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Abstract

We claim that imposing energy conservation to the emission of Hawking radiation
and to the modelling of black hole evaporation might prevent black hole explosions as
well as violations of the third law of black hole thermodynamics. This is specifically
shown for the general class of spherically symmetric quantum black holes described
by an effective quantum vacuum invariant under boosts in the radial direction. No
assumptions are made with regard to the specific framework from which the quantum
black holes are derived.
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1. Introduction

The celebrated result that black holes (BH) radiate a thermal spectrum of particles was

first derived [1] using quantum field theory on a fixed curved background (Schwarzschild’s

solution). In this model the black hole temperature was proportional to the inverse of

the black hole mass. In this way, if one followed the evolution of the black hole as it

emits radiation with its consequent mass loss, one would expect a final event in which the

temperature and the luminosity would diverge, indicating a final black hole explosion. Of
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2E-mail: f.fayos@upc.edu



course, one would go too far in deducing that real black holes explode from such a simple

model. For instance, it lacks of the quantum gravity corrections that one expects to appear

as the last stages of black hole evaporation are reached. Nowadays, different approaches to

quantum gravity exist. Some of the models derived from them suggest a final BH explosion

while some others challenge this picture. In the later case, it is usual that the final explosion

is avoided by reducing Hawking radiation when the black hole mass is close to a critical

mass of the order of Planck’s mass. This could represent an extra problem since a black hole

that effectively reached this critical value would be in absolute zero temperature. In this

way, such a black hole would violate the third law of BH thermodynamics that, in its Nerst

version, states that absolute zero temperature cannot be reached by a finite number of steps

(i.e., by any physical process).

In this paper we propose to use another approach to black hole explosions and the problem

of the violations of the 3rd law. It is based in the fact that the procedure applied in [1] was not

in agreement with energy conservation, since the energy radiated by the black hole cannot be

balanced by a corresponding decrease of its mass if a fixed background is assumed. On the

contrary, it was shown in [2] that Hawking radiation can be derived taking into account the

back-reaction effect of the radiation on the black hole thanks to the requirement of energy

conservation.

Therefore, our aim in this paper will be to analyze the relevance of energy conservation

in the last stages of black hole evaporation by following the procedure proposed in [2]. We

will try to show that energy conservation might be sufficient to prevent black hole explosions

and violations of the third law. The approach will be rather general since a definitive

quantum gravity theory is not known. In this way, the proof will be carried out for general

effective spherically symmetric spacetimes describing a quantum vacuum invariant under

radial boosts, so that the results will be directly applicable for effective spacetimes coming

from many different frameworks (see, for example, [4][5][6][7][8][9]).

The paper has been divided as follows. In section 2 we introduce the effective metric

describing the black hole and we describe the BH properties from a strictly thermal point

of view. This will allow us to model the thermal evaporation of the black hole and to

analyze its possibilities of either ending in a final explosion or violating the third law of

BH thermodynamics. In section 3 we study the black hole under the approach of energy

conservation. This will lead us to a different black hole luminosity that will later be used to

model the evaporation process under the requirement of energy conservation. The subsequent

BH evolution will be then contrasted with the thermal evolution found in the previous section.

Finally, the results are discussed in section 4.
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2. BH explosions and violations of the 3rd law in the

thermal approach

Let us consider an isolated spherically symmetric black hole in vacuum that is completely

characterized by its mass in an effective asymptotically flat spacetime. The general effective

metric for a spherically symmetric quantum vacuum invariant under boosts in the radial

direction [3] can be written (once a dimensional reduction, if necessary, has been performed)

as3

ds2 = −f(R; M)dt2S + f(R; M)−1dR2 + R2dΩ2, (2.1)

where the dependence f(R; M) indicates the fact that for every ADM mass M there is a

specific effective metric. One can find this form for the effective metric coming from many

different approaches to Quantum Gravity [4][5][6][7][8][9]. Since we want to treat the general

case comprising all reasonable effective metrics with the form (2.1), we will be less restrictive

than usual and we will just assume that f(R; M) is, at least, a C1 function4 in the effective

space-time. We will also be less restrictive than usual by allowing the possibility to the

effective spacetime to be singular, although only at R = 0, what will allow us to contemplate

a wider range of behaviours.

