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INTRODUCTION

Connectivity is one of the central concepts of graph theory, from both a theoret-
ical and a practical point of view. Its theoretical implications are mainly based on
the existence of nice max-min characterization results, such as Menger’s theorems. In
these theorems, one condition which is clearly necessary also turns out to be su�cient.
Moreover, these results are closely related to some other key theorems in graph theory:
Ford and Fulkerson’s theorem about flows and Hall’s theorem on perfect matchings.
With respect to the applications, the study of connectivity parameters of graphs and
digraphs is of great interest in the design of reliable and fault-tolerant interconnection
or communication networks.

Since graph connectivity has been so widely studied, we limit ourselves here to the
presentation of some of the key results dealing with finite simple graphs and digraphs.
For results about infinite graphs and connectivity algorithms the reader can consult,
for instance, Aharoni and Diestel [AhDi94], Gibbons [Gi85], Halin [Ha00], Henzinger,
Rao, and Gabow [HeRaGa00], Wigderson [Wi92]. For further details, we refer the
reader to some of the good textbooks and surveys available on the subject: Berge
[Be76], Bermond, Homobono, and Peyrat [BeHoPe89], Frank [Fr90, Fr94, Fr95], Gross
and Yellen [GrYe06], Hellwig and Volkmann [HeVo08], Lovász [Lo93], Mader [Ma79],
Oellermann [Oe96], Tutte [Tu66].
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4.1.1 Connectivity Parameters
In this first subsection the basic notions of connectivity and edge-connectivity of

simple graphs and digraphs are reviewed.

notation: Given a graph or digraph G, the vertex-set and edge-set are denoted V (G)
and E(G), respectively. Often, when there is no ambiguity, we omit the argument and
refer to these sets as V and E.

Preliminaries

DEFINITIONS

D1: A graph is connected if there exists a walk between every pair of its vertices.
A graph that is not connected is called disconnected.

D2: The subgraphs of G which are maximal with respect to the property of being
connected are called the components of G.

D3: Let G = (V,E) be a graph and U ⇢ V . The vertex-deletion subgraph G� U
is the graph obtained from G by deleting from G the vertices in U . That is, G � U is
the subgraph induced on the vertex subset V � U . If U = {u}, we simply write G� u.

D4: LetG = (V,E) be a graph and F ⇢ E. The edge-deletion subgraph G�F is the
subgraph obtained from G by deleting from G the edges in F . Thus, G�F = (V,E�F ).
As in the case of vertex deletion, if F = {e}, it is customary to write G� e rather than
G� {e}.

D5: A disconnecting (vertex-)set (or vertex-cut) of a connected graph G is a
vertex subset U such that G� U has at least two di↵erent components.

D6: A vertex v is a cut-vertex of a connected graph G if {v} is a disconnecting set
of G.

D7: A disconnecting edge-set (or edge-cut) of a connected graph G is an edge
subset F such that G� F has at least two di↵erent components.

D8: An edge e is a bridge (or cut-edge) of a connected graph G if {e} is a discon-
necting edge-set of G.

FACTS

F1: Every nontrivial connected graph contains at least two vertices that are not
cut-vertices.

F2: An edge is a bridge if and only if it lies on no cycle.
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236 Chapter 4. Connectivity and Traversability

Vertex- and Edge-Connectivity

The simplest way of quantifying connectedness of a graph is by means of its parameters
vertex-connectivity and edge-connectivity.

DEFINITIONS

D9: The (vertex-)connectivity (G) of a graph G is the minimum number of
vertices whose removal from G leaves a disconnected or a trivial graph.

D10: The edge-connectivity �(G) of a nontrivial graph G is the minimum number
of edges whose removal from G results in a disconnected graph.

notation: When the context is clear, we suppress the dependence on G and simply use
 and �.

notation: In some other sections of the Handbook, v(G) and e(G) are used instead
of (G) and �(G).

EXAMPLE

E1: Figure 4.1.1 shows an example of a graph with  = 2 and � = 3.

Figure 4.1.1:  = 2 and � = 3.

FACTS

F3: We have  = 0 if and only if G is disconnected or G = K
1

. If G has order n,
then  = n � 1 if and only if G is the complete graph Kn. In this case, the removal
of n � 1 vertices results in the trivial graph K

1

. Moreover, if G 6= Kn is a connected
graph, then 1    n� 2 and there exists a disconnecting set U of  vertices.

F4: If G 6= K
1

we have � = 0 if G is disconnected. By convention, we set �(K
1

) = 0.

F5: If G 6= K
1

is connected, then the removal of � edges results in a disconnected
graph with precisely two components.

F6: The parameters  and � can be computed in polynomial time.
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Section 4.1. Connectivity: Properties and Structure 237

Relationships Among the Parameters

notation: The minimum degree of a graph G is denoted �(G). When the context is
clear, we simply write �. (In some other sections of the Handbook, the notation �min(G)
is used.)

