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Abstract: The adoption of mobile and ubiquitous solutions that involve participatory or 

opportunistic sensing increases every day. This situation has highlighted the relevance of 

optimizing the energy consumption of these solutions, because their operation depends on 

the devices‘ battery lifetimes. This article presents a study that intends to understand how 

the prediction of topology control messages in human-centric wireless sensor networks can 

be used to help reduce the energy consumption of the participating devices. In order to do 

that, five research questions have been defined and a study based on simulations was 

conducted to answer these questions. The obtained results help identify suitable mobile 

computing scenarios where the prediction of topology control messages can be used to 

save energy of the network nodes. These results also allow estimating the percentage of 

energy saving that can be expected, according to the features of the work scenario and the 

participants behavior. Designers of mobile collaborative applications that involve participatory 

or opportunistic sensing, can take advantage of these findings to increase the autonomy of 

their solutions. 
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1. Introduction 

Wireless communication and mobile computing technologies are changing the way in which we 

perform our everyday activities, and they are already part of our lives. The ‗always connected‘ 

paradigm is more a reality than an expectation. More and more mobile collaborative applications 

involving opportunistic or participatory sensing are used by people to determine, e.g., the status of the 

vehicular traffic, the security level of a certain area, and the location of interesting places while 

performing tourist activities [1–4]. In order to do that, mobile users can utilize their smartphones as a 

sensor able to detect other computing devices or antennas nearby. Thus, a passer-by could determine 

the presence and location of friends in the area (e.g., detecting their smartphones) or an interesting 

museum (e.g., detecting the signal spread by an antenna of the museum). These applications are 

usually network intensive, therefore their energy consumption becomes a major concern for both users 

and software designers.  

There are two basic approaches used by these applications to perform the sensing activities: 

opportunistic and participatory. In opportunistic sensing the user is not particularly aware of the 

activities being performed by his mobile device (e.g., a smartphone) [5], however in a participatory 

approach the user is an active participant in the sensing activities [1]. In this paper we consider the use 

of a Human-centric Wireless Sensor Network (HWSN) [6] as the support of the sensing activities, 

because these networks support both approaches, and also their combinations. 

Reducing the energy consumption of the nodes participating in these networks allows the 

collaborative sensing solutions to increase their availability. This also contributes to improve the 

trustworthiness of the information provided by them, due a larger number of nodes participate in the 

sensing process.  

In a previous work, the authors proposed to use a predictor of the HWSN topology to help reduce 

the energy consumption of the nodes participating in these networks [7]. Such a proposal was based on 

Optimized Link State Routing with prediction (OLSRp) [8] and it included adaptations to be used on a 

HWSN. The evaluation of such a topology prediction strategy showed promising results in terms of 

energy savings; however it considered only a particular work scenario. Therefore it is not clear which 

are the limits of that proposal.  

This paper extends that previous work trying to determine how the node mobility, the network 

degree and the shape of the application area, affect the amount of energy that can be saved when using 

this prediction strategy. Several simulations were done to determine the impact of these variables. The 

obtained results help identify favorable scenarios where the topology control (TC) strategy can be used 

to support these mobile collaborative applications. These results also allow quantifying the energy 

savings that each participating device can expect, considering the features of the working area and the 

node behavior.  
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Designers of mobile collaborative sensing applications can use these results to determine the 

expected autonomy of the mobile devices, the lifetime of a HWSN, and the trustworthiness of the 

information provided by these applications. The autonomy and availability of these solutions can be 

improved using the proposed energy saving strategy. As shown by Ruiz-Lopez et al. addressing these 

non-functional requirements is critical in this type of systems [9,10]. The use of the proposed strategy 

is not exclusive, therefore it could be used together with other similar proposals to increase even more 

the energy savings.  

The following section briefly describes the main components of a human-centric wireless sensor 

network and its communication dynamics. Section 3 presents the related work. Section 4 describes the 

message prediction process that allows HWSN to reduce the energy consumption. Section 5 describes 

the simulation settings used to determine the limits of this energy saving strategy, as well as the 

obtained results. Section 6 discusses the findings and identifies the lessons learned. Section 7 presents 

the conclusions and future work. 

2. Human-Based Wireless Sensor Network 

A HWSN consists of a mesh that allows a variety of sensors to retrieve and disseminate context 

information in a certain area [6,7]. These sensors can be regular sensors (including smartphones [11]), 

human-based sensors (e.g., people using a mobile application on a smartphone to detect the presence 

of friends in the area), mules (e.g., vehicles that—carrying a mobile computing device—connect two 

or more disconnected networks) and witness units (also known as information sprinklers [12], which 

can be used to store and deliver information on-demand). However, the main actors in these networks 

are the human-based sensors, which have the capability of sending/receiving information on-demand 

to/from other sensors, and also interconnecting the incoming information to produce more complex 

and accurate knowledge. For example, a shopping center employee (i.e., a human-based sensor) that 

does not want to take lunch alone nor talk about work during lunch, goes for a walk to find a friend in 

the neighboring area. He uses the smartphone (i.e., a regular sensor) to detect the presence of a friend‘s 

smartphone in the HWSN of the shopping center, which is formed by the mobile devices used by 

people visiting or working in that place. Thus, the incoming information given by the regular sensor 

(i.e., the smartphone) is used by the human-based sensor to generate knowledge. Such knowledge is 

information that can be then shared with other human-based sensors through the HWSN. These sensors 

types are in fact sensors roles, therefore a certain device can play more than one role in a HWSN. 

