differentiable function, and α j(t) is the baseline failure probability when Z =
0, which is unspecified, invertible and strictly increasing in t. Least-squares techniques are used
for estimation, and inverse weighting methods are used to take into account dependent censoring.
Scheike and Zhang (2005b) proposed a Cox-Aalen model for the sub-distribution hazards γ j(t|Z),
and in Scheike and Zhang (2005a), they used binomial regression methods to estimate coefficients.
More recently, Klein and Andersen (2005) and Klein (2006) have proposed pseudo-values regression
models to approximate the sub-distribution functions.

5 An application to the Spanish Bladder Cancer Study

5.1 Competing risks data in the Spanish Bladder Cancer Study

The ”Spanish Bladder Cancer Study” is a multicenter study with 1356 newly diagnosed bladder
cancer cases, recruited between 1997 and 2001 in 18 Spanish hospitals and followed until March
2006. In this paper, only 994 superficial bladder cancer cases, where tumour was confined to the
lining of the bladder, are considered. Recurrences of the tumour remain common among those
patients, and efforts to reduce them are of paramount clinical importance.
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The aim of the study is to characterize different courses of the disease. After the start of first-line
therapy, transurethral resection of the tumour (TUR), patients may suffer a number of different
adverse events during their follow-up: (i) recurrence, if the tumour reappears and is classified as
superficial; (ii) progression, if the new tumour is classified as invasive and (iii) death, if the subject
dies due to bladder cancer. About 32% of the patients experienced a recurrence, 4.9% progressions,
only 1.3% died due to cancer and 13.6% died from other causes (see Figure (1)).

Diagnosis 

Recurrence 318 (32.0%) 

Progression  49 (4.9%) 

Death bladder cancer 13 (1.3%) 

T 

x 

Time 0 

Death other 135 (13.6%) 

N=994, no event: 479 ()  No event: 479 (48.2%) 

N=994 

Figure 1: Competing risks structure from the Spanish Bladder Cancer Study

One important question to consider is why some patients experience a progression as a first event
after diagnosis instead of a recurrence. The median time to develop a recurrence or a progres-
sion as first event is similar, 9.3 and 9.7 months, respectively suggesting that there exist distinct
courses/aggressiveness of the tumour development. In order to answer this question, it is important
to analyse the event-free survival time, defined as the time to the occurrence of the first event,
distinguishing the different kind of events.

Let T be the time from diagnose to the first event, and C the cause of failure. In order to identify
distinct patterns of the disease it is necessary to explore the joint distribution of (T,C) through a
competing risks model. We will first obtain the non-parametric estimates of the cumulative incidence
functions and the hazard functions specific of each cause of failure. In figures 2(a) and 2(b) we observe
that both the cumulative risk and incidence of experiencing a recurrence is higher than the risk and
incidence of experiencing a progression or death. Notice that the risk of dying due to other causes
increases more rapidly than other causes along with time, which is logical because the risk of dying
of other causes increases with age in our cohort. Both progression and death due to bladder cancer
have a low cumulative hazard and cumulative incidence of occurring.

5.2 Regression modelling of competing risks

In this section, regression models are used in order to identify prognostic factors which charac-
terize and differentiate patients who progress from those experiencing a recurrence, for example.
The three methodologies revised in section 4 are applied to the bladder data. The analysis has
been implemented in the freeware statistical package R (http://cran.r-project.org), using the li-
braries survival (Lumley and Therneau, 2003) for the Cox model, addreg (Fekjær, 1997) and
timereg (Scheike and Martinussen, 2006) for the additive model, and cmprsk (Gray, 2004) for
the subdistribution hazards approach. To illustrate such methods, we chose a subset of covariates
which resulted significant in the literature available on bladder cancer.
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Figure 2: Non-parametric estimates of the (a) cumulative hazard function and (b) the cumulative
incidence functions

Four factors are considered which may affect the risk of reappearance of the tumour: stage+grade,
tumour multiplicity, Spanish region and treatment. Table 1 summarizes the distribution of these
factors across the population of patients for recurrence, progression, death due to cancer, death
due to other causes and total failures. For the analysis of competing risks, patients diagnosed with
stage+grade Ta Benign and Tis tumours were not considered. In addition, TaGII and T1GII tumours
were joined in a single category.

Table 1: Characteristics of the patients and the failure

Cause of failure
Factor Patients Recurrence Progression Death BL Death O
Spanish region Total 995 (100.0%) 318 (100.0%) 49 (100.0%) 13 (100.0%) 136 (100.0%)

Barcelona 225 (22.6%) 57 (17.9%) 15 (30.6%) 2 (15.4%) 32 (23.5%)
Vallès 161 (16.2%) 64 (20.1%) 9 (18.4%) 17 (12.5%)
Alacant 84 (8.4%) 22 (6.9%) 3 (6.1%) 12 (8.8%)
Tenerife 153 (15.4%) 39 (12.3%) 7 (14.3%) 3 (23.1%) 28 (20.6%)
Asturias 372 (37.4%) 136 (42.8%) 15 (30.6%) 8 (61.5%) 47 (34.6%)