FACTS

F7: [Wh32] For any graph,   �  �.

F8: [ChHa68] For all integers a, b, c such that 0 < a  b  c, there exists a graph G
with  = a, � = b, and � = c.

DEFINITIONS

D11: A graph G is maximally connected when  = � = �, and G is maximally
edge-connected when � = �.

D12: A graph G with connectivity  � k � 1 is called k-connected. Equivalently,
G is k-connected if the removal of fewer than k vertices leaves neither a disconnected
graph nor a trivial one. Analogously, if � � k � 1, G is said to be k-edge-connected.

D13: A connected graph G without cut-vertices ( > 1 or G = K
2

) is called a block.

Some Simple Observations

The following facts are simply restatements of the definitions.

FACTS

F9: A nontrivial graph is 1-connected if and only if it is connected.

F10: If G is k-connected, either G = Kk+1

or it has at least k+2 vertices and G�U
is still connected for any U ⇢ V with |U | < k.

F11: A graph G is k-edge-connected if the deletion of fewer than k edges does not
disconnect it.

F12: Every block with at least three vertices is 2-connected.

Internally-Disjoint Paths and Whitney’s Theorem

DEFINITIONS

D14: An internal vertex of a path is a vertex that is neither the initial nor the
final vertex of that path.

D15: The paths P
1

, P
2

, . . . , Pk joining the vertices u and v are said to be internally-
disjoint (or openly-disjoint) u�v paths if no two paths in the collection have an
internal vertex in common. Thus, V (Pi) \ V (Pj) = {u, v} for i 6= j.
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238 Chapter 4. Connectivity and Traversability

FACTS

F13: [Wh32] A graph G with order n � 3 is 2-connected if and only if any two vertices
of G are joined by at least two internally-disjoint paths.

F14: Fact F13 implies that every 2-connected graph is a block.

F15: A graph G with at least three vertices is a block if and only if every two vertices
of G lie on a common cycle.

Strong Connectivity in Digraphs

For basic concepts on digraphs, see, for example, the textbooks of Bang-Jensen and
Gutin [BaGu01], Chartrand, Lesniak, and Zhang [ChLeZh11], Harary, Norman, and
Cartwright [HaNoCa68].

DEFINITIONS

D16: In a digraph G, vertices u and v are mutually reachable if G contains both
a directed u�v walk and a directed v�u walk.

D17: A digraph G is said to be strongly connected if every two vertices u and v
are mutually reachable.

D18: For a strongly connected digraph G, the (vertex) connectivity  = (G)
is defined as the minimum number of vertices whose removal leaves a non-strongly
connected or trivial digraph. Analogously, if G is not trivial, its edge-connectivity
� = �(G) is the minimum number of directed edges (or arcs) whose removal results in
a non-strongly connected digraph.

D19: Let G be an undirected graph. The associated symmetric digraph G⇤ is the
digraph obtained from G by replacing each edge uv 2 E(G) by the two directed edges
(u, v) and (v, u) forming a digon.

REMARKS

R1: In our context, the interest for studying digraphs is that we can deal with
an undirected graph G by considering G⇤. In particular, (G⇤) = (G), and, since a
minimum edge-disconnecting set cannot contain digons, we also have �(G⇤) = �(G).

notation: The symbols �+ and �� denote the minimum outdegree and indegree among
the vertices of a digraph G. Then, the minimum degree of G is defined as � =
min{�+, ��}.
R2: Note that, if G is a strongly connected digraph, then � � 1. The following result,
due to Geller and Harary, is the analogue of (and implies) Fact F7.

FACT

F16: [GeHa70] For any digraph,   �  �.

terminology: A digraph G is said to be maximally connected when  = � = �,
and G is maximally edge-connected when � = �.
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Section 4.1. Connectivity: Properties and Structure 239

An Application to Interconnection Networks

The interconnection network of a communication or distributed computer system is
usually modeled by a (directed) graph in which the vertices represent the switching
elements or processors, and the communication links are represented by (directed) edges.
Fault-tolerance is one of the main factors that have to be taken into account in the design
of an interconnection network. See, for instance, the survey of Bermond, Homobono,
and Peyrat [BeHoPe89] and the book by Xu [Xu01]. Indeed, it is generally expected
that the system be able to work even if several of its elements fail. Thus, it is often
required that the (di)graph associated with the interconnection network be su�ciently
connected, and, in most cases, a good design requires that this (di)graph has maximum
connectivity. Communication networks are discussed in §11.4 of the Handbook.

4.1.2 Characterizations
When a graph G is k-connected we need to delete at least k vertices to disconnect it.

Clearly, if any pair u, v of vertices can be joined by k internally-disjoint u�v paths, G is
k-connected. In fact, it turns out that the converse statement is also true. That is, in a k-
connected graph any two vertices can be joined by k internally-disjoint paths. We review
in this subsection some key theorems of this type that characterize k-connectedness.