These capabilities of a HWSN can be used to support opportunistic and also participatory sensing [1,5]. 

These networks are usually composed by several islands of nodes (i.e., sub-networks), which are 

dynamically created and unified according to the movements of the participants (i.e., the network 

nodes). On the one hand, if we consider each island as a single node, then the HWSN behaves as an 

opportunistic network (oppnet). This means that the nodes are able to route messages from a source to 

a destination node, without knowing if there is a path between them [13]. On the other hand, each 

island behaves as a mobile ad hoc network (MANET), where the existence of path from the source to 

the destination node is previously known. This behavior determines that the network topology is never 

known by the nodes, unless that all of them belong to a single island.  
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Message routing among islands typically requires the participation of mules, which implement store 

and forward mechanisms. However, this propagation activity can also be performed by regular nodes. 

Several criteria can be used to choose the nodes that will participate in this activity; for instance, those 

with the highest mobility level [14–16] or probability of meeting the destination node [17], those with 

similar profiles [18], or any other criterion. These nodes add the capacity of storing (in memory) the 

messages that cannot be delivered, because the destination node is outside the island. These messages 

are kept by the nodes until a suitable ―carrier‖ is found. The carrier forwards them to other islands.  

The propagation process is done until the destination node is met, or the time to live of that message  

is reached. 

The topology control (TC) strategies used in HWSN-based applications usually plays an important 

role in both the message dissemination and energy consumption inside the islands. Designers of these 

applications must decide what is the best way to not only keep the sub-network topology updated in 

this dynamic scenario, but also to reduce energy consumption of the participating devices. The chosen 

strategies should not interfere with the regular traffic of the network. In general, these networks are 

built upon an IEEE 802.11 variant [19]. The IP assignment for the network nodes is outside the scope 

of this paper, but it can be performed following the proposal described in [20]. 

The study presented in this paper considers the use of a MANET for the message delivery inside the 

islands of a HWSN. The messages in the network islands are routed using OLSRp [8], which considers 

the use of a TC message predictor as the main strategy to reduce the energy consumption of the nodes. 

These nodes typically keep a local routing table that allows them to determine if a certain node is or 

not in the island. Mobile collaborative applications can (indirectly) ask the local routing table to 

determine if a certain mobile node (e.g., a friend of the shopping center employee) is in the island, and 

thus determine appropriate periods to send him messages. Clearly if the application decides to deliver a 

message when the destination node is not reachable, such a message will consume energy and 

computing time of the interim nodes without a purpose until the time to live is reached. Therefore, 

mobile collaborative applications can reduce their energy consumption not only because the use of a 

TC message predictor, but also due the TC information can be used at the application level to identify 

appropriate periods to deliver messages to other mobile users. 

3. Related Work 

Several strategies have been proposed to reduce energy consumption in WSNs, however only some 

of them are suitable to be used in a HWSN, as they take into account the node mobility and weak 

communication links among them. Mahfoudh and Minet present an interesting survey of energy 

efficient strategies to maintain the topology of mobile ad hoc and sensor networks [21]. Several of 

these proposals could be eventually used to reduce energy consumption in the islands of a HWSN. 

These energy saving strategies can be classified in four categories: energy efficient routing, topology 

control by tuning the node transmission power, scheduling the nodes sleeping state, and reducing the 

volume of transferred information. Concerning the first category, Tekbiyik and Uysal-Biyikoglu [22] 

present a survey of energy-efficient routing strategies for machine-to-machine networks. Some of them 

could also be used in HWSN. Maleki et al. [23] propose the Lifetime Prediction Routing protocol for 

mobile ad hoc networks, where each node tries to estimate its battery lifetime on the basis of its past 
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activity. Hence, it is possible to increase the overall network lifetime by finding better routing 

solutions that take into account these predictions. Several other proposals have been reported in this 

category, for example [24–26]. These proposals either explore routes that include nodes with maximum 

residual energy, minimize the total end-to-end transmission energy for a message, or a (weighted) 

combination of both strategies.  

Most energy efficient routing strategies are not exclusive, therefore they could be combined 

properly with OLSRp to increase the energy saved by the network nodes. However, it is not clear what 

effect those combinations can have on the network traffic, particularly on the data throughput and 

packet delivery ratio. 

The Kinetic Multipoint Relaying protocol [27] focuses on predicting the node mobility to improve 

routing and save energy. This approach selects relay nodes on the basis of the current relay 

configuration and the future network topology prediction. Similar to the previous category, the 

proposals that use tuning of the nodes transmission power can also be combined with proposals that 

reduce energy consumption using a predictor. 

Concerning the strategies based on the use of sleeping nodes, Ye et al. [28] proposed a robust  

energy-conserving protocol applied to a very large number of small sensors with short battery lifetime. 

The protocol deals with geometric information to derive redundancy, and thus it allows redundant nodes 

to be turned off. A similar strategy has been used by Tian and Georganas [29], by Chen et al. [30], and 

by Xu et al. [31] in wireless ad hoc networks. The proposals in this category do not make sense for use 

in HWSN, due to the fact that all nodes are important actors in the sensing process. Therefore, 

reducing the number of available nodes will only jeopardize the interaction among devices, and 

decrease the trustworthiness of the information obtained from the sensing process.  

An interesting strategy that reduces the volume of transferred information was presented by  

Le et al. [32]. They propose a new MAC technique for event-driven wireless sensor network, which 

creates a hierarchical topology where every node synchronizes the information with its neighbors to 

avoid resending the same data. In this way, if a node receives the same information that was sent to the 

same destination, it will remove this message as it assumes that it has already been sent by one of its 

neighbors, and thus the nodes save energy.  