As is well-known, the existence of horizons requires f(R; M) = 0. Let us assume that

for a given black hole mass there is an outer horizon R+. Then, as result of a standard

Euclidean continuation of the geometry through R+, one gets that the outer horizon emits

Hawking radiation with a thermal distribution of temperature

T =
κ

2π
, (2.2)

where κ is the surface gravity corresponding to the outer horizon

κ =
1

2

df

dR

⌋

R=R+

. (2.3)

An interesting possibility for quantum black holes that we will also take into consideration

in this paper is that the black hole could have a critical mass:

3Let us remark that there are proposals for effective metrics representing spherically symmetric black
holes that are not invariant under boosts in the radial direction (i.e., cannot be written in the form (2.1)).
However, it can be shown that the main results in this paper can also be applied to them. As we will see,
this is due to the physics behind our results which is independent of the detailed calculations.

4Note that we will need the existence of a well-defined surface gravity (2.3) and, thus, a first derivative
of f at R+. Let us also remind that the usual assumption would be that f is C2 so that the effective
energy-momentum tensor obtained through Einstein’s equations would be defined at every point [10].
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Definition: A black hole has a critical mass M = Mcr(≥ 0) if: i) the surface gravity of its

outer horizon is zero and ii) the specific effective metric from which it comes has no horizon

for M < Mcr.

Thus, the temperature of the outer horizon for a BH with critical mass would be zero.

Moreover, f ′(R+; M < Mcr) (where the prime denotes derivative with respect to R) would

not be defined. Note that many quantum black holes possessing critical masses and coming

from many different frameworks have been proposed in the current literature (see, for exam-

ple, [5][6][7][8][9]. We have added a short appendix (A) with a couple of examples for the

reader not familiarized with this possibility).

However, let us recall that if the BH possesses an outer horizon with its corresponding

non-zero temperature, this implies a standard thermal distribution for the emitted photons

< n(E) >Stand.=
1

exp(E/T )− 1
, (2.4)

where E is the photon energy, and a total flux of radiated energy [11] approximately given

by

LStand. ' 1

2π

∫ ∞

0

< n(E) >Stand. γE0EdE, (2.5)

where γE0 is the greybody factor and its subindex ‘0’ indicates that here we only consider

the main contribution to the grey-body factor that comes from the zero angular momentum

l = 0 [12]. It can be shown (see, for example, [12]) that (without taking into account energy

conservation) for any static spherically symmetric black hole with outer horizon R+, and

whenever EM ¿ 1, the greybody factor takes the form

γE0 ' 4E2R2
+. (2.6)

Therefore, the luminosity can be approximately expressed as

LStand. ' 1

2π

∫ ∞

0

4E3R2
+

exp(2πE/κ)− 1
dE =

1

120π
R2

+κ4. (2.7)

2.1. Backreaction: Modeling BH evaporation

In order to model the backreaction produced by the emission of radiation, let us first write the

effective metric (2.1) in terms of ingoing Eddington-Finkelstein-like coordinates {u,R, θ, ϕ},
where

u = tS +

∫ R dR′

f(R; M)
,

as

ds2 = −f(R; M)du2 + 2dudR + R2dΩ2. (2.8)

4



Now, we can model the mass lost taking into account the heuristic picture that describes

Hawking radiation as due to a tunneling process. I.e., whenever a pair of virtual particles

is created, when the particle with positive energy escapes to infinity its companion, with

negative energy, falls into the black hole thus reducing the BH mass. In this way, if we

consider negative energy massless particles following ingoing null geodesics u =constant, the

mass at infinity of the black hole becomes a decreasing function M(u). The metric which

incorporates the effect of the decreasing BH mass due to the ingoing null radiation is (2.8)

with f(R; M) replaced by f(R; M(u))[= f(R, u)]

ds2 = −f(R; M(u))du2 + 2dudR + R2dΩ2. (2.9)

On the other hand, the flux of negative energy particles directed towards the black hole

equals the flux of outgoing radiated particles that reach the future lightlike infinity and,

therefore,
dM

du
= −LStand.(M) (2.10)