Menger’s Theorems

DEFINITION

D20: Let u and v be two non-adjacent vertices of a connected graph G 6= Kn. A
(u|v)-disconnecting set X, or simply (u|v)-set, is a disconnecting set X ⇢ V �{u, v}
whose removal from G leaves u and v in di↵erent components.

notation: For any pair of non-adjacent vertices u and v, (u|v) denotes the minimum
number of vertices in a (u|v)-set.
notation: For any two vertices u and v, (u�v) denotes the maximum number of
internally-disjoint u�v paths.

FACTS

F17: For any graph G, (G) = min{(u|v) : u, v 2 V , nonadjacent}.

F18: (Menger’s theorem) [Me27] For any pair of non-adjacent vertices u and v,

(u�v) = (u|v)

F19: Although (u�v) can be arbitrarily smaller than the minimum of the degrees
of u and v, Mader proved that every finite graph contains vertices for which equality
holds:

F20: [Ma73] Every connected non-trivial graph contains adjacent vertices u and v for
which (u�v) = min{deg(u), deg(v)}.
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240 Chapter 4. Connectivity and Traversability

notation: For any pair of distinct vertices u and v, �(u|v) denotes the minimum number
of edges whose removal from G (G non-trivial) leaves u and v in di↵erent components
and �(u�v) denotes the maximum number of edge-disjoint u�v paths.

F21: For any non-trivial graph G, �(G) = min{�(u|v), u, v 2 V }.
F22: (Edge-analogue of Menger’s theorem) [ElFeSh56, FoFu56] For any pair of vertices
u and v,

�(u�v) = �(u|v).

REMARKS

R3: Digraph versions of Menger’s theorems are the same except that all paths are
directed paths.

R4: The edge form and arc form of Menger’s theorem were proved by Ford and
Fulkerson [FoFu56] using network-flow methods. Network flow is discussed in Chapter
11 of this Handbook.

Other Versions and Generalizations of Menger’s Theorem

In addition to the ones given below, there exist other versions and generalizations
of Menger’s theorem; see, for example, Diestel [Di00], Frank [Fr95], and McCuaig
[McCu84]. A comprehensive survey about variations of Menger’s theorem can be found
in Oellermann [Oe12].

DEFINITIONS

D21: Given A,B ⇢ V , an A�B path is a u�v path P with u 2 A, v 2 B, u 6= v,
and any other vertex of P is neither in A nor in B.

D22: A set X ⇢ V separates A from B (or is (A|B)-separating) if every A�B
path in G contains a vertex of X.

D23: An A-path is an A�B path with A = B.

D24: A subsetX ⇢ V �A totally separates A if each component ofG�X contains at
most one vertex of A (or, equivalently, every A-path between di↵erent vertices contains
some vertex of X).

D25: A vertex subset is an independent set if no two of its vertices are adjacent.

notation: The maximum number of (internally-)disjoint A�B paths is denoted
(A�B), and the size of a minimum (A|B)-separating set is denoted (A|B).

FACTS

F23: The minimum number of vertices separating A from B is equal to the maximum
number of disjoint A�B paths. That is,

(A�B) = (A|B).
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Section 4.1. Connectivity: Properties and Structure 241

F24: If A is an independent set, the maximum number of internally-disjoint A-paths
is at most the minimum number of vertices in a totally A-separating set, that is,

(A�A)  (A|A).

F25: The corresponding Menger-type result does not hold and inequality can be strict.
In fact, there exist examples for which (A�A) = (A|A)/2.
F26: Gallai [Ga61] conjectured that Fact F25 corresponds to the “extremal” situation
and that always (A�A) � (A|A)/2, and Lovász [Lo76] conjectured that �(A�A) �
�(A|A)/2. Both conjectures were proved by Mader.

F27: [Ma78b, Ma78c] (A�A) � (A|A)/2 and �(A�A) � �(A|A)/2.

REMARK

R5: The classical version of Menger’s theorem (Fact F18) is easily derived from
Fact F23 by taking A and B as the sets of vertices adjacent to u and v, respectively.

Another Menger-Type Theorem

notation: For any pair of vertices u and v, n(u�v) denotes the maximum number
of internally-disjoint u�v paths of length less than or equal to n. For any pair of non-
adjacent vertices u and v, n(u|v) denotes the minimum number of vertices of a set
X ⇢ V � {u, v} such that every u�v path in G�X has length greater than n.

FACTS

F28: There are examples for which we have the strict inequality n(u�v) < n(u|v).
However, for n = d(u, v) � 2 (i.e., for shortest u�v paths), we have n(u�v) = n(u|v).
This Menger-type result is equivalently restated as Fact F29.

F29: [EnJaSl77, LoNePl78] The maximum number of internally-disjoint shortest u�v
paths is equal to the minimum number of vertices (di↵erent from u and v) necessary to
destroy all shortest u�v paths.