Hong et al. [33] and also Iwata et al. [34] have made particular proposals to reduce the information 

overhead in MANETs, thus, dealing with the problem of energy consumption in mobile devices 

participating in oppnets. However, none of these proposals use message prediction as the instrument 

that allows reaching such a goal, which is the particular strategy analyzed in this study. 

There are also other proposals that do not fit into the previous categories. For example,  

De Rosa et al. [35] propose the Mobile Gambler‘s Ruin algorithm that uses node mobility prediction to 

save energy. This predictive algorithm assumes a cooperative scenario, in which it tries to identify 

nodes that will more likely be disconnected in the near future. Therefore, this prediction allows the 

coordination layer to re-schedule the work among nodes in advance. However, using this algorithm 

does not ensure that nodes will have an updated version of the network topology when they need to 

send a message. This would impact negatively on the network throughput.  

Montolio-Aranda et al. [36] propose a strategy to reduce resources consumption in wireless ad hoc 

networks when broadcast messages are used to establish network topologies and routing tables. The 

proposal is based on two key concepts to perform the message flooding: the distance-enabled multipoint 
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relaying and the connected dominating set structure. The main limitation of this proposal is the 

flooding of broadcast messages, which is also a resource consuming process. Cervera et al. [37] and 

also Abdou et al. [38] improve the flooding strategy in this scenario, trying to enhance the message 

delivery more than reducing the energy consumption of that process. Rodriguez-Covilli et al. present a 

promising topology control strategy, which is particularly appropriate for MANETs involving nodes 

with high mobility [39]. Unfortunately such a proposal does not optimize the energy consumption of 

the topology control process.  

In [40], the authors try to improve the reliability and availability of WSNs by proposing a data 

forwarding algorithm. The approach is useful when the traffic network is not high. The proposal does 

not consider human-based sensors or mobility of the nodes. In [41], the authors introduce the concept 

of quality of service (QoS) for the routing analysis in WSN and how it impacts in the energy consumption, 

delay and latency in the network. The analysis of QoS performance is not directly included in that 

paper, but it is shown how the utilization of the proposed algorithm extends the life of the sensors. This 

obviously has a positive impact on the network performance. 

Many proposals have been done to implement routing in oppnets, but most of them are not 

concerned of the energy consumption involved in the topology control or message dissemination 

process. Provided these networks do not ensure the existence of a known path between the source and 

destination nodes, most proposals implement routing strategies based on the store and forward 

paradigm [14–18]. In all cases, these routing strategies try to use information about the network 

topology and node behavior, in order to determine which nodes will act as gateways (i.e., nodes 

performing the store and forward of the messages). Typically, the network nodes keep a record of the 

visited places, announced profiles (e.g., likes and dislikes), mobility information (e.g., direction and 

speed), or encounters with other nodes. This information is used to determine the best nodes to 

perform the store and forward the messages. The idea is to maximize the probability of meeting the 

destination node. By doing so, it is also expected to reduce the energy used during the transmission 

process or the number of message copies in the network.  

Most proposals consider the oppnet built from a set of disconnected meshes or local communities 

(i.e., islands). Messages within the community are routed following some traditional routing technique, 

for which the topology of the local sub-network is needed. For instance, the Context-Aware Adaptive 

Routing [16] uses dynamic destination-sequenced distance-vector [42] for doing the local routing. In 

this paper, we analyze the impact of using OLSRp on HWSNs, which are implemented combining 

oppnets and MANETs. The energy saving strategy used in OLSRp is based on the prediction of TC 

messages, and it is briefly described in the next section.  

4. OLSR with Prediction  

The Optimized Link State Routing (OLSR) protocol [43] is a well-known proactive routing 

protocol for ad hoc networks. The nodes in these networks periodically exchange routing information 

to maintain a map of the network topology. The Multi-Point Relays (MPRs) are the network nodes 

selected for propagating the topology information. In OLSR, there are two types of control messages: 

HELLO and Topology Control (TC). HELLO messages allow each node to discover its neighboring 

nodes and obtain information about the state of the links with them. TC messages allow MPR nodes to 
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disseminate neighbor information throughout the network. The mathematical modeling that helps 

understand the MPR selection and topology dissemination (using TC messages) processes is described 

in [44]. In [45] the authors provide a mathematical description of the neighbor nodes discovery and 

link failure detection (using HELLO messages) processes. 

Topology control message prediction can be performed in different ways, and it does not 

necessarily need to rely on the past history. However, a repetitive behavior of the nodes facilitates the 

prediction process. The simplest approach is to use, as a predictor, the ―last-value‖ observed by a node. 

This takes advantage of the values repetition, which in certain work scenarios can represent quite well 

the real behavior of the network nodes.  

Medina et al. [8] have identified that this repetition (i.e., last received message is equal to the 

preceding one) in OLSR topology control (TC) messages is independent of the number of network 

nodes, but it is affected by the node mobility, speed and density. Based on these observations, the 

OLSR routing algorithm was adapted to predict (when possible) the TC messages that nodes need to 

exchange for building an accurate map of its sub-network topology in HWSNs. Thus, the nodes can 

avoid resending the same information, which has two important advantages: (1) a reduction of energy 

consumption and CPU processing time, because fewer routing TC messages are sent and received; and 

(2) a reduction of the network collisions, because only non-redundant routing TC information is 

delivered, thus reducing the message traffic.  