2.2. Black hole complete evaporation and explosions

If the effective metric is such that the outer horizon exists for all M > 0 with a non-zero

surface gravity, then (2.7) inform us that an evaporating black hole has to emit radiation

as long as it has mass. On the other hand, close to zero mass (no BH), the outer horizon

R+ has to approach zero. The behaviour of the BH near zero mass depends on the specific

behaviour of κ or, alternatively, f ′(R+(M); M). In this way, we have the following

Proposition 1 Let us consider an effective metric whose outer horizon exists for all M > 0

with a non-zero surface gravity. If the metric satisfies around its zero mass

f ′cR+ ' aMα and R+ ' bMβ, (2.11)

where β > 0 and 2β + 4α < 1, then a thermally evaporating black hole modelled with this

metric will reach the total evaporation in a finite time.

First, note that the requirement β > 0 comes from the fact that the outer horizon has to

approach zero as the BH completely evaporates. Now, to show the proposition it is enough to

use (2.11) in (2.7) in order to evaluate (2.10). Then one directly gets that only if 2β+4α < 1

zero mass is reached for a finite time. On the other hand, this together with the condition

β > 0 implies that a necessary condition for the total evaporation to occur is α < 1/4.

One can further consider the subcase in which this evaporation is explosive, meaning that

the luminosity approaches infinity as the mass tends to zero.
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Corollary 1 For a thermally evaporating black hole satisfying (2.11) with β + 2α < 0 the

evaporation ends in a final explosion.

What comes directly from (2.7). Note that this together with the condition β > 0 imply

that the necessary condition for the explosion to occur is α < 0. Nevertheless, as far as we

know, in the models that one finds in the literature α satisfies

α ≥ −1.

Therefore, from now on we will assume that this inequality is satisfied for the models in this

paper. It is interesting to notice that the minimum value that one finds for α corresponds

to the standard evaporation of a Schwarzschild black hole in which αSch. = −1 (βSch. = 1).

2.3. Violations of the 3rd law

If the effective metric is such that the surface gravity of the outer horizon κ is zero for a

mass M = Mcr > 0, then (2.7) inform us that an evaporating black hole with initial mass

bigger that Mcr has to emit radiation while approaching its critical mass. The behaviour of

the BH when its mass is close to Mcr depends on the specific behaviour of κ or, alternatively,

f ′cR+ as they approach zero. In this way we have the following

Proposition 2 Let us consider an effective metric possessing an outer horizon whose surface

gravity is zero for a mass M = Mcr > 0 while R+(M ≥ Mcr) > 0. If the metric satisfies

around the critical mass

f ′cR+ ' a(M −Mcr)
α, (2.12)

where 0 ≤ α < 1/4, then a black hole whose thermal evaporation from M > Mcr were

modeled with this metric would violate the 3rd law of black hole thermodynamics.

First, note that the requirement α ≥ 0 has to be imposed since we assume that f is

C1 in R > 0. Then, using (2.12) in (2.7) in order to evaluate (2.10) it is easy to see that

the mass reaches the critical value for a finite u if α < 1/4. In other words, it reaches zero

temperature (2.2) in a finite time, what would represent a violation of the third law of black

hole thermodynamics.

3. Energy conservation approach

Let us now consider Hawking radiation coming out from a quantum black hole thanks to

the tunneling process occurring through the outer horizon R+ and taking into account the
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consequences of energy conservation. In order to do this, we will rewrite the effective metric

(2.1) in Painlevé-like coordinates [13] so as to have coordinates which are not singular at the

horizon. It suffices to introduce a new coordinate t replacing the Schwarzschild-like time tS

such that t = tS + h(R) and fix h(R) by demanding the constant time slices to be flat. In

this way one gets:

ds2 = −f(R; M)dt2 + 2
√

1− f(R; M)dtdR + dR2 + R2dΩ2, (3.1)

In these coordinates the radial null geodesics describing the evolution of test massless parti-

cles are given by
dR

dt
= ±1−

√
1− f(R; M) (3.2)

with the upper (lower) sign corresponding to outgoing (ingoing, respectively) geodesics.

