
               

On Congruence in Zn and the Dimension of a

Multidimensional Circulant

M.A. Fiol
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Abstract

From a generalization to Zn of the concept of congruence we de-
fine a family of regular digraphs or graphs called multidimensional
circulants, which turn out to be Cayley (di)graphs of Abelian groups.
This paper is mainly devoted to show the relationship between the
Smith normal form for integral matrices and the dimensions of such
(di)graphs, that is the minimum ranks of the groups they can arise
from. In particular, those 2-step multidimensional circulants which are
circulants, that is Cayley (di)graphs of cyclic groups, are fully charac-
terized. In addition, a reasoning due to Lawrence is used to prove that
the cartesian product of n circulants with equal number of vertices
p > 2, p a prime, has dimension n.

1 Introduction

Throughout this paper we make use of standard concepts and terminology
of graph theory and group theory, see for instance [6] and [16] respectively.
We will recall here the most relevant definitions. Let Γ be a group with
identity element e, and let A ⊆ Γ − {e} such that A−1 = A. The Cayley
graph of Γ with respect to A, denoted by G(Γ;A), is the graph whose ver-
tices are labelled with the elements of Γ, and an edge (u, v) if and only if
u−1v ∈ A. The Cayley digraph G(Γ;A) is defined similarly, but now we
do not require A−1 = A. Since left translations in Γ are automorphisms of
G(Γ;A), a Cayley graph is always vertex-transitive. Moreover, the group
of such automorphisms, AutG(Γ;A), contains a regular subgroup (that is a
transitive subgroup whose order coincides with the order of the graph) iso-
morphic to Γ. In fact, Sabidussi [17] first showed that this is also a sufficient
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condition for a graph to be a Cayley graph (of the group Γ). Clearly, the
same statements also hold for Cayley digraphs. In particular, this result or
its digraph analog will be simply referred to as Sabidussi’s result.

Because of both theoretical and practical reasons, the class of Cayley
(di)graphs obtained from Abelian groups have deserved special attention
in the literature. This is the case, for instance, for circulant (di)graphs
the definition of which follows. Let m be a positive integer, and A =
{a1, a2, . . . , ad} ⊆ Z/mZ −{0}. The (d-step) circulant digraph G(m;A) has
as set of vertices the integers modulo m, and vertex u is adjacent to the ver-
tices u+A = {u+ ai (mod m) : ai ∈ A}. The names multiple loop digraph
and multiple fixed step digraph [3, 13] are also used. The (d-step) circulant
graph G(m;A) is defined analogously with A = −A = {±a1,±a2, . . . ,±ad}.
These graphs have also received other names such as starred polygons [18]
and multiple loop graphs [4]. In both the directed and undirected case, the
elements of A are called jumps or steps. Henceforth, we will use the word
circulant to denote either a circulant digraph or a circulant graph. As stated
above, notice that the circulant G(m;A) is just the Cayley (di)graph of the
cyclic group Z/mZ with respect to A. Therefore, from Sabidussi’s result, a
(di)graph is a circulant iff its automorphism group contains a regular cyclic
subgroup. As Leighton showed in [14], this characterization can be used to
easily prove Turner’s result [18], which states that every transitive graph on
a prime number of vertices is a circulant. (It suffices to use Cauchy’s group
theorem: “If a prime p divides the order of a finite group then it contains an
element of order p.”) In fact the same reasoning shows that Turner’s result
also holds for digraphs.

Recall that, given two graphs, G1 = (V1, E1) and G2 = (V2, E2), their
cartesian product G1 × G2 is the graph with set of vertices V1 × V2 and an
edge between (u1, u2) and (v1, v2) iff either (u1, v1) ∈ E1 and u2 = v2 or
u1 = v1 and (u2, v2) ∈ E2. The cartesian product of two digraphs is defined
analogously. Another well known family of Cayley graphs of Abelian groups
are the (Boolean) n-cubes, which are sometimes defined as the cartesian
product of n copies of the complete graph K2. From our point of view, the
n-cube (or binary n-dimensional hypercube) is the Cayley graph G(Γ;A),
where Γ = Z/2Z×· · ·×Z/2Z (n factors) and A is the set of unitary vectors
ei, 1 ≤ i ≤ n.