The message prediction process involves the use of a predictor component, which is located 

between network and routing layers. Figure 1 shows the interlayer communication of a node that is 

implementing the OLSRp system. The OLSRp can be implemented as a transparent communication 

intermediary between routing and the network layers. Notice that both approaches (i.e., OLSR and 

OLSRp) deal with exactly the same control traffic. The main difference is that the data sources for the 

OLSR layer are different. When the OLSR is used alone, all the information comes from the network 

layer, whereas when the OLSRp is used, the information can be provided by both the network layer 

and the predictor component. 

Figure 1. Network architecture including the predictor. 

  
if ((Node 1 is MPR) && (gTCm[n]==gTCm[n-1]) then  

     Do Nothing 

else 

    Send gTCm to Network Layer 

if ((Node 2 receives gTCm) then 

     Send gTCm to Routing Layer  

if (pTCm[n]==pTCm[n-1])) then 

    Send pTCm to Routing Layer 
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In order to exemplify the way in which OLSRp works, let us consider the relationship between two 

nodes belonging to the same island of a HWSN. Typically, a ―Node 1‖ periodically generates a TC 

message that we will name generated TCm (gTCm). Following the same pace, the predictor in such a 

node predicts the TC message, based on the last value generated from this node. We will name these 

messages predicted TCm (pTCm).  

The system will deliver a new TC message to other network nodes (including Node 2) as a result of 

applying a merge algorithm that considers the generated and predicted messages. Moreover, this occurs 

if both messages (i.e., gTCm and pTCm) do not contain exactly the same control information. After any 

delivery, the predictor stores locally the new TC message, which will be used for next predictions.  

The Node 2 periodically receives TC messages from other nodes through the network layer. These 

messages are also considered as gTCm by the Node 2. At the same pace the predictor of that node 

determines the predicted TCm, i.e., the next TC message that should be received from other nodes (in 

this case, from Node 1). If no gTCm message is received through the network from a certain node, the 

routing protocol processes the pTCm. In other case, the routing protocol processes the received gTCm 

message, and the predictor keeps a local copy of it for the next predictions.  

Mobile collaborative systems can take advantage of this TC message prediction to increase their 

energy savings. Typically these systems exchange messages, at the application level, between nodes 

that can be in the same island or in others. The ideal situation from an energy consumption point of 

view is that the sender delivers the message when the destination node is reachable. This situation is 

detectable if the sender receives a gTCm from the destination node. In other case, the sender can delay 

the message delivery, as much as possible, waiting for a gTCm. If a gTCm is not received after the 

waiting period, the sender will have to decide if the message will be sent. Depending on the waiting 

period and node mobility, the sender could assume that the lack of a gTCm indicates that the target 

node has left the island, and therefore the sender could discard the message to save energy. 

In a previous work the authors showed that the TC message prediction strategy helps reduce the 

energy consumption of the nodes in a HWSN [7]. However, these results were obtained considering a 

particular setting, therefore it is not clear what are the limits of this proposal. In order to try identifying 

the potential impact of this energy saving strategy on HWSN we have defined five research questions: 

RQ1:  How does the node density affect the energy consumption?  

RQ2:  How does the speed of network nodes affect their energy consumption during the topology 

control process?  

RQ3:  How does the mobility pattern of the nodes affect the energy consumption? 

RQ4:  How does the network degree influence the energy consumption of the nodes? 

RQ5:  How does the shape of the area where the nodes are deployed influence the energy 

consumption of the nodes? 

Several simulations have been done in this study trying to answer these questions. The following 

section describes the simulation settings and presents the obtained results. 
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5. Simulation Scenarios 

The ns-2 [46] simulator was used during this validation process because it allows us to model 

several network scenarios and collect statistics through trace files. The OLSR model and also the 

model used by the ns-2 simulator to evaluate the network performance are described in [47]. 

Using this simulation tool we defined several network topologies, configure wireless network 

interfaces and set the node mobility patterns. The node mobility was modeled using the BonnMotion 

simulator [48], due this tool includes well-known models that represent people mobility in the studied 

scenarios. The mobility models considered in this work have a widely analyzed and validated 

mathematical basis [49–51]. 

For the simulations, we have considered two physical areas that represent regular interaction spaces 

in our everyday life. The first one is a square open area of 300 × 300 m that represents a beach area or 

a park (Figure 2), where people are free to move throughout the whole space, and eventually interact 

with other people (e.g., friends or relatives) in that area. In this scenario the people (i.e., the nodes of a 

HWSN) can remain stationary during a picnic, or walking with or without a clear direction. Figure 2 

shows some matches between people that know each other (i.e., human-based sensors). A mobile 

collaborative application that detects the presence of these people can eventually trigger impromptu 

interactions among them.  

Figure 2. Potential interactions scenario in a park. 

 

The second scenario is also an open area, similar to a pedestrian promenade, but represented by a 

rectangle of 30 × 3,000 m. In such a scenario the people can stay for a while (e.g., sharing a drink) or 

walking through the area (Figure 3). In this place, most pedestrian movements follow a pathway, and 

people can move in both directions. Both interaction scenarios have the same size (90,000 square meters), 

which allows us study the influence of the area shape on energy consumption, by keeping the same 

node density in the interaction space. 