Multiplicity Total 942 (100.0%) 302 (100.0%) 43 (100.0%) 12 (100.0%) 127 (100.0%)
1 tumor 660 (70.1%) 186 (61.6%) 22 (51.2%) 6 (50.0%) 96 (75.6%)
>1 tumor 282 (29.9%) 116 (38.4%) 21 (48.8%) 6 (50.0%) 31 (24.4%)

Stage+Grade Total 995 (100.0%) 318 (100.0%) 49 (100.0%) 13 (100.0%) 136 (100.0%)
Ta Benign 50 (5.0%) 17 (5.3%) 1 (0.7%)
TaGI 374 (37.6%) 113 (35.5%) 9 (18.4%) 3 (23.1%) 46 (33.8%)
TaGII 306 (30.8%) 119 (37.4%) 6 (12.2%) 41 (30.1%)
TaGIII 98 (9.8%) 35 (11.0%) 7 (14.3%) 1 (7.7%) 14 (10.3%)
T1GII 25 (2.5%) 7 (2.2%) 2 (4.1%) 1 (7.7%) 3 (2.2%)
T1GIII 136 (13.7%) 24 (7.5%) 24 (49.0%) 7 (53.8%) 31 (22.8%)
Tis 6 (0.6%) 3 (0.9%) 1 (2.0%) 1 (7.7%)

Treatment Total 983 (100.0%) 314 (100.0%) 47 (100.0%) 12 (100.0%) 135 (100.0%)
RTU 401 (40.8%) 148 (47.1%) 13 (27.7%) 6 (50.0%) 64 (47.4%)
RTU + BCG 286 (29.1%) 69 (22.0%) 24 (51.1%) 2 (16.7%) 27 (20.0%)
TUR+Chemo 214 (21.8%) 71 (22.6%) 5 (10.6%) 32 (23.7%)
TUR+BCG+Chemo 51 (5.2%) 21 (6.7%) 3 (6.4%) 8 (5.9%)
Other 31 (3.2%) 5 (1.6%) 2 (4.3%) 4 (33.3%) 4 (3.0%)

Cells show Frequencies (Percentages of total cases)
Death BL: death due to bladder cancer, Death O: Due to other causes
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5.2.1 Modelling the cause-specific hazards

Cox proportional hazards model and Aalen’s additive hazards model were fitted to our data to describe
cause-specific hazards. Both models involve censoring individuals failing from other causes. In Cox
model, proportional hazards assumption was tested by graphical exploration of Schoenfield residuals
and diagnostic tests based on them. Validation of Aalen’s additive model was assessed via graphical
exploration of the cumulative martingale residuals, as stated in Aalen (1993).

The parameter estimates for each model are given in Table 2. In both models, the four factors
considered resulted statistically significant for recurrence, whereas only stage+grade and tumour
multiplicity were so for progression. Stage+grade for death due to bladder cancer was significant in
the proportional hazards model, while its significance was not clear in the additive model. Ta T1GII
tumours are associated to the risk of recurrence, while progression and death are more frequent in
TaGIII and T1GIII tumours. Even if only recurrence was of interest for the researchers, it is important
to model all causes of failure. Only by the results of recurrence, one may think that TaGIII and T1GIII
tumours are ’protective’ of recurrence, which is strange, given that these tumours are more serious.
Since these two type of tumour are strongly associated to progression and death, they induce a
protective effect on recurrence. Therefore, all causes of failure must be modelled in order to perform
an interpretation of disease.

In Cox model, the hazard ratio eβ̂ j for covariate z is interpreted as the increase of hazard relative to

the reference level of the z. Aalen’s model provide an estimate of B j(t) =
∫ t

0 β j(u)du for a given z,
where β j(t) is interpreted as the increase on absolute risk relative to the baseline hazard at instant
t. A graphical exploration of these parameter estimates can be obtained by observing the slopes
of B̂ j(t) versus time, and how they vary. As an example, Figure 2 shows the cumulative regression

functions B̂ j(t) for covariates multiplicity and Ta T1GII when studying recurrence. The slope for
tumour multiplicity remains constant for the first 60 months approximately, indicating that its effect
on recurrence is constant over time. The slope for Ta T1GII tumours varies over time, indicating a
non-constant effect.
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Figure 3: Cumulative regression functions B(t) for recurrence of (a) the multiplicity of the
tumour, and (b) Ta T1GII tumours.

5.2.2 Modelling the cumulative incidence functions

The results for Fine and Gray’s (1999) approach are also shown in Table 2. This methodology
does not need to censor individuals failing from other causes. The same factors as in the above

models resulted significant, but now the subdistribution hazard ratio eβ̂ j for covariate z has a direct
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interpretation in terms of the cumulative incidence function. The effect of T1GIII tumours over the
incidence of recurrence is −0.343 while the effect of this covariate on the rate of recurrence, censoring
by other causes, is −0.1764. Though similar estimates are found in our data, this situation may be
dramatically different.
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Mathematics and Statistics. We thank Àlex and also Cristiane Murtra from IMIM, Barcelona, Spain,
for their previous work on the Spanish Bladder Cancer Data, as well as for the data management of
the study. This work was partially supported by Grant 050831 from La Marató de TV3 Foundation
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