Whitney’s Theorem

In a connected graph, there exists a path between any pair of its vertices, and if the
graph is 2-connected, then there exist at least two internally-disjoint paths between
two distinct vertices (Fact F13). As a corollary of Menger’s theorem, we have the
remarkable result that this property can be generalized to k-connected graphs, which was
independently proved by Whitney. It provides a natural and intrinsic characterization
of k-connected graphs.

FACTS

F30: (Whitney’s theorem) [Wh32] A non-trivial graph G is k-connected if and only if
for each pair u, v of distinct vertices there are at least k internally-disjoint u�v paths
(or, alternatively, if and only if every cut-set has at least k vertices).
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242 Chapter 4. Connectivity and Traversability

F31: (Edge version of Whitney’s theorem) A nontrivial graph G is k-edge-connected
if and only if for each pair u, v of distinct vertices there exist at least k edge-disjoint
u�v paths.

F32: (The Fan Lemma) Let G be a k-connected graph (k � 1). Let v 2 V and let
B ⇢ V , |B| � k, v 62 B. Then there exist distinct vertices b

1

, b
2

, . . . , bk in B and a v�bi
path Pi for each i = 1, 2 . . . , k, such that the paths P

1

, P
2

, . . . , Pk are internally-disjoint
(that is, with only vertex v in common) and V (Pi) \B = {bi} for i = 1, 2, . . . k.

Other Characterizations

Another interesting characterization of k-connected graphs was independently conjec-
tured by Frank and Maurer. The conjecture was proved by Lovász and by Györi (who
worked independently), and it appears as Fact F33. Su proved a characterization of
k-edge-connectivity for digraphs (Fact F34).

FACTS

F33: [Lo77, Gy78] A graph G with n � k + 1 vertices is k-connected if and only if,
for any distinct vertices u

1

, u
2

, . . . , uk and any positive integers n
1

, n
2

, . . . , nk such that
n
1

+ n
2

+ · · · + nk = n, there is a partition V
1

, V
2

, . . . , Vk of V (G) such that ui 2 Vi,
|Vi| = ni, and the induced subgraph G(Vi) is connected, 1  i  n.

F34: [Su97] A digraph G with at least k edges is k-edge-connected if and only if, for
any k distinct arcs ei = (ui, vi), 1  i  k, the digraph G � {e

1

, e
2

, . . . , ek} contains k
edge-disjoint spanning arborescences (rooted trees) T

1

, T
2

, . . . , Tk such that Ti is rooted
at vi, 1  i  n.

4.1.3 Structural Connectivity
Here our purpose is to give results about certain configurations that must be present

in a k-connected or k-edge-connected graph.

Cycles Containing Prescribed Vertices

The first is a classical result by Dirac, which generalizes Fact F15.

FACTS

F35: [Di60] Let G be a k-connected graph, k � 2. Then G contains a cycle through
any given k vertices.

F36: [WaMe67] Let G be a k-connected graph with k � 3. Then G has a cycle
containing a given set H with k + 1 vertices if and only if there is no set T ⇢ V �H
with |T | = k vertices whose removal separates the vertices of H from each other.
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The Lovász–Woodall Conjecture

Lovász [Lo74] and Woodall [Wo77] independently conjectured that every k-connected
graph has a cycle containing a given set F of k independent edges (that is, no two edges
have a vertex in common), if and only if F is not an edge-disconnecting set of odd
cardinality. Partial results on this conjecture are given in Facts F37 ! F39.

FACTS

F37: [Lo74, Lo77, ErGy85, Lo90, Sa96] The Lovász–Woodall Conjecture is true for
k = 3, 4, 5.

F38: [HaTh82] The Lovász–Woodall Conjecture is true assuming that G is (k + 1)-
connected (without restriction on the edge set F ).

F39: [Ka02] Under the same assumptions of the conjecture, F is either contained in
a cycle or in two disjoint cycles.

terminology: A subset of independent edges is also called a matching. Matchings
are discussed in Section 11.3 of this Handbook.

Paths with Prescribed Initial and Final Vertices

Given any two subsets A,B ⇢ V of k vertices of a k-connected graph, the existence of k
disjoint paths Pi (1  i  k) connecting A and B is guaranteed by Menger’s theorem.
Menger’s theorem does not, however, ensure that each of these paths can be so chosen
to join a fixed ui, vi pair of vertices, ui 2 A, vi 2 B, (1  i  k). Now we consider the
existence of paths with prescribed end-vertices.

DEFINITIONS

D26: A graph G is called k-linked if it has at least 2k vertices, and for every
sequence u

1

, u
2

, . . . , uk, v1, v2, . . . , vk of 2k di↵erent vertices, there exists a ui�vi path
Pi, i = 1, 2, . . . , k, such that the k paths are vertex-disjoint.