The simulations in those scenarios considered a HWSN composed of 10, 20, 30 and 40 nodes 

respectively, which form various islands according to the people movements. The behavior of these 

nodes alternate between some periods where they are stationary and others in which they move up to 1, 

2, 4 or 6 m per second (mps). The nodes movement can follow one of the following mobility models: 

Random Walk, Self-similar Least Action Walk (SLAW), Nomadic or Reference Point Group Mobility 
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(RPGM) [48]. These mobility models are quite representative of the movements that we can expect of 

a person or those of a group in the studied scenarios.  

Figure 3. Potential interaction scenario in a pedestrian promenade. 

 

The Random Walk model considers people moving randomly in terms of direction and speed, 

within a certain area [49]. This model illustrates the movements of people in a park, where each person 

can move via walking, running or riding a bicycle without using formal paths.  

In the SLAW model the people move quite randomly, but they are aware of the speed and direction 

of their movements. This is similar to the movements of people that use the walking paths of a park. 

This model is also effective in representing casual encounters among community members; e.g., 

students at the university campus or friends in a theme park [50].  

The Nomadic model considers people moving in groups from one location to another. This is 

representative of guided tours at a city downtown or a museum, where the tourists move together 

visiting several interest points [49]. This model considers a particular node per group (i.e., a reference 

node) that determines the next target point, and also a reference path and speed to reach such a place. 

Such a role can be played by the tour guide.  

The RPGM model is similar to the Nomadic, however in this model there is no reference node; 

therefore the entire group determines its motion behavior (including location, speed, direction, 

acceleration, etc.) according to its goals [51]. This model can be used to represent the movements of 

search-and-rescue teams during disaster relief efforts, where different teams perform the same 

operations (i.e., search and rescue survivors) in different sectors of the affected area [49]. 

In this study we considered a HWSN based on WiFi (IEEE 802.11 standards). Fifteen simulations 

were done for each scenario and nine of the most representative simulations where used in this study in 

order to avoid the influence of the special cases. The results shown in this section are the average 

values of these nine selected simulations, thus we have tried to normalize the network behavior. All 

simulations were done using OLSR (the standard protocol), and then repeated using OLSRp (the 

protocol with the predictor).  

We have assumed that all nodes are similar, and with technical features equivalent to a smartphone. 

Particularly, we have considered the features of the iPhone 4 for stationary and mobile nodes. These 

devices have an effective WiFi communication range of 80 m approximately in open areas. In such range 

we can expect that the ad hoc communication among devices is stable and the bandwidth of at least  

50 Kbytes, which is appropriate to support reliable synchronous interactions among mobile nodes.  
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The routing protocols were set to deliver HELLO messages every two seconds and TC messages 

every three seconds. We also generated data traffic (i.e., messages with content generated by the 

mobile application) that consists of several UDP messages transmitted every second. Table 1 

summarizes the simulation parameters, and Table 2 indicates the parameters used for each node‘s 

mobility model. The next sections present the results obtained in the square and the narrow interaction 

area; i.e., interaction scenarios that are representative of a park and a promenade respectively. 

Table 1. Simulation parameters.  

Parameter Value 

Simulation time  1,800 s 

Simulation areas 
300 × 300 m 

30 × 3,000 m 

Number of nodes 10, 20, 30 or 40 

MAC Protocol IEEE 802.11 

Propagation Model TwoRayGround 

Transmission power 0.66 W 

Transmission range 80 m 

OLSR 

Implementation  

Hello Interval 

TC Interval 

UM-OLSR 

 

2 s 

3 s 

Table 2. Parameters of the mobility models.  

Parameter Value 

Mobility model Random Walk 

Max. speed 1, 2, 4 or 6 mps 

Max. pause 60 s 

Mobility model SLAW 

Cluster ratio 25 m 

Max. pause 60 s 

Mobility model RPGM 

Avg. nodes per group 4 

Group size deviation 2 

Max. distance 15 m 

Max. speed 1, 2, 4 or 6 mps 

Max. pause 60 s 

Mobility model Nomadic 

Avg. nodes per group 4 

Group size deviation 2 

Max. distance 15 m 

Max. speed 1, 2, 4 or 6 mps 

Max. pause 60 s 
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5.1. Case Study 1: Interactions in a Square Area  

As mentioned before, the simulations in this case study considered four alternatives for the node 

mobility. A first analysis of the obtained results allowed us identify that the energy consumption in the 

HWSN follows the same pattern when people move according to a Random Walk or a SLAW model. 

The same situation occurs when people‘s movements adhere to a Nomadic or a RPGM mobility 

model. For that reason, the following sections present the simulation results taking into account these 

two groups. 

5.1.1. Simulations Using Random Walk/SLAW 

Figure 4 represents the average energy consumption by node, using OLSR and OLSRp, when these 

nodes move according to a Random Walk model. These simulations consider several densities of 

nodes (i.e., 10, 20, 30 or 40 nodes in the area) and also node speeds (i.e., 1, 2, 4 and 6 m per second). 

The results obtained for HWSN deployed in this open area, indicate that the use of the predictor helps 

reduce energy consumption by 31% (average). 

Considering the average energy consumption we see four groups classified according to the number 

of nodes participating in the network. Clearly this consumption increases with the number of nodes in the 

area, which provides an initial insight about a possible answer to the RQ1 (How does the node density 

affect the energy consumption?). This is an expected result, since increasing the node density will 

increase the number of links among nodes; therefore each participant will have to route an extra traffic 

that impacts on the energy consumption. Although this behavior is present when using both protocols 

(i.e., OLSR and OLSRp), the participation of the predictor helps reduce the slope of the energy 

consumption. This means that OLSRp improves the performance of the HWSN (from an energy 

consumption point of view) in this scenario, and such improvement increases with the node density.  

