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ABSTRACT

This paper addresses the problem of blind detection of a
wide-sense stationary (WSS) signal over fading channels. We
propose a test statistic which is optimal from a correlation-
matching perspective that shows invariance with respect to
the noise power and the channel gain. In the blind scenario,
we derive the quadratic sphericity test (QST) which exploits
the structure of the fading channel as a squared mean to arith-
metic mean ratio of the eigenvalues of the autocorrelation
matrix of the observations. We provide numerical results to
assess the performance of the QST in several fading scenar-
ios, as well as the benchmarking to other blind and non-blind
detectors.

Index Terms— Statistical signal detection, spectrum
sensing, blind, fading, cognitive radio.

1. INTRODUCTION

Cognitive radio holds a big promise as the future technology
capable of overcoming the current scarcity of spectrum re-
sources in wireless communications [1]. The coexistence be-
tween primary or licensed users and secondary or unlicensed
users involves a wide range of signal processing problems,
mostly in the interweave paradigm [2] in which secondary
users opportunistically transmit only in the available unused
licensed resources. Hence, signal detection or spectrum sens-
ing is an important task in interweave cognitive radio [3], as
interference will occur in an event of a false spectral hole de-
tection. Optimal signal detection in fading channels would
exploit the fading coefficients of the channel. However, this
knowledge is either impractical in decentralized cognitive ra-
dio networks, or it contains errors if estimated from primary
pilots [4].

In this paper, we derive a blind detector based on the
squared mean to arithmetic mean ratio of the eigenvalues
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of the autocorrelation matrix of the observations, which we
denote as the quadratic sphericity test (QST). We first derive
a test statistic which is optimal in terms of a correlation-
matching of the second-order statistics of the problem, and
which shows invariance with respect to the noise power and
the channel gain. We then derive the QST by optimizing
the correlation-matching cost function with respect to the
unknown channel fading coefficients.

Prior work related to the QST is detailed as follows. Spec-
trum sensing detectors based on the autocorrelation matrix
of the observations are reported in [5–7]. These works ex-
ploit the structure of the correlation matrix of the transmitted
legacy signal, but fading is not considered. Spectrum sensing
detectors based on the eigenvalues of the sample covariance
matrix include the maximum to minimum eigenvalue (MME)
[8] and the normalized maximum eigenvalue (NME) [9]. We
consider the latter in the numerical results for comparison.
There is also a large body of spectrum sensing detectors tak-
ing into account unknown parameters, e.g., [10–14]. How-
ever, these works exploit the spatial correlation that arises
from the use of multiple antennas. In this work we rather
consider a single antenna receiver in time-varying frequency-
selective channels. Finally, the works [15,16] consider signal
detection in fading channels, but considering prior knowledge
on the statistics of the channel.

The rest of the paper is organized as follows. The signal
detection problem in time-varying frequency-selective chan-
nels is formulated in Sec. 2. The QST is formulated and
proved in Sec. 3. Sec. 4 illustrates the numerical results, and
Sec. 5 concludes the paper.

2. PROBLEM FORMULATION

The detection of a primary wide-sense stationary (WSS) sig-
nal is cast as the following binary hypotheses testing problem:

H0 : y =
p
Pnw, (1a)

H1 : y =
p

SNRPnx+
p
Pnw (1b)

where y = [y(0), . . . , y(N � 1)]T collects N consecutive
samples as observations, w denotes the unit power noise sam-
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ples, x denotes the unit power signal samples, Pn denotes the
noise power and SNR denotes the signal-to-noise ratio.

In this work, the signal x is the output of a time-varying
linear system (LTV) given as1

x = AHs, (2)

where s is a column vector containing K digitally modu-
lated symbols, and AH models the time-varying frequency-
selective nature of the fading channel as2

AH =

2

6666666664

h0(1) 0 · · · 0
... h1(1)

...

h0(L)
...

. . . 0
0 h1(L) hK�1(1)
...

. . .
...