This paper studies the structure of the so-called (d-step) multidimen-
sional circulants (that is Cayley graphs or digraphs of Abelian groups), which
are defined from integral matrices in Section 3. More precisely, given such a
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(di)graph, we are interested in finding its “dimension”, that is the minimum
rank of the group(s) it can arise from. (The rank of a finitely generated
Abelian group is the minimum number of elements which generate it.) For
instance, from its definition it is clear that the n-cube has dimension not
greater than n. As far as we know, this study was initialized by Leighton
in [14], where it was shown that the dimension of the n-cube is in fact
b(n+ 1)/2c. Other results, concerning 2-step circulant digraphs (dimension
1) can be found in [10, 13]. In this paper we continue this study by deriving
some new results, which are contained in Section 3. For instance, using some
facts about integral matrices and a theorem in [7], we give a full characteri-
zation of those 2-step multidimensional circulants which are 1-dimensional.
Moreover, it is proved that if G1, G2, . . . , Gn are circulant (di)graphs with
p > 2 vertices, p a prime, then the cartesian product G1×G2×· · ·×Gn has
dimension n.

As stated above, our approach uses some results of integral matrix theory
which are summarized in the next section. In particular, we deal with the
concept of congruence in Zn, also discussed there. The reason is that, in
the same way that congruence in Z (periodicity in one dimension) leads to
the consideration of cyclic groups, congruence in Zn (related to periodicity
in n dimensions) induces quotient structures which are Abelian groups.

2 Congruences in Zn and the Induced Abelian
Groups

This section mainly deals with the concept of congruence in Zn and its
consequences to our study. In this context, the theory of integral matrices
(that is matrices whose entries are integers) proves to be very useful and,
hence, we begin by recalling some of its main results. The reader interested
in the proofs is referred to [15].

Let Zn∗n be the ring of n × n matrices over Z. Given A,B ∈ Zn∗n,
A is said to be right equivalent to B if there exists a unimodular (with
determinant ±1) matrix V ∈ Zn∗n such that A = BV ; and A is equivalent
to B if A = UBV for some unimodular matrices U, V ∈ Zn∗n. Clearly, both
of them are equivalence relations.

Henceforth, M = (mij) will denote a nonsingular matrix of Zn∗n with
columns mj = (m1j ,m2j , . . . ,mnj)

>, j = 1, 2, . . . , n, and m = | detM |.
By the Hermite normal form theorem, M is right equivalent to an upper
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triangular matrix H(M) = H = (hij) with positive diagonal elements hii
and with each element above the main diagonal hij , j > i, i = 1, 2, . . . , n−1,
lying in a given complete set of residues modulo hii (for instance, 0 ≤ hij ≤
hii − 1). This normal form is unique.

Let k ∈ Z, 1 ≤ k ≤ n. The kth determinantal divisor of M , denoted
by dk(M) = dk, is defined as the greatest common divisor of the (nk)2 k × k
determinantal minors of M . Since M is nonsingular, not all of them are zero.
Notice that dk|dk+1 for all k = 1, 2, . . . , n− 1 and dn = m. For convenience,
put d0 = 1. The invariant factors of M are the quantities

sk(M) = sk =
dk
dk−1

, k = 1, 2, . . . , n.

It can be shown that si|si+1, i = 1, 2, . . . , n− 1.

By the Smith normal form theorem, M is equivalent to the diagonal
matrix S(M) = S = diag(s1, s2, . . . , sn). This canonical form is unique.

For instance, the matrix M = diag(2, 2, 3), with determinantal divisors
d1 = 1, d2 = 2, d3 = 12, and invariant factors s1 = 1, s2 = 2, s3 = 6, is
equivalent to S = diag(1, 2, 6) since there exist the unimodular matrices

U =



−1 0 1

0 1 0
−3 0 2


 , V =




1 0 3
0 1 0
1 0 2


 (1)

such that S = UMV .

As usual, the greatest common divisor of the integers a1, a2, . . . , an will
be denoted by gcd(a1, a2, . . . , an). When they are the coordinates of a vector
a, we will simply write gcd(a).

Most of the remaining material in this section is drawn from [11] where
additional details can be found.

Let Zn denote the additive group of column n-vectors with integral co-
ordinates. The set MZn , whose elements are linear combinations (with
integral coefficients) of the (column) vectors mj , is said to be the lattice
generated by M . Clearly, MZn with the usual vector addition is a normal
subgroup of Zn.