D27: A graph is weakly k-linked if it has at least 2k vertices, and for every k pairs
of vertices (ui, vi), there exists a ui�vi path Pi, 1  i  k, such that the k paths are
edge-disjoint.

D28: A graph is said to be k-parity-linked if one can find k disjoint paths with
prescribed end-vertices and prescribed parities of the lengths.

D29: The bipartite index of a graph is the smallest number of vertices whose
deletion creates a bipartite graph.

FACTS

F40: A k-linked graph is always (2k � 1)-connected, but the converse is not true.

F41: [Ju70], [LaMa70] (independently) For each k, there exists an integer f(k) such
that if  � f(k) then G is k-linked.
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244 Chapter 4. Connectivity and Traversability

F42: Thomassen [Th80a] and Seymour independently characterized the graphs that
are not 2-linked. This is the first problem in the so-called k-paths problem that has
been solved using the Robertson–Seymour theory [RoSe85].

notation: For k � 1, g(k) denotes the smallest integer such that every g(k)-edge-
connected graph G is weakly k-linked.

CONJECTURE

[Th80a] For every integer k � 1, g(2k + 1) = g(2k) = 2k + 1.

FACTS

F43: [Ok84, Ok85, Ok87] If k � 3 is odd, u
1

, u
2

, . . . , uk, v1, v2 . . . , vk are (not neces-
sarily distinct) vertices from a set T with |T |  6, and �(ui, vi) � k (1  i  k), then
there exists a ui � vi path for 1  i  k such that the k paths are edge-disjoint.

F44: [Hu91] For every integer k � 1, g(2k + 1)  2k + 2 and g(2k)  2k + 2.

F45: [Ok88, Ok90a] For every integer k � 1,

(a) g(2k + 1)  3k and g(2k + 2)  3k + 2,

(b) g(3k)  4k and g(3k + 2)  4k + 2.

F46: [Th01] Every f(k)-connected graph (defined in Fact F41) with bipartite index
at least 4k � 3 is k-parity-linked.

F47: [Su97] Let G be a k-edge-connected digraph, and let (u
1

, f
1

, v
1

), (u
2

, f
2

, v
2

),
. . . , (uk, fk, vk) be any k triples, where u

1

, u
2

. . . , uk, v1, v2 . . . , vk are not necessarily
distinct vertices, and f

1

, f
2

, . . . , fk are k distinct arcs, either of the form fi = (ui, ti),
i = 1, . . . , k, or fi = (ti, vi), i = 1, . . . , k. Then there exist k edge-disjoint ui�vi paths
Pi in G such that fi 2 E(Pi), i = 1, . . . , k.

Subgraphs

High connectivity implies a large minimum degree (Fact F7). Conversely, a large min-
imum degree does not guarantee high connectivity (Fact F8). However, it does ensure
the existence of a highly connected subgraph.

FACT

F48: [Ma72a] Every graph of minimum degree at least 4k contains a k-connected
subgraph.

REMARK

R6: In fact, Mader [Ma72a] proved that if the average of the degrees of the vertices
of G is at least 4k, then G contains a k-connected subgraph. Concerning the proof of
Fact F48, see also Thomassen [Th88].
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4.1.4 Analysis and Synthesis
An interesting question in the study of graph connectivity is to describe how to

obtain every k-(edge-)connected graph from a given “simple” one by a succession of
elementary operations preserving k-connectedness. A classical result on this topic is
Tutte’s theorem, which states how to construct all 3-connected graphs, starting with a
wheel graph. We also consider some relevant results dealing with deletion of edges or
vertices. Finally, some facts concerning minimally and critically k-connected graphs, as
well as a reference to connectivity augmentation problems, are considered.

Contractions and Splittings

DEFINITIONS

D30: The contraction of an edge uv consists of the identification of its endpoints u
and v (keeping the old adjacencies but removing the self-loop from u = v to itself). Let
G be a k-connected graph. An edge of G is said to be k-contractible if its contraction
results in a k-connected graph.

D31: The converse operation is called splitting : A vertex w with degree � is replaced
by an edge uv in such a way that some of the vertices adjacent to w are now adjacent
to u and the rest are adjacent to v. Moreover, if the new vertices u, v have degrees at
least k = �/2 + 1 we speak about a k-vertex-splitting.

D32: For any integer n � 4, the wheel graph Wn is the n-vertex graph obtained by
joining a vertex to each of the n� 1 vertices of the cycle graph Cn�1

.

FACTS

F49: If G is a k-connected graph, the operations of k-vertex splitting and edge
addition always produce a graph that is also (at least) k-connected. In fact, as shown
below, for k = 3 these operations su�ce to derive all 3-connected graphs.

F50: [Th80b] Every 3-connected graph distinct from K
4

has a 3-contractible edge.

F51: [Th81] Every triangle-free (no 3-cycles) k-connected graph has a k-contractible
edge.

F52: [Tu61] Every 3-connected graph can be obtained from a wheel by a finite sequence
of 3-vertex-splittings and edge additions.