0 · · · 0 hK�1(L)

3

7777777775

. (3)

For sake of notation we define the channel matrix as

H = [h0, . . . ,hK�1] (4)

where each column contains the channel impulse response at
time index k, i.e.,

hk = [hk(1), . . . , hk(L)]
T . (5)

3. BLIND DETECTOR FOR TIME-VARYING
FREQUENCY-SELECTIVE CHANNELS

In this work, we adopt the following test statistic which
shows invariance with respect to the time varying frequency-
selective channel gain and the noise variance, given by

T (y) =
1

yHy
max
H

tr(HH
H
R̂)

kHH
H
kF

� �, (6)

where

R̂ =
1

K

K�1X

k=0

yky
H

k
(7)

is the L ⇥ L autocorrelation matrix of the observations, � is
the detection threshold, and

yk = [y(k), . . . , y(k + L� 1)]T . (8)

We refer to Sec. 3.1 for the correlation-matching proof of (6).
In general, the solution to the maximization problem (6) leads

1For simplicity we assume that the convolution matrix AH models the
pulse shaping at transmission, the fading nature of the channel, and the
matched-filtering at the receiver.

2The model adopted in (3) illustrates how each of the transmitted symbol
s(k) is propagated through the channel with fading coefficients hk .

to the following blind detector as a function of the eigenvalues
of the autocorrelation matrix of the observations3

TQST(y) ⇡

qP
L

i=1 �
2
i
(R̂)

P
L

i=1 �i(R̂)
. (9)

The proof of (9) is developed in Sec. 3.2. We denote this
detector as the quadratic sphericity test (QST) as it evaluates
the squared mean of the eigenvalues of the autocorrelation
matrix of the observations divided by the arithmetic mean of
the eigenvalues. Therefore, from the structure of the autocor-
relation matrix (7), we observe that the QST is a measure of
dispersion of the eigenvalues in the L-dimensional space that
arises from the structure of the fading channel H. Under H0,
the QST will observe a flat distribution of the eigenvalues,
whereas under H1 the distribution of the eigenvalues will de-
pend on the rank of H. Finally, because slow-fading scenarios
have lower variability, the eigenvalues of R̂ will exhibit large
dispersion as some of them will approach zero, whereas in
fast-fading scenarios the dispersion will be lower.

3.1. Proof of the Invariant Test Statistic (6)

We proof the optimality in the correlation-matching sense
of the blind detector for time-varying frequency-selective
channels (6). Specifically, we adopt the negative correlation-
matching between the normalized autocorrelation of the data
and a scaled version of the desired signal autocorrelation

T (y) = max
Rx2⌦
0<�<1

�

����
yy

H

yHy
� �Rx

����
2

⌘

, (10)

where � is the coherence factor defined as

� ⇡
SNR

SNR + 1
(11)

and it conveniently scales the signal autocorrelation matrix
Rx of the signal samples (2), i.e.,

Rx = AHA
H

H
. (12)

In (10), the maximization of the autocorrelation matrix is
done over the space of all Hermitian matrices ⌦, and the
correlation-matching is implemented through a quadratic
norm ⌘. Expanding the norm in (10) it follows that

�

����
yy

H

yHy
� �Rx

����
2

⌘

= �1+2�
y
H
Rxy

yHy
��2

kRxk
2
⌘
. (13)

The maximization with respect to the coherence factor � leads
to the following expression

�̂ =
y
H
Rxy

(yHy) kRxk
2
⌘

. (14)

3Note that the numerator and denominator of (9) can be computed as the
squared root of tr(R̂2) and as tr(R̂) with reduced complexity, respectively.