The concept of congruence in Z has the following natural generalization
to Zn. Let a,b ∈ Zn .We say that a is congruent with b modulo M, and
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write a ≡ b (mod M), if

a− b ∈MZn. (2)

The quotient group Zn/MZn can intuitively be called the group of inte-
gral vectors modulo M. Henceforth, we follow the usual convention of iden-
tifying each equivalence class by any of its representatives.

Note that whenever M = diag(m1,m2, . . . ,mn) the vectors
a=(a1, a2, . . . , an)> and b=(b1, b2, . . . , bn)> are congruent modulo M iff the
system of congruences in Z

ai ≡ bi (mod mi), i = 1, 2, . . . , n

holds. In this case Zn/MZn is the direct product of the cyclic groups
Z/miZ, i = 1, 2, . . . , n.

If A and B are n × r matrices over Z with columns aj and bj , j =
1, 2, . . . , r, respectively, we will write A ≡ B (mod M) to denote that
aj ≡ bj (mod M) for all j = 1, 2, . . . , r.

Let H = MV be the Hermite normal form of M . Then (2) holds iff a−
b ∈ HV −1Zn = HZn since V , and hence V −1, are unimodular. Therefore
we conclude that

a ≡ b (mod M) ⇔ a ≡ b (mod H) (3)

or, what is the same,
Zn/MZn ∼= Zn/HZn. (4)

Let us now consider the Smith normal form ofM , S = diag(s1, s2, . . . , sn) =
UMV . Then (2) holds iff Ua ≡ Ub (mod S) or, equivalently,

uia ≡ uib (mod si), i = 1, 2, . . . , n (5)

where ui stands for the ith row of U . Moreover, if r is the smallest integer
such that sn−r = 1 (thus, s1 = s2 = · · · = sn−r−1 = 1), (if there is no such
a r, let r = n), the first n − r equations in (5) are irrelevant, and we only
need to consider the other ones. This allows us to write

a ≡ b (mod M) ⇔ U ′a ≡ U ′b (mod S′) (6)

where U ′ stands for the r×n matrix obtained from U by leaving out the first
n− r rows, and S′ = diag(sn−r+1, sn−r+2, . . . , sn). So, the (linear) mapping
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φ from the vectors modulo M to the vectors modulo S′ given by φ(a) = U ′a
is a group isomorphism, and we can write

Zn/MZn ∼= Zr/S′Zr = Z/sn−r+1Z × · · · × Z/snZ. (7)

Analogously, it may be shown that the n× r matrix of the inverse map-
ping φ−1 is obtained from U−1 by leaving out its first n− r columns.

The next proposition contains some easy consequences of the above re-
sults. For instance, (b) follows from the fact that s1s2 · · · sn = dn = m and
si|si+1, i = 1, 2, . . . , n− 1.

Proposition 2.1 (a) The number of equivalence classes modulo M is
|Zn/MZn| = m = | detM |.

(b) If pr11 p
r2
2 · · · prtt is the prime factorization of m, then Zn/MZn ∼=

Zr/S′Zr for some r × r matrix S′ with r ≤ max{ri : 1 ≤ i ≤ t}.
(c) The (Abelian) group of integral vectors modulo M is cyclic iff dn−1 =1.
(d) Let r be the smallest integer such that sn−r = 1. Then r is the rank

of Zn/MZn and the last r columns of U−1 form a basis of Zn/MZn. 2

Given any element a of Zn/MZn, simple reasoning shows that its order
is given by the formula

o(a) =
m

gcd(m, gcd(mM−1a))
, (8)

(see [11]). For instance, if M = (mij) is a 2 × 2 matrix and a = (a1, a2)>

we have
o(a) =

m

gcd(m, a1m22 − a2m12, a2m11 − a1m21)
. (9)