The node speed in this open area seems to have negligible impact on the average energy 

consumption when OLSR is used. However, its impact is more interesting when using OLSRp. 

Moreover, the dispersion of the energy consumption decreases when the node speed increases. These 

results provide a preliminary answer to the RQ2 (How does the speed of network nodes affect their 

energy consumption?).  

Considering the maximum and minimum values of energy consumption we can see that the predictor 

tends to reduce the peaks, probably saving TC messages of nodes that are highly connected (e.g., central 

nodes of the HWSN) and that involve low mobility. Moreover, the percentage of this reduction seems to 

be directly related to the dispersion level of the energy consumption in each scenario. The larger the 

energy consumption dispersion, the larger the energy savings produced by the predictor.  

Similar results are shown in the simulations when the nodes use a SLAW mobility pattern  

(Figure 5). In this case the node speed is not a variable of the motion model, due to the nodes moving 

according to their recent story [52]. Therefore, they do not abruptly change their direction or speed. 

For that reason their energy consumption is considerably less than in the Random Walk model. Nodes 

in SLAW tend to move together and keep the network topology quite stable, thus they save TC 

messages (and energy). It provides an initial answer to the RQ3 (How does the mobility pattern of the 

nodes affect the energy consumption?). 
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Figure 4. Energy consumption when nodes follow a Random Walk model. 

 

Figure 5. Energy consumption when nodes follow a SLAW model. 

 

Figures 6 and 7 indicate how the network degree affects the average energy consumption of the 

nodes in the previously presented interaction scenarios. This uncertainty was specified as RQ4. The 

results show that the network degree seems to be related to the number of nodes deployed in the area, 

which is not surprising due to the fact that we are considering a square area. Moreover, energy 

consumption behaves slightly different when considering Random Walk model and SLAW model. On 

the one hand, the average energy consumption increases linearly with the network degree when nodes 

move following a SLAW model. On the other hand, the average consumption grows exponentially 

when nodes assume a Random Walk model.  

The nodes that follow a SLAW model tend to have a network degree higher than those adhering to 

a Random Walk mobility model. This can be explained because in SLAW the nodes tend to make 

small changes in their direction and speed, therefore they do not use the whole available space (i.e., 

they are less scattered in the physical scenario) [52]. On the contrary, when nodes use a Random Walk 

model, the network tends to be larger and have less links. This situation also explains why nodes 

moving according to SLAW consume less energy than those adhering to a Random Walk model. In 

any case, it seems that OLSRp increases the energy savings when increases the number of nodes in the 

network islands. 
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Figure 6. Energy consumption versus network degree when nodes follow a Random Walk model.  

 

Figure 7. Energy consumption versus network degree when nodes follow a SLAW model. 

 

5.1.2. Simulations Using Nomadic/RPGM 

This section presents the same simulation scenarios than the previous one, but involving nodes that 

move following a Nomadic or a RPGM model. Figures 8 and 9 show the obtained results for energy 

consumption considering these mobility patterns. Compared to Random Walk and SLAW models, the 

Nomadic and RPGM models show a significant global reduction of the energy consumption, 

particularly when number of nodes increases. This can be explained because latter models determine 

its behavior based on groups. This means that nodes inside a group are close enough to be one hop 

away among them, minimizing thus the number of TC messages and the energy consumption. The 

simulation results obtained using Nomadic and RPGM supports the observations made on the 

relationship between node speed and energy consumption dispersion. Moreover, the amount of energy 

saved by the predictor is not directly related to such dispersion. In this case the predictor seems to 

show a consistent energy reduction rate of approximately 13%. 
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Figure 8. Energy consumption when nodes follow a Nomadic model. 

 

Figure 9. Energy consumption when nodes follow a RPGM model. 

 

Figure 10. Energy consumption versus network degree when nodes follow a Nomadic model. 

 

The average energy consumption of the nodes and its dispersion is similar for both mobility models, 

particularly when the network has a low density of nodes (i.e., 10 or 20 nodes in the area). However 

when the network overcomes a certain network degree (that number seems to be 8), the RPGM model 

tends to consume less energy and have a dispersion less than in the Nomadic model. This situation can 
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be observed clearly comparing Figures 10 and 11. Provided that the differences in their performance 

are so small, we could consider these two motion models as similar (in terms of energy consumption) 

for this scenario. The next section presents and discusses the simulation results obtained in the narrow 

working area. 

Figure 11. Energy consumption versus network degree when nodes follow a RPGM model. 

 

5.2. Case Study 2: Interactions in a Narrow Area  

In this section we present the results of the simulations done using the same settings as in the 

previous section, but in this case the nodes were deployed in an area 30 × 3,000 m. The main goal to 

repeat the simulations was to try understanding the influence that the shape of the working area has on 

both, the node energy consumption and the energy saving produced by the predictor. Next we present 

the obtained results considering the studied mobility patterns. 

5.2.1. Simulations Using Random Walk/SLAW 

In this scenario, nodes adhering to a Random Walk or SLAW model have shown an almost 

identical energy consumption and network behavior. This happens because the working area is too 

long and therefore the node encounter rate is really low. This means that most of the time the nodes are 

isolated, therefore they do not have to disseminate TC messages and thus they save energy. Evidence 

of this situation is shown in Figure 12, where we can see that the nodes have low energy consumption, 

regardless of the network node density.  