REMARK

R7: In general, k-connectedness does not ensure the existence of k-contractible edges.
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EXAMPLE

E2: In Figure 4.1.2, the cube graph Q
3

is synthesized from the wheel graph W
5

in
four steps. All but the second step are 3-vertex-splittings.

u
u1

2u
e

v

v1

v2
w

1w
2w

Figure 4.1.2: A 4-step Tutte synthesis of the cube graph Q
3

.

REMARKS

R8: Thomassen used Fact F50 to give a short proof of Kuratowski’s theorem on
planarity. Fact F50 can also be derived from Tutte’s theorem (Fact F52).

R9: Since Tutte’s paper, the distribution of contractible edges in graphs of given
connectivity has been extensively studied. For a comprehensive survey of this sub-
ject, we refer the reader to Kriesell [Kr02], where the author also considers subgraph
contractions (see below).

R10: Fact F52 is a reformulation of the following proposition [Tu61]: a 3-connected
graph is either a wheel, or it contains an edge whose removal leaves a 3-connected
subgraph, or it contains a 3-contractible edge that is not in a cycle of length 3.

R11: Slater [Sl74] gave a similar result for constructing all 4-connected graphs starting
from K

5

, but in this case three more operations are required. For k � 5 the problem
is still open. However, Lovász [Lo74] and Mader [Ma78a] managed to construct all k-
edge-connected pseudographs (loops and multiple edges allowed) for every k even and
odd, respectively.

Subgraph Contraction

The contraction of a subgraph is a natural generalization of edge contraction.

DEFINITION

D33: A connected subgraph H of a k-connected graph G is said to be k-contractible
if the contraction of H into a single vertex results in a k-connected graph.
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FACTS

F53: [McOt94] Every 3-connected graph on n � 9 vertices has a 3-contractible path
of length two.

F54: [ThTo81] Every 3-connected graph with minimum degree at least four contains
a 3-contractible cycle.

F55: [Kr00] Every 3-connected graph of order at least eight has a 3-contractible
subgraph of order four.

CONJECTURE

[McOt94] For every n, a 3-connected graph of su�ciently large order has a 3-contractible
subgraph of order n.

Edge Deletion

DEFINITION

D34: A subgraph H of a k-edge-connected graph G is said to be ⇢-reducible if the
graph obtained from G by removing the edges of H is (k � ⇢)-connected.

FACTS

F56: [Ma74] Every k-connected graph G with minimum degree at least k+2 contains
a cycle C such that G� E(C) is k-connected.

F57: [Ok88] Let G be a k-edge-connected graph with k � 4 even. Let {u, v} ⇢ V and
{e

1

, e
2

, f} ⇢ E, ei 6= f (i = 1, 2). Then,

(a) There exists a 2-reducible cycle containing e
1

and e
2

, but not f .

(b) There exists a 2-reducible u�v path containing e
1

, but not f .

F58: [Ok90b] Let G be a k-edge-connected graph with k � 2 even. If {u
1

, v
1

, u
2

, v
2

}
are distinct vertices, with edges e

0

= v
1

v
2

, ei = uivi (i = 1, 2), and there is no edge-cut
with k or k + 1 elements containing {e

0

, e
1

, e
2

}, then there exists a 2-reducible cycle
containing {e

0

, e
1

, e
2

}.

F59: [HuOk92] For each odd k � 3, there exists a k-edge-connected graph containing
two vertices u and v such that every cycle passing through u, v is ⇢-reducible with ⇢ � 3.

REMARK

R12: For the case of three consecutive edges e
1

, e
2

, e
3

of a k-connected graph, Okamura
[Ok95] also found a nontrivial equivalent reformulation of the condition that no cycle
of G containing e

1

, e
2

, and e
3

is 2-reducible.
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Vertex Deletion

FACTS

F60: [ChKaLi72] Every 3-connected graph of minimum degree at least 4 has a vertex
v such that G� v is 3-connected.

F61: [Th81] Every (k + 3)-connected graph has an induced (chordless) cycle whose
deletion results in a k-connected graph.

F62: [Eg87] Every (k + 2)-connected triangle-free graph has an induced cycle whose
deletion results in a k-connected graph.

REMARK

R13: Fact F61 was conjectured by Lovász, and Thomassen used Fact F51 to prove
it.

Products of Graphs

DEFINITIONS

D35: Recall that the cartesian product of two graphs Gi = (Vi, Ei), i = 1, 2, is the
graph G

1

⇤G
2

with vertex set V
1

⇥ V
2

, and for which vertices (x
1

, x
2

) and (y
1

, y
2

) are
adjacent if x

1

= y
1

and x
2

y
2

2 E
2

, or x
1

y
1

2 E
1

and x
2

= y
2

.