According to (7), for any given M ∈ Zn∗n there exists an Abelian group
Γ such that Γ = Zn/MZn. Conversely, let Γ be a finite Abelian group
generated by the elements g1, g2, . . . gn. Then Γ is isomorphic to Zn/K,
where K is the kernel of the surjective homomorphism Ψ : Zn −→ Γ defined
by Ψ(x) = gx, where g denotes the row vector (g1, g2, . . . , gn) and x ∈ Zn.
(Note that Ψ(ei) = gi, 1 ≤ i ≤ n, where ei stands for the ith unitary vector.)
More precisely, K is the lattice of Zn generated by the upper triangular n×n
matrix H = (mij) defined as follows:

m11 = o(g1) = | < g1 > | ;
mjj = min{µ ∈ Z+ : µgj ∈< g1, g2, . . . , gj−1 >}, j = 2, 3, . . . , n ;

and
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mij , j = 2, 3, . . . , n, i < j, are any integers such that m1jg1+m2jg2+· · ·+
mjjgj = 0, (they can be chosen in a given complete set of residues modulo
hii, e.g., 0 ≤ mij ≤ hii − 1), where, as usual, < g1, g2, . . . , gj > denotes the
group generated by g1, g2, . . . , gj , and 0 is the identity element of Γ. Clearly,
H is the Hermite normal form of any matrix M which generates the lattice
K.

3 Multidimensional circulants and their dimen-
sion

Congruence in Zn leads to the following generalization of circulants. Let M
be an n×n integral matrix as in Section 2. LetA = {aj = (a1j , a2j , . . . , anj)

> :
1 ≤ j ≤ d} ⊆ Zn/MZn. The multidimensional (d-step) circulant digraph
G(M;A) has as vertex-set the integral vectors modulo M , and every vertex
u is adjacent to the vertices u +A (mod M). As in the case of circulants,
the multidimensional (d-step) circulant graph G(M ;A) is defined similarly
just requiring A = −A.

In [14], Leighton considered multidimensional circulant graphs with diag-
onal matrix M , and characterized them by showing that the automorphism
group of these graphs must contain a regular Abelian subgroup. Clearly, a
multidimensional circulant (digraph or graph) is a Cayley (di)graph of the
Abelian group Zn/MZn. As a consequence, Sabidussi’s result implies that
Leighton’s statement holds in fact for a multidimensional circulant obtained
from any matrix M .

As another consequence of the above, if α is the index of the subgroup
Γ =< a1,a2, . . . ,ad > in Zn/MZn , the multidimensional circulant G(M ;A)
consists of α copies of the Cayley (di)graph of Γ generated by A. Besides,
from the comments in the last paragraph of Section 2, Γ ∼= Zd/HZd, where
H is an upper triangular d× d matrix, and each such copy is isomorphic to
G(H; e1, e2, . . . ed).

In particular, G(M ; a1,a2, . . .ad) (respectively G(M ;±a1,±a2, . . .±ad))
is strongly connected (respectively connected), that is α = 1, iff {a1,a2, . . .ad}
generates Zn/MZn, that is, there exist n integral d-vectors
xj = (x1j , x2j , . . . , xdj)

>, j = 1, 2, . . . , n, such that

x1ja1 + x2ja2 + · · ·+ xdjad ≡ ej (mod M), j = 1, 2, . . . , n
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or, in matrix form,
AX ≡ I (mod M)

where A now denotes the n × d matrix (aij), X is the d × n matrix (xij),
and I stands for the identity matrix.

A certain (di)graph may be a multidimensional circulant for several dif-
ferent values of n. For instance, the digraph G(M ;A) withM = diag(2, 2, 3)
and A = {(1, 0, 0)>, (0, 1, 0)>, (0, 0, 2)>} is isomorphic to the digraph
G(M ′;A′) with M ′ = diag(2, 6) and A′ = {(0, 3)>, (1, 0)>, (0, 4)>} since,
if U ′ is the 2× 3 matrix obtained by taking the two last rows of the matrix
U in (1), we have U ′A ≡ A′ (mod M ′). Following Leighton’s terminology
[14], if k is the smallest value of such n we will say that the multidimen-
sional circulant has dimension k or that it is k-dimensional. Notice that this
parameter is in fact the minimum rank of the groups such a (di)graph can
arise from. Then the class of circulants is precisely the class of 1-dimensional
circulants.

In studying the dimension of a given multidimensional circulant G(M ;A)
we only need to consider the connected case. Indeed suppose that the α
disjoint components of G(M ;A) are, say, k-dimensional and isomorphic to
G(M ′;A′),M ′ ∈ Zk∗k. Then G(M ;A) is isomorphic to G(αM ′;αA′) where
αM ′ and αA′ denote the matrix and set obtained from M ′ and A′ by sim-
ply multiplying by α any, say the first, component of the corresponding
(column) vectors. As a corollary, the dimension of G(M ;A) cannot be
greater than the cardinality of the minimum subset of A that generates
Γ =< a1,a2, . . . ,ad >.