The network degree shown in Figure 13 also supports this finding. Therefore we can say that the 

shape of the working area definitively affects the node encounter rate, and the node energy consumption 

(RQ5). This consumption and the benefits of using the predictor tend to increase with the network 

degree. Contrary to the results obtained in the square area, the consumption dispersion does not depend 

on the node speed and the energy saved is not related to the dispersion of the node energy consumption.  

The simulations in this scenario allow us to realize that the key aspect to be considered when 

analyzing the energy consumption (or the node meeting rate) is the network degree instead of the node 

density. In narrow areas, a higher number of nodes will be close to a border, therefore part of their 

communication threshold will be outside the interaction area. This means that the potential influence of 

these nodes would be different depending on where they are located. Therefore, the metric to be 
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considered when determining node meeting rates and energy consumption (during the TC process) 

should be the network degree or the density of node communication areas. Each of these areas is 

defined as the physical space covered by the communication threshold of a node.  

Figure 12. Energy consumption when nodes follow a Random Walk model. 

 

Figure 13. Energy consumption versus network degree when nodes follow a Random Walk model. 

 

In order to determine how narrow a working area is, it is important to consider the relationship 

between the node communication threshold and the shortest distance between the borders of the 

considered area. In case of irregular areas, they must be split in regular sub-areas to analyze the node 

energy consumption. 

5.2.2. Simulations Using Nomadic/RPGM 

The results obtained in the scenario of narrow shape, when the nodes move according to a Nomadic 

or a RPGM model, are almost identical. Here we can also see that the groups were isolated most of the 

time and they had some sporadic encounters with each other. Figures 14 and 15 present evidence of 

this. Considering that each group has (in average) four members, the network degree indicates that in 

the best case the network was split in several sub-networks composed just of two groups.  
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Figure 14. Energy consumption when nodes follow a RPGM model. 

 

Figure 15. Energy consumption versus network degree when nodes follow a RPGM model. 

 

The reduction of the energy consumption in this scenario is really low, because there are almost no 

topology changes. This happens due to group members are moving together with almost no encounters 

between groups. Therefore, few TC messages are disseminated, and the dissemination process involves 

few nodes due to the network is split. In the next section we summarize the obtained results and 

present the preliminary answers to the stated research questions. 

6. Discussion  

Analyzing the simulation results we can say that the predictor helps reduce the energy consumption 

of the nodes during the topology control process in all studied scenarios. In the square area the average 

reductions of the energy consumptions were the following: 30.1% when using Random Walk, 26.6% 

for SLAW, 14.7% for Nomadic 11.7% for RPGM. Clearly, when the nodes follow a Random Walk 

model, their motion behavior is independent of other nodes. Therefore the network becomes larger and 

a higher number of TC messages are disseminated. The energy consumption and its dispersion 

increases, and also increases the energy saved by the predictor.  
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The SLAW model represents an interim point between a random and a group mobility model, 

because the nodes move randomly (in terms of speed and direction) taking into account their recent 

history. Therefore, they finally tend to move coordinately with some other network nodes, which 

reduce the number of changes in the network topology and also the energy consumption due to the 

dissemination of TC messages. For that reason the energy saved by the predictor in SLAW is less than 

in the Random Walk model. Following the same reasoning we can understand why in group motion 

models (i.e., in Nomadic and RPGM) the predictor can reduce between 11% and 15% of the energy 

consumed by a node during the topology control process. Here, each group behaves as a single large 

node (or network island) that moves randomly through the working area, producing sporadic 

encounters between groups. This situation becomes evident, observing the network degree in the 

previously presented scenarios. 

On the other hand, the reduction of the energy consumption produced by the predictor was low in 

the narrow area, as most nodes remain isolated due the shape of the simulated place. In the simulations 

that used the Random Walk and SLAW, the nodes become isolated, and in Nomadic and RPGM, the 

groups are isolated. The average reductions in this scenario were the following: 15.3% when using 

Random Walk, 12.6% for SLAW, 4.7% for Nomadic, and 3.6% for RPGM. The influence of the 

predictor is clearly different depending on the features of the interaction scenarios. In order to 

understand the limits of the TC message prediction strategy, we next present the preliminary answers 

to the stated research questions.  

Concerning the RQ1 (How does the node density affect the energy consumption?), we can say that 

the density is not an appropriate metric to understanding the energy consumption, due to reasons 

previously mentioned. In that sense the network degree or the density of the node communication areas 

are better predictors of this energy consumption. Evidently, the energy consumption per node increases 

with the network degree; however, the way in which it rises depends on other variables; e.g., the 

motion behavior of the nodes or the shape of the working area. More connected mobile nodes tend to 

produce more topology changes and therefore the predictor is able to save a higher amount of energy. 

This also answers the RQ4 (How does the network degree influence the energy consumption of the 

nodes?). This network degree seems to be independent of the node speed, and dependent on the 

density of the node communication areas. 

Concerning the RQ2 (How does the speed of network nodes affect their energy consumption during 

the topology control process?) the nodes adhering to a group motion model (i.e., Nomadic or RPGM) 

tend to increase their energy consumption with the speed, but just in scenarios where they have frequent 

encounters with other groups. This tendency is stronger in motion models where the nodes move more 

independently from other nodes (e.g., in the Random Walk model). If the nodes move slowly, the 

network topology will have few changes and therefore it becomes more predictable. In these cases, the 

use of the predictor makes an important difference in the energy consumption of the nodes. 