D36: The Kronecker product of two graphs Gi = (Vi, Ei), i = 1, 2, is the graph
G

1

⇥G
2

with vertex set V
1

⇥V
2

, and for which vertices (x
1

, x
2

) and (y
1

, y
2

) are adjacent
if x

1

y
1

2 E
1

and x
2

y
2

2 E
2

.

D37: [BeDeFa84] Let Gi = (Vi, Ei), i = 1, 2, be two graphs with the edges of G
1

arbitrarily oriented, in such a way that an oriented edge from x
1

to y
1

is denoted by
ex1y1 . For each arc ex1y1 , let ⇡e

x1y1
be a permutation of V

2

. Then the twisted product
G

1

⇤G
2

has V
1

⇥ V
2

as vertex set, with two vertices (x
1

, x
2

), (y
1

, y
2

) being adjacent if
and only if either

x
1

= y
1

and x
2

y
2

2 E
2

or
x
1

y
1

2 E
1

and y
2

= ⇡e
x1y1

(x
2

).

D38: [BaDaFiMi09] Given two graphs Gi = (Vi, Ei), i = 1, 2, and a non-empty vertex
subset U

1

⇢ V
1

, the generalized hierarchical product G
1

(U
1

)uG
2

is the graph with
vertex set V

1

⇥V
2

, and for which vertices (x
1

, x
2

) and (y
1

, y
2

) are adjacent if x
1

y
1

2 E
1

and x
2

= y
2

, or x
1

= y
1

2 U
1

and x
2

y
2

2 E
2

.
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FACTS

F63: [XuYa06] For any nontrivial graphs G
1

and G
2

,

(G
1

⇤G
2

) � min{(G
1

) + �(G
2

),(G
2

) + �(G
1

)}
and

�(G
1

⇤G
2

) � min{�(G
1

)|V
2

|,�(G
2

)|V
1

|, �(G
1

) + �(G
2

)}.
F64: [Sp08] For any nontrivial graphs G

1

and G
2

,

(G
1

⇤G
2

) = min{(G
1

)|V
2

|,(G
2

)|V
1

|, �(G
1

) + �(G
2

)}.
F65: [We62] If G

1

and G
2

are two connected graphs, then G
1

⇥ G
2

is connected if
and only if G

1

and G
2

are not both bipartite graphs.

F66:

(a) [MaVu08] (Kn ⇥Km) = (n� 1)(m� 1) for any n � m � 2 and n � 3.

(b) [WaWu11] (G⇥Kn) = min{n(G), (n� 1)�(G)} for any nontrivial graph G and
n � 3.

F67: [BaGVMa06, BaCeDiGVMa07]

(a) For any nontrivial graphs G
1

and G
2

,

min{(G
1

)|V
2

|, (�
1

+ 1)(G
2

), �
1

+ �
2

)}  (G
1

⇤G
2

)  �
1

+ �
2

;

min{�(G
1

)|V
2

|, (�
1

+ 1)�(G
2

), �
1

+ �
2

)}  �(G
1

⇤G
2

)  �
1

+ �
2

,

where �
1

+ �
2

is the minimum degree of G
1

⇤G
2

.

(b) If G
1

and G
2

are maximally connected, then G
1

⇤G
2

is also maximally connected.

(c) For every connected graph G, the graph G ⇤G is maximally connected.

F68: [BaDaFiMi09] The connectivity of the generalized hierarchical product satisfies

(G
1

(U
1

) uG
2

)  min{(G
1

)|V
2

|,(U
1

|U 0
1

), �(G
1

(U
1

) uG
2

)},
where U 0

1

⇢ V
1

� U
1

and �(G
1

(U
1

) uG
2

) = min{�(G
1

� U
1

), �(G
1

(U
1

)) + �
2

}.

REMARKS

R14: The graph G
1

⇤G
2

can be viewed as formed by |V
1

| disjoint copies of G
2

, each
oriented edge x

1

y
1

indicating that some perfect matching between the copies Gx1
1

, Gy1
1

(respectively generated by the vertices x
1

and y
1

of G
1

) is added. Moreover, K
2

⇤G is
a permutation graph [ChHa67].

R15: If in Definition D37, ⇡e
x1y1

is the identity permutation for any oriented edge
ex1y1 , the twisted product G

1

⇤G
2

is the cartesian product G
1

⇤G
2

.

R16: If U
1

is consits of only one vertex, then G
1

(U
1

)uG
2

is the standard hierarchical
product [BaCoDaFi09], whereas if U

1

= V
1

we obtain the cartesian product G
1

⇤G
2

.

R17: Fact F66(b) was previously proved for G bipartite in [GuVu09].

R18: Regarding Fact F66, the connectivity of Kronecker products by K
2

has been
recently studied in [WaYa12].
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Minimality and Criticality

A standard technique used to study a certain property P is to consider those graphs
that are edge-minimal or vertex-minimal (critical) with respect to P, in the sense that
the removal of any vertex or edge produces a graph for which P does not hold.