To obtain other results about the dimension of multidimensional cir-
culants it is useful to introduce the concept of Ádám isomorphism. Let
M ∈ Zn∗n and M ′ ∈ Zn′∗n′ . Then the multidimensional circulants G(M ;A)
and G(M ′;A′) are said to be Ádám isomorphic if there exists an isomor-
phism φ between the groups Zn/MZn and Zn

′
/M ′Zn

′
such that φ(A) = A′.

For instance, if u is a unit of Z/mZ, that is gcd(u,m) = 1, the circulants
G(m;A) and G(m;uA) are Ádám isomorphic. In [1] it was first conjectured
that any two isomorphic circulant digraphs are Ádám isomorphic, but in
subsequent papers more attention was paid to the corresponding statement
for circulant graphs. For instance, Djokovic [8] and Turner [18] indepen-
dently proved that Ádám’s conjecture is true for circulant graphs with prime
order, and this is also the case for circulant digraphs [9]. The first counter-
examples to this conjecture, both for graphs and digraphs were given by
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Elpas and Turner in [9]. In [2], Alspach and Parsons characterized, in terms
of a condition on automorphism groups, the validity of Ádám’s conjecture
for a given order m. In particular, the authors used this characterization to
show that it holds for m = p1p2 where p1 and p2 are different primes. In [5],
Boesch and Tindell conjectured that all isomorphic 2-step circulant graphs
are Ádám isomorphic. This was independently proved in [7] and [20]. The
same result for 2-step circulant digraphs was given in [12]. In fact, Delorme,
Favaron and Mahéo [7] proved some more general results concerning Cayley
(di)graphs of Abelian groups. Using our terminology, they are stated in the
following theorem.

Theorem 3.1 ([7]) Let M ∈ Zn∗n and M ′ ∈ Zn′∗n′ and suppose that A =
{a1,a2} and A′ = {b1,b2} are generating sets for Zn/MZn and Zn

′
/M ′Zn

′
,

respectively. Then the two (connected) multidimensional circulant digraphs
G(M ;A) and G(M ′;A′) are isomorphic iff they are Ádám isomorphic, except
in the case when there exist two group isomorphisms

φ : Zn/MZn −→ Z/2ηZ × Z/2Z, η ∈ Z+

and
φ′ : Zn

′
/M ′Zn

′ −→ Z/4ηZ

such that φ(A) = {(1, 0)>, (1, 1)>} and φ′(A′) = {1, 2η+1}. (In this case the
two digraphs are isomorphic but, clearly, they are not Ádám isomorphic.)
Moreover, this result is also true for connected multidimensional circulant
graphs if we change A and A′ by ±A and ±A′, respectively. 2

Note that the exceptional case {Z/2ηZ × Z/2Z, a1 = (1, 0)>,a2 =
(1, 1)>} could also be characterized by the defining relations a1+a2 = a2+a1

(Abelian group), 2ηa1 = 0 and 2a1 = 2a2. Moreover, this last relation is
equivalent to writing o(a1−a2) = 2 (which holds indeed if we substitute the
above values in (9)).

Let H = MV be the Hermite normal form of the matrix M ∈ Zn∗n. Let
S = diag(s1, s2, . . . , sn) = UMV be its Smith normal form with s1 = s2 =
· · · = sn−r = 1 and consider the r × r and r × n matrices S′ and U ′ defined
as in Section 2. From the results (3), (4), (6) and (7) given there we have
the following theorem.

Theorem 3.2 The multidimensional circulants G(M ;A), G(H;A) and
G(S′;φ(A)), where φ(A) = {U ′a : a ∈ A}, are Ádám isomorphic. 2
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As an example of application of this theorem, we can again consider the
two isomorphic multidimensional circulants with matrices M = diag(2, 2, 3)
and M ′ = diag(2, 6) mentioned before.

Corollary 3.3 Let G(M ;A) be a k-dimensional circulant. Then k ≤ r. In
particular, if r = 1 (dn−1 = sn−1 = 1) such a (di)graph is a circulant. 2

From the above corollary and Proposition 2.1(b) we get

Corollary 3.4 Let G(M ;A) be a k-dimensional circulant with
m = pr11 p

r2
2 · · · prtt vertices. Then k ≤ max{ri : 1 ≤ i ≤ t}. In particu-

lar, if m is square free (that is, m is not divisible by the square of a prime)
G(M ;A) is a circulant. 2

This coincides with the result obtained by Leighton in [14] for a multi-
dimensional circulant graph G(M ;A) with M a diagonal matrix.