Concerning the RQ3 (How does the mobility pattern of the nodes affect the energy consumption?) 

the first aspect that we have to remark on is that the group motion models are clearly different from 

those where the nodes move in an independent way. As mentioned before, we can model these nodes 

groups as large nodes (i.e., islands) that totalize the energy of the group members, and that move 

randomly through the working area. By making these considerations, the group motion models behave 
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similar to the Random Walk model in terms of node energy consumption. Clearly the energy 

consumption during the topology control process reduces if we increase the density of network nodes. 

Concerning the RQ5 (How does the shape of the area where the nodes are deployed influence the 

energy consumption of the nodes?) we can say that the shape of the working area is important, because 

it contributes directly to determining the node encounter rate. The number of TC messages delivered 

through the network (and the node energy consumption) will depend on such a rate. Therefore, a 

higher rate would allow the predictor to save a higher amount of energy. 

The experiments reported in this article are representative of people moving according to the 

described models in open areas. The experimentation settings do not consider signal interference or 

temporal obstacles that could be present in urban areas; therefore the simulation results should  

be considered as set of valid tendencies instead of absolute values. The experimentation in real 

scenarios would allow us to understand the magnitude of the difference between the real and the 

simulated scenarios.  

7. Conclusions and Future Work 

In a HWSN, human-based sensors (i.e., the devices of mobile users) participate in the message 

routing, therefore their energy consumption becomes a critical issue. The power autonomy of these 

nodes (usually, smartphones) determines the time period in which they will be useful for their 

respective users. Trying to contribute increasing the power autonomy of these devices, this article 

presents a study that determines the impact that the TC message prediction has on the energy 

consumed by these devices, when they participate in a HWSN.  

The study compared the traffic of TC messages in OLSR and OLSRp, considering the islands that 

are dynamically formed in a HWSN due the movements of the nodes. The simulation scenarios used in 

this study represent urban areas like parks, beaches, promenade, shopping malls, university campuses 

and theme parks, where people can use a HWSN to support interactions with other people, or between 

them and the environment (e.g., for detecting interest places near the people location).  

The obtained results show that the use of prediction effectively helps reduce the number of TC 

messages and consequently the energy consumed by the nodes in all studied scenarios. In order to 

identify the conditions in which the predictor saves energy and the amount of these savings, we have 

analyzed the impact of five variables that affects the message traffic in a HSWN: node density, node 

speed, node mobility pattern, network degree, and shape of the working area. All of them impact on 

energy consumption, but at different levels of importance.  

The most influencing factor was the network size, which is a combination of node density, network 

degree and shape of the working area. Particularly, the percentage of energy savings increases in large 

networks. Therefore, a high node density, a low network degree and few network partitions will tend to 

maximize the network size and the benefits of the TC message prediction. 

The results also indicate that the motion model of the nodes affects the amount of energy 

consumption, and also the saved energy. Motion patterns in which nodes move in groups (e.g., in 

Nomadic or RPGM models) make the nodes consume less energy, and the energy saved by the 

predictor seems to be a percentage of energy consumed by them. Such a percentage depends on the 

network degree; the more the network degree, the more the percentage of energy saving.  
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In motion patterns where nodes move independently (e.g., in the Random Walk model), the nodes 

tend to consume more energy and the predictor tends to increase the percentage of saving. Motion 

models in which the nodes follow certain coordination in their movements (e.g., in SLAW), energy 

consumption and saving represents an interim point between the previous ones.  

The rest of the studied variables (i.e., node density, network degree, area shape, and node speed) 

also affect the energy consumption and savings, because they contribute to determining the network 

size. Summarizing, the energy consumption and the savings produced by the predictor increases with 

the network size and the node mobility. Using this information, designers of mobile collaborative 

systems can understand the expected communication capabilities of the system, and also the amount of 

energy that the predictor would be able to save in every work scenario. These results can also help 

designers to fine tune the predictor, in order to increase the percentage of saved energy in a particular 

work scenario; i.e., to adapt the prediction process to a specific activity or place. As the predictor 

contributes to save energy without affecting the network throughput, software developers do not need 

to worry about determining when the predictor should be used. In the worst case, the use of this 

prediction strategy will have a neutral impact on the energy consumption of the nodes. The use of a 

message predictor is almost independent of the routing protocol used in the islands of a HWSN, 

therefore this strategy can be easily reused in several other link state routing protocols. 

The use of this strategy can be combined with several other energy reduction proposals, and thus 

increasing energy saving. For instance, we can use the Mobile Gambler‘s Ruin (MGR) algorithm to 

predict the node mobility in a MANET (as proposed by De Rosa et al. [35]), and the proposed predictor 

to save extra TC messages. Clearly, when two or more nodes move together, which is predictable by the 

MGR algorithm, the proposed predictor can also avoid disseminating TC messages because it infers that 

the nodes are moving in a group. This strategies combination contributes to save extra energy. 

The TC message predictor can also help mobile collaborative applications to save additional energy 

only by making an intelligent processing of the TC messages. For instance, using that information a 

node can identify appropriate periods to deliver messages to a destination node, and also avoid the 

message dissemination if the destination node is no longer part of the network. The amount of this 

additional saving will depend on both, the number of messages exchanged (at the application level) by 

the system and also on the policy that it uses to decide when delivering a message.  

The next steps in this initiative consider the evaluation of this prediction strategy in real scenarios, 

as a way to confirm the results obtained in the reported simulations. We will then explore the use of 

predictors in other routing protocols for oppnets. Finally, it would be interesting to compare this 

proposal with others existing ones to trying identifying the best alternative to support each particular 

work scenario. 
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