DEFINITIONS

D39: A graph or digraph G is said to be minimally k-connected if (G) � k but,
for each edge e 2 E, (G � e) < k. Analogously, G is minimally k-edge-connected
if �(G) � k, but for each e 2 E, �(G� e) < k.

D40: A vertex u of a digraph has half degree k if either deg+(u) = k or deg�(u) = k.

FACTS

F69: [Ma71, Ma72b] Every minimally k-connected (or k-edge-connected) graph con-
tains at least k + 1 vertices of degree k.

F70: [Ma72b] Every cycle of a minimally k-connected graph contains a vertex of
degree k.

F71: Every cycle in a k-connected graph G contains either a vertex of degree k or an
edge whose removal does not lower the connectivity of G.

F72: [Ha81] Every minimally k-connected digraph contains at least k + 1 vertices of
half degree k.

F73: [Ma02] Every minimally k-connected digraph contains at least k + 1 vertices of
outdegree k and at least k + 1 vertices of indegree k.

REMARKS

R19: Halin [Ha69, Ha00] proved the existence of a vertex of degree k in every
minimally k-connected graph, and the corresponding theorem for minimally k-edge-
connected graphs was proved by Lick [Li72]. Both results were then improved by Mader
(Fact F69).

R20: Fact F72, a consequence of Mader’s result Fact F73, is due to Hamidoune and is
the digraph analogue of (and implies) Mader’s theorem (Fact F69) about the existence
of vertices of degree k. The existence of at least one vertex of half degree k had been
previously asserted by Kameda [Ka74].

Vertex-Minimal Connectivity – Criticality

Maurer and Slater [MaSl77] introduced the general concept of critically connected and
critically edge-connected graphs, graphs whose connectivity decreases when one or more
vertices are removed.
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DEFINITION

D41: A graph G is called k-critically n-connected, or an (n, k)-graph, if, for each
vertex subset U with |U |  k, we have (G � U) = n � |U |. When k = 1, we simply
refer to the graph as critically n-connected.

FACTS

F74: [MaSl77] The only (n, n)-graph is the complete graph Kn+1

.

F75: The “cocktail party graph” (obtained from K
2n+2

by removing a 1-factor [perfect
matching]) is a (2n, n)-graph but not a (2n, n+ 1)-graph.

F76: [Su88] The complete graph on k+1 vertices is the unique k-critically n-connected
graph with n < 2k.

F77: [Ma77] If G is a (n, 3)-graph, then its order is at most 6n2. Thus, for each n,
there are only finitely many of (n, 3)-critical graphs.

REMARKS

R21: An early survey about (n, k)-graphs can be found in [Ma84].

R22: Fact F75 led Slater to conjecture that, apart from Kn+1

, there is no (n, k)-graph
with k > n/2, which, after some partial results, was finally proved by Su (Fact F76).

R23: Fact F77 was generalized by Mader to the class of all finite n-connected graphs.

Connectivity Augmentation

We conclude the section by referring the reader to Frank [Fr94] for an in-depth discus-
sion of connectivity augmentation. In the edge-connectivity augmentation problem, we
are given a graph G = (V,E) and a positive integer k, and the goal is to find the smallest
set of edges F that we can add to G such that G0 = (V,E [ F ) is k-connected. Due to
its applicability to the design of fault-tolerant networks, connectivity augmentation has
also been widely investigated from an algorithmic point of view. Watanabe and Naka-
mura [WaNa87] gave the first polynomial-time algorithm solving the edge-connectivity
augmentation problem. In the same paper, the authors formulated a necessary and
su�cient condition to decide if a given graph G can be made k-connected by adding at
most a certain number of edges. The same question for digraphs was solved in [Fr92].
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cote, On the edge-connectivity and restricted edge-connectivity of a product of
graphs. Discrete Appl. Math. 155 (2007), 2444–2455.

[BaGu01] J. Bang-Jensen and G. Gutin, Digraphs. Theory, Algorithms and Applica-
tions, Springer-Verlag, London, 2001.

[BaCoDaFi09] L. Barrière, F. Comellas, C. Dalfó, and M. A. Fiol, The hierarchical
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[ErGy85] P. L. Erdös and E. Györi, Any four independent edges of a 4-connected graph
are contained in a circuit. Acta Math. Hung. 46 (1985), 311–313.

[FoFu56] L. R. Ford and D. R. Fulkerson, Maximal flow through a network. Canad. J.
Math. 8 (1956), 399–404.

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [J

os
ep

 F
àb

re
ga

] a
t 0

8:
13

 1
0 

Fe
br

ua
ry

 2
01

4 



i
i

“chapter4” — 2013/11/4 — 14:16 — page 253 — #21 i
i

i
i

i
i

Section 4.1. Connectivity: Properties and Structure 253

[Fr90] A. Frank, Packing paths, circuits, and cuts – a survey, pp. 47–100 in B. Korte,
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