In the case of multidimensional 2-step circulants we can give a complete
characterization of circulants and, hence, of their dimension.

Theorem 3.5 Let M be an n × n matrix with (n − 1)th determinantal
divisor dn−1. Let A = {a1,a2} be a generating set of Zn/MZn. Then
the (connected) multidimensional 2-step circulant digraph G(M ;A) (respec-
tively, graph G(M ;±A)), on m = | detM | vertices, is a circulant iff one of
the following conditions hold:

(a) dn−1 = 1;
or (b) dn−1 = 2 and m = 2 gcd(m, gcd(mM−1(a1 − a2)));
(respectively, or (c) dn−1 = 2 and m = 2 gcd(m, gcd(mM−1(a1 + a2)))).

Proof. From Theorem 3.1 and Corollary 3.3 it is clear that (a) is a necessary
and sufficient condition for G(M ;A) or G(M ;±A) to be a circulant except
in the case Zn/MZn ∼= Z/2ηZ × Z/2Z and o(a1 − a2) = 2 (or possibly, in
the case of graphs, o(a1 + a2) = 2.) (According to this theorem, in this case
we also have a circulant.) But then from the results of Section 2, and in
particular (8), condition (b) (or condition (c), in the case of graphs) must
hold. 2

In [13, 10] it was shown that the study of some distance-related parame-
ters, such as the diameter, of 2-step circulant digraphs is best accomplished
by considering them as particular instances of multidimensional circulants
digraphs G(M ; e1, e2) with M a 2 × 2 matrix. Such (strongly connected)
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digraphs have been called commutative 2-step digraphs [12]. The reason is
that the matrix M = (mij) can always be chosen so that the studied param-
eter is easily related to its entries mij . (In some cases the same fact is true
for 2-step circulant graphs, see [4] and [19].) Hence, it is of some interest to
characterize those commutative 2-step (di)graphs which are circulants. As
a particular case of Theorem 3.5, the next corollary gives a complete answer
to this question.

Corollary 3.6 Let M = (mij) be a 2× 2 integer matrix with | detM | = m.
Then the commutative 2-step digraph G(M ; e1, e2) is a circulant digraph iff
either

d1 = gcd(m11,m12,m21,m22) = 1

or
d1 = 2 and m = 2 gcd(m,m22 +m12,m11 +m21). 2

Theorem 3.5 illustrates the fact that, although the knowledge of the
structure of Zn/MZn (Proposition 2.1) gives an upper bound for the di-
mension of a multidimensional circulant (Corollary 3.3), the computation
of its exact value may require more sophisticated and particular techniques.
This is also made apparent for the next result, which gives the dimension
of the direct product of n circulants, all of them with equal prime number
of vertices. The proof is similar to that of Lemma 1 in [14], which was
suggested by Lawrence (personal communication to Leighton.)

Theorem 3.7 Let G1 = G(p;A1), G2 = G(p;A2), . . . , Gn = G(p;An) be
(connected) circulants with p > 2 vertices, p a prime. Let M ∈ Zn∗n be the
diagonal matrix diag(p, p, . . . p) and A = {aei : a ∈ Ai, 1 ≤ i ≤ n}. Then
the multidimensional circulant G(M ;A) has dimension n.

Proof. First note that the (di)graph G(M ;A), with vertex-set V = Z/pZ×
· · · × Z/pZ (n factors), is nothing more than the cartesian product G1 ×
· · · × Gn. Let Ω be any regular Abelian subgroup of AutG(M ;A), |Ω| =
|V | = pn. By Sabidussi’s result it suffices to show that Ω ∼= Zn/MZn ∼=
Z/pZ × · · · ×Z/pZ. For some fixed 1 ≤ i ≤ n and j ∈ Z/pZ, let Gij denote
the sub(di)graph of G(M ;A) spanned by the vertices whose labels have their
ith component equal to j. Now, let us consider the group Ω as acting on
the set G = {Gij : 1 ≤ i ≤ n, 0 ≤ j < p}. To show that any automorphism
ω ∈ Ω preserves the set G (that is, either ω(Gij)