By substituting (14) into (13), (10) simplifies to

�

����
yy

H

yHy
� �̂Rx

����
2

⌘

= �1 +

�
y
H
Rxy

�2

(yHy)2 kRxk
2
⌘

. (15)

Finally, removing the additive constants and taking the
squared root it follows that the maximization problem (10) is
equivalent to

T (y) =
1

yHy
max
Rx2⌦

y
H
Rxy

kRxk⌘

. (16)

To this point, we have derived an optimal test from a
correlation-matching perspective general for any received sig-
nal model x. For fading channels, the received signal is given
by (2), and its autocorrelation matrix as (12). Therefore, the
numerator of (16) can be expressed as

y
H
Rxy =

K�1X

k=0

h
H

k
yky

H

k
hk, (17)

where hk and yk have been previously defined in (5) and (8).
The structure of (17) makes the optimization with respect to
the channel coefficients a difficult problem. To simplify it, we
resort to large data records. Employing the trace operator and
dividing by K we can express (17) as

tr

 
1

K

K�1X

k=0

hkh
H

k
yky

H

k

!
. (18)

If K is large, we have that in virtue of the law of large num-
bers (LLN), or equivalently the ergodicity property, the sam-
ple mean approaches to the statistical mean. In addition, as
the channel realization are statistically independent on the sig-
nal plus noise realizations, the statistical mean can be further
factorized. As a result of both assessments,

tr

 
1

K

K�1X

k=0

hkh
H

k
yky

H

k

!
⇣

tr

 
1

K

K�1X

k=1

hkh
H

k
⇥

1

K

K�1X

k=1

yky
H

k

!
. (19)

Hence, removing constants the numerator yields to

y
H
Rxy ⇣ tr(HH

H
R̂), (20)

where R̂ is defined from (19) as in (7). On the other hand, we
adopt the denominator norm as

kRxk⌘ = kHH
H
kF , (21)

where k · kF is the Frobenius norm, which preserves the in-
variance property of the detector. Finally, as both (20) and

(21) strictly depend on the channel matrix H, the maximiza-
tion with respect to Rx is equivalent to the maximization with
respect to H. As a result, the test (16) rewrites

T (y) =
1

yHy
max
H

tr(HH
H
R̂)

kHH
H
kF

, (22)

as we wanted to show.

3.2. Proof of the QST (9)

From the invariant detector (6) we express the Hermitian
matrix HH

H as a linear combination of its eigenvalues and
eigenvectors

HH
H =

LX

i=1

µi · viv
H

i
, (23)

where µi and vi denote the corresponding eigenvalues and
eigenvectors, respectively. The invariant detector then admits
the following optimization problem form:

T (y) =
1

yHy
max

{µi,vi}

LX

i=1

µiv
H

i
R̂vi, (24)

subject to
P

L

i=1 µ
2
i
= 1, and v

H

i
vj = �ij for i, j = 1, . . . , L.

First, we solve for the eigenvectors from the Lagrangian
L(v1, . . . ,vL) =

P
L

i=1 µiv
H

i
R̂vi +

P
L

i=1 ⇢i(1 � v
H

i
vi),

where ⇢1, . . . , ⇢L are the Lagrange multipliers. By com-
puting the derivative and setting it to zero, it yields to
R̂vi = (⇢i/µi)vi. That is, the eigenvectors of HH

H are
given by

vi = ui, (25)

where ui denote the eigenvectors of R̂, and ⇢i/µi are the
eigenvalues of R̂, which we denote by �i. Notice that the
orthonormality constraint on the vectors v1, . . . ,vL is au-
tomatically fulfilled as the eigenvectors of R̂ are orthonor-
mal. Next, we solve for the eigenvalues as L(µ1, . . . , µL) =P

L

i=1 µi�i + µ(1 �
P

L

i=1 µ
2
i
). By computing the derivative

and setting it to zero, we obtain that

µi =
�iqP
L

j=1 �
2
j

. (26)

Finally, asymptotically for large K, we can approximate the
y
H
y term by

y
H
y ⇣

N

L
tr(R̂) =

N

L

LX

i=1

�i. (27)

Using (25), (26) and (27) into (24) and removing constants,
we obtain (9).
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Fig. 1. Receiver operating characteristics (ROC) of the QST
(9), the FD (28) with ✏ = 0 and ✏ = 1, as well as the NME
(30) in a slow-fading scenario.

4