In [14][15][2][16] it was found that, when a self-gravitating shell of energy E travels

in a spacetime characterized by an ADM mass M , the geometry outside the shell is also

characterized by M , but energy conservation implies that the geometry inside the shell is

characterized by M −E. It was also found that the shell then moves on the geodesics given

by the interior line element. In this way, according to (3.2), one expects a shell of energy E

to satisfy the evolution equation

dR

dt
= ±1−

√
1− f(R; M − E). (3.3)

Let us now consider pair production occurring just beneath the event horizon with a

positive energy particle tunneling out. The standard results of the WKB method for the

tunneling through a potential barrier that would be classically forbidden can be directly

applied due to the infinite redshift near the horizon [2]. In particular, the semiclassical

emission rate will be given by Γ ∼ exp{−2ImS}, where S is the particle action. Therefore,

we have to compute the imaginary part of the action for an outgoing positive energy particle

which crosses the horizon R+ outwards from Rin to Rout.

ImS = Im

∫ Rout

Rin

pRdR = Im

∫ Rout

Rin

∫ pR

0

dp′RdR. (3.4)

Using Hamilton’s equation Ṙ = +dH/dpRcR and H = M −E ′, this can be written with the

help of (3.3) as

ImS = Im

∫ M−E

M

∫ Rout

Rin

dR

Ṙ
dH =

= Im

∫ E

0

∫ Rout

Rin

dR

1−
√

1− f(R; M − E ′)
(−dE ′). (3.5)
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If we define

g(R+; M − E ′) =
∂f(R; M − E ′)

∂R

⌋

R=R+(M−E′)
,

where R+(M − E ′) is the position of the outer horizon when the BH mass at infinity is

M − E ′, then by deforming the contour of integration so as to ensure that positive energy

solutions decay in time and taking into account that a particle just inside the horizon tunnels

just outside a shrunken horizon (Rin > Rout) one gets

∫ Rout

Rin

dR

1−
√

1− f(R; M − E ′)
= −iπ

2

g(R+; M − E ′)
.

We can then write (3.5) as

ImS =

∫ E

0

2π

g(R+; M − E ′)
dE ′ . (3.6)

Tunneling also happens when a pair is created outside the horizon and the negative energy

particle tunnels into the black hole. Then, following the procedure for the Schwarzschild case

in [2], the imaginary part of the action for this ingoing particle satisfies

Im

∫ −E

0

∫ Rin

Rout

dR

−1 +
√

1− f(R; M − E ′)
dE ′ =

∫ E

0

2π

g(R+; M − E ′)
dE ′, (3.7)

what coincides with the result for the previous channel (3.6). Both channels contribute to

the rate of the Hawking process, but we have seen that both contributions provide us with

the same exponential term for the semiclassical rate

Γ ∼ e−2ImS = exp

(
−4π

∫ E

0

dE ′

g(R+; M − E ′)

)
. (3.8)

When quadratic terms are neglected we can develop Im S up to first order in E as

ImS ' − 2π

g(R+; M)
E

obtaining a thermal radiation for the black hole (Γ ∼ exp{−E/T}) with temperature

T =
g(R+; M)

4π
=

1

4π

∂f

∂R

⌋

R=R+

, (3.9)

that coincides with the expected temperature (2.2).
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3.1. Spectral distribution and luminosity

Notwithstanding the comments about the temperature of the black hole, it is important

to remark that the higher order terms in E, neglected in (3.9), imply a deviation from

pure thermal emission. If we consider the full consequences of energy conservation, now the

distribution function for the emission of photons is not the standard Boltzmann distribution

(2.4), but the distribution (see [17] –correcting the result in [14][15]–)

< n(E) >=
1

exp (2ImS)− 1
.

For our effective metric this can be written as

< n(E) >=
1

exp
(
4π

∫ E

0
dE′

g(R+;M−E′)

)
− 1

. (3.10)

On the one hand, let us assume that a black hole has a mass M and the effective metric

does not posses a critical mass. Then, energy conservation would impose the range of energies

for the emitted particles to be 0 < E ≤ M .

On the other hand, let us assume that a black hole has a mass M and the effective

metric has a critical mass Mcr < M . If the energy of the emitted particle E reached

the value E = M − Mcr then the black hole mass would be reduced to its critical mass

and g(R+; M − E) = g(R+; Mcr) = f ′(R+; Mcr) = 0. However, by definition of critical

mass, g(R+; M − E < Mcr) = f ′(R+; M − E < Mcr) is not defined. In this way, the

distribution function in case a critical mass exists would be limited to a range of energies

0 < E ≤ M −Mcr. Note that this already imposes energy conservation by forbidding the

emitted quantum to carry more energy than the black hole mass.

In both cases, we see that the energy conservation approach tell us that a thermal spec-

trum, which would contain a tail of arbitrarily high energies, can not provide us with the

correct spectrum.

Now, we would like to use this distribution in order to write the luminosity when energy

conservation is taken into account. However, this requires the use of a grey-body factor that

should take energy conservation into consideration. The correct grey-body factor can be

found using (2.6) and takes the form (see [18])

γEC ' 4E2R2
+(M − E), (3.11)

where, as previously, R+(M − E) is R+ for a mass at infinity M − E.

If we now define

M̃cr =

{
0 if @Mcr

Mcr if ∃Mcr

, (3.12)
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we can use (3.10) and the greybody factor γEC in order to write the luminosity when energy

conservation is satisfied as

LEC ' 1

2π

∫ M−M̃cr

0

< n(E) > γECEdE

=
1

2π

∫ M−M̃cr

0

4E3R2
+(M − E)

exp
(
4π

∫ E

0
dE′

g(R+;M−E′)

)
− 1

dE, (3.13)

3.2. Preventing black hole evaporation and explosions

In subsection 2.2 we saw that the thermal approach implies that if close to zero mass

f ′cR+ ' aMα , R+ ' bMβ,

where 2β + 4α < 1, β > 0 and α ≥ −1, then the BH reaches its total evaporation (what

includes the case of a final explosion). However, under the perspective of the energy con-

servation approach, we can now state a proposition specifically written to contrast with

proposition 1 as follows.

Proposition 3 Let us consider an effective metric whose outer horizon exists for all M > 0

with a non-zero surface gravity. If the metric satisfies around its zero mass

f ′cR+ ' aMα and R+ ' bMβ, (3.14)

where 2β + 4α < 1, β > 0 and α ≥ −1, then a black hole satisfying energy conservation and

modelled with this metric will not reach the total evaporation.

In order to show the proposition, it suffices to note that, when energy conservation is

taken into account, one gets a luminosity (from (3.13))

LEC ' cM3+α+2β, (3.15)

where c is a constant (see appendix C). The solution of

dM

du
= −LEC (3.16)

for the luminosity (3.15) with5 β > 0 and −1 ≤ α < 1/4 provides us with a mass evolution

than only reaches a zero mass and, thus, absolute zero for u →∞. Therefore, when energy

conservation is considered, the total evaporation is not reached.

Note, as a corollary, that a BH explosion will not happen. In particular, even considering

the Schwarzschild solution (αSch. = −1; βSch. = 1) one does not obtain an explosion when

energy conservation is taken into account, but a final endless evaporation (see also [19]).

5What includes the case that reached the total evaporation in the thermal approach as a subcase.
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3.3. Preventing violations of the 3rd Law

In subsection 2.3 we saw that the thermal approach implies a violation of the third law of

black hole thermodynamics if

f ′cR+ ' a(M −Mcr)
α

and 0 ≤ α < 1/4. However, if this model is considered under the perspective of the energy

conservation approach we have the following

Proposition 4 Let us consider an effective metric possessing an outer horizon whose surface

gravity is zero for a mass M = Mcr > 0 while R+(M ≥ Mcr) > 0. If the metric satisfies

around the critical mass

f ′cR+ ' a(M −Mcr)
α, (3.17)

where 0 ≤ α < 1/4, then the temperature of an evaporating black hole satisfying energy

conservation and modelled with this metric never reaches absolute zero. In other words, the

black hole does not violate the 3rd. law of black hole thermodynamics during its evaporation.

In order to show this, it suffices to note that, when energy conservation is taken into

account, one gets a luminosity (from (3.13))

LEC ' c(M −Mcr)
3+α, (3.18)

where the constant c takes the value (see appendix B)

c =
aR2

+(Mcr)

2π2

(
ψ

(
4

1− α

)
− 3ψ

(
3

1− α

)
+ 3ψ

(
2

1− α

)
− ψ

(
1

1− α

))

and ψ(z) is the digamma function. The solution of

dM

du
= −LEC (3.19)

for the luminosity (3.18) with 0 ≤ α < 1/4 provides now a mass evolution that only reaches

the critical mass and, thus, absolute zero temperature for u →∞.

4. Conclusions

In this paper we have compared black hole evaporation from a strict thermal approach with

the evolution obtained when energy conservation is satisfied. The explicit calculations have

been carried out assuming the existence of general effective spherically symmetric spacetimes
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describing a quantum vacuum invariant under radial boosts (such as the ones found in, for

example, [4][5][6][7][8][9]). Specifically, we have seen that one can construct models in the

thermal approach that allow black hole explosions (propos.1 with −1 ≤ α < 0) or violations

of the third law of black hole thermodynamics (propos.2). This contrasts with the models

obtained when energy conservation is imposed since in this case the models, instead of

exploding, asymptotically reach zero mass (propos.3) and instead of violating the 3rd law

(in case a critical mass exists), form a remnant whose temperature only asymptotically

approaches absolute zero (propos.4).

Let us comment that, in order to compute the luminosity, we have introduced a grey-

body factor since it is well-known that an important part of the total emitted radiation

(up to 90%) is later backscattered (see, for instance, [11]). However, this factor does not

play an important role in preventing BH explosions or 3rd law violations. To see this, note

that a calculation of the luminosity if the backscattered radiation were neglected (γEC ∼ 1)

would have provide us with LEC ' c̄M1+α (−1 ≤ α < 1/4) replacing (3.15) and with

LEC ' c̄(M −Mcr)
1+α (0 ≤ α < 1/4) replacing (3.18), what again would have lead us to no

black hole explosions in the first case6 and to no violations of the 3rd law in the second case.

In view of previously found links [20][21] between the fulfilment of the 3rd law under

external influences and the fulfilment of some energy conditions, we would like to emphasize

that our results on the fulfillment of the third law in BH evaporation do not require the

imposition of any energy condition. This is absolutely appropriate since one expects the

energy conditions to be violated in the evaporation process.

It has to be remarked that the calculations in this paper cannot be rigorous in the absence

of a full Quantum Gravity Theory in which they could be strictly computed. Nevertheless,

we have argued that energy conservation might be a sufficient condition for avoiding black

hole explosions and violations of the third law. The physical mechanism behind this would

be that, contrarily to the assumption in the thermal approach, energy conservation implies

that a black hole cannot emit particles of arbitrary high energy. In this way, while the

thermal approach is an excellent approximation for macroscopic black holes in which the

back-reaction can be neglected it fails when applied in the last stages of black hole evapora-

tion. On the other hand, the picture offered by the energy conservation approach suggests

that in the last stages of the evaporation only long wavelength particles could tunnel out

the horizon, what eventually would prevent black hole explosions and violations of the third

law. Finally, it is interesting to note that, consequently, the energy conservation approach

would also drastically limit the amount of information that can be carried away from the

black hole in the last stages of its evaporation [18].

6Even if the possibility of a non-explosive total evaporation would exist for −1 ≤ α < 0.
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A. Some effective metrics with a critical mass

Let us now describe, among the many examples that can be found in the literature, a couple

of effective metrics possessing a critical mass:

• The renormalization group improved Schwarzschild solution. It was found by Bonanno

and Reuter [5] and can be described by the metric (2.1) with

f(R; M) = 1− 2G(R; M)M

R
,

where

G(R; M) =
G0R

3

R3 + ω̃G0(R + γG0M)
,

G0 is Newton’s universal gravitational constant, M is the mass measured by an observer

at infinity and ω̃ and γ are constants coming from the non-perturbative renormalization

group theory and from an appropriate cutoff identification, respectively.

As usual, the horizons in this solution can be found by solving f(R; M) = 0. The

number of positive real solutions to this equation correspond to the positive real solu-

tions of a cubic equation and depends on the sign of its discriminant or, equivalently,

on whether the mass is bigger, equal or smaller than a critical value Mcr. In general,

this critical value takes the form

Mcr = a(γ)

√
ω̃

G0

= a(γ)
√

ω̃mp ∼
√

ω̃mp, (A.1)

where mp is Planck’s mass.

If M > Mcr then f(R; M) = 0 has two positive real solutions {R−, R+} satisfying

R− < R+ and κR+ > 0. If M = Mcr then there is only one positive real solution to

the cubic equation R+ satisfying κR+ = 0. If M < Mcr the equation has not positive

real solutions (thus one cannot define a surface gravity). In this way, by definition, the

critical value Mcr is a critical mass.

• Noncommutative black hole. The solution that we want to introduce can be found in

[8][9] (Myung et al.) and is described by the metric (2.1) with

f(R; M) = 1− 4M

R
√

π
γ

(
3

2
,
R2

4θ

)
,

where M is the mass of the black hole, θ is a constant coming from the noncommutation

of the geometry and the lower incomplete gamma function is defined by

γ

(
3

2
,
R2

4θ

)
≡

∫ R2

4θ

0

r
1
2 e−rdr.

13



As in the previous case, the number of solutions of f(R; M) = 0 depend on the value of

the mass. If M > Mcr = 1.9
√

θ then two distinct horizons appear {R−, R+} satisfying

R− < R+ and κR+ > 0. If M = Mcr then there is only one positive real solution to the

cubic equation R+ satisfying κR+ = 0. If M < Mcr the equation has not positive real

solutions. In this way, Mcr is a critical mass.

B. Calculation of LEC and the third law

We have to compute, for M ∼ Mcr, the result of the integral

LEC ' 1

2π

∫ M−Mcr

0

4E3R2
+(M − E)

exp
(
4π

∫ E

0
dE′

g(R+;M−E′)

)
− 1

dE (B.1)

with

g(R+; M − E ′) = f ′(R+; M − E ′) ' a(M − E ′ −Mcr)
α

and 0 ≤ α < 1/4. A change of variables {µ = M −Mcr, x = E/µ} and the calculation of the

corresponding integral allows us to write the argument in the exponential approximately as

δ ≡ 4π[1− (1− x)1−α]

a(1− α)
µ1−α.

Since δ is a small quantity for µ ∼ 0 one has exp(δ) − 1 =
∑

i≥1 δi/(i!) ' δ. So that the

luminosity near de critical mass (µ ∼ 0) can be directly computed as

LEC '
a(1− α)R2

+(Mcr)I

2π2
µ3+α,

where

I =

∫ 1

0

x3dx

1− (1− x)1−α
=

ψ
(

4
1−α

)− 3ψ
(

3
1−α

)
+ 3ψ

(
2

1−α

)− ψ
(

1
1−α

)

1− α
.

Undoing the change of variables one directly obtains (3.18) with the sought constant c.

Let us remark that, while the calculation has been performed with the specific problematic

range 0 ≤ α < 1/4 (treated in proposition 4) in mind, energy conservation prevents violations

of the third law for α ≥ 0 (although the proof has to be modified for α ≥ 1).
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C. Calculation of LEC and BH explosions

We have to compute, for M ∼ 0, the integral

LEC ' 1

2π

∫ M

0

4E3R2
+(M − E)

exp
(
4π

∫ E

0
dE′

g(R+;M−E′)

)
− 1

dE (C.1)

with

g(R+; M − E ′) = f ′(R+; M − E ′) ' a(M − E ′)α,

R+(M − E) ' b(M − E)β, β > 0 and −1 ≤ α < 1/4. Defining x ≡ E/M we can proceed

exactly as in appendix B obtaining the sought result

LEC ' ab2(1− α)I

2π2
M3+α+2β,

where

I =

∫ 1

0

x3(1− x)2βdx

1− (1− x)1−α
.

Note that, while the calculation has been performed with the specific problematic range

−1 ≤ α < 1/4 (treated in proposition 3) in mind, energy conservation prevents the total

evaporation for α ≥ −1 (although the proof has to be modified for α ≥ 1).
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