⋂
Gkl = ∅ or ω(Gij) = Gkl),

it suffices to prove that ω preserves the set of n directions. (As expected,
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a direction is defined as the set of edges whose endvertices only differ in
a given coordinate.) To know whether different edges belong to the same
direction we can apply the following algorithm:
Choose a vertex u ∈ V and consider any shortest odd cycle containing it.
Then, all the edges of this cycle clearly belong to one direction, say i. If the
cycle has length p, then the sub(di)graph spanned by its p vertices, Gi(u),
is the copy of Gi = G(p;Ai) that contains vertex u and whose edges belong
to direction i. Otherwise, we consider an edge of the cycle and look for a
different shortest odd cycle (of the same length as before) containing it. In
this way we successively find the edges (and vertices) of Gi(u). If, in some
step, there is no such a shortest cycle we consider another of the (already
found) edges of Gi(u). Because of the nature of Gi, it is not difficult to
realize that we eventually find the searched p vertices spanning Gi(u). To
find the other sub(di)graphs Gj(u), j 6= i, we start again from vertex u and
look, in the same way as before, for shortest odd cycles not containing edges
in the already found directions. This is done until no edge incident to u is left
out of discovered directions. To identify the directions of the edges incident
to other vertices, different from u, we can apply the following procedure:
Consider two adjacent edges with endvertex u and different directions, say
(z,u) ∈ Gj(u) and (u,v) ∈ Gi(u). Look for a shortest cycle containing
them, u, v, . . . , z, u, (note that its length must be at least 4). Then, the
first edge (of the cycle) not in Gi(u) has direction j and, similarly, the last
edge not in Gj(u) has direction i. Finally, once the directions of a sufficient
number of edges incident to a vertex, say w, have been determined, we can
search again for appropriates odd cycles going through it, in order to locate
the (di)graphs Gi(w), i = 1, 2, . . . , n.

From the above, the action of an automorphism ω ∈ Ω on V completely
determines its action on G. Conversely, let u = (u1, u2, . . . , un) ∈ V . Then
u is the only vertex the sub(di)graphs Giui , 1 ≤ i ≤ n, have in common.
Hence, the action of ω on G also determines its action on V .

Let G1, . . . ,Gk be the orbits of G under the action of Ω. Let Ωh, 1 ≤
h ≤ k, be the restriction of Ω to Gh with duplicates eliminated. Then,
Ω ⊆ Ω1 × · · · × Ωk and hence

k∏

h=1

|Ωh| ≥ |Ω| = pn. (10)

Moreover, since Ωh is Abelian and transitive on Gh, it is also regular. There-
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fore |Ωh| = |Gh|, 1 ≤ h ≤ k, and then

k∑

h=1

|Ωh| =
k∑

h=1

|Gh| = |G| = np. (11)

In addition, the order of an orbit, |Ωh| = |Gh|, divides the order of the
permutation group |Ω| = pn, see [16]. Thus there exist integers rh ≥ 0,
1 ≤ h ≤ k, such that |Ωh| = prh , and formulas (10), (11) yield

k∑

h=1

rh ≥ n;
k∑

h=1

prh = np

respectively. Hence, we must have
∑k
h=1 prh ≥ pn =

∑k
h=1 p

rh . But, for
p > 2, prh < prh if rh 6= 1 and prh = prh otherwise. Thus |Ωh| = p for any
1 ≤ h ≤ k, so that Ωh is isomorphic to the cyclic group Z/pZ and, from
(10), Ω ∼= Z/pZ × · · · × Z/pZ (n factors) as claimed. 2

As an example of application of the above theorem, we can state the
following special case:

Corollary 3.8 The cartesian product Kp × · · · × Kp (n factors), and the
cartesian product of n p-cycles (directed or not) both have dimension n. 2

In the above examples there is an easy way to know whether edges in-
cident to a given vertex u belong to the same direction (or to locate the
(di)graphs Gi(u)), owing to the connected components of the neighbour-
hood of u in the case of complete graphs Kp, and to the (shortest) p-cycles
in the case of cycles. Another example comes when each set Ai has the
property that if x, y ∈ Ai, x 6= y, then one at least of the elements x − y,
x+y, −x+y, −x−y belongs to Ai (for example, if Ai is stable under multi-
plication by 2): the directions are then given by the connected components
of the neigbourhood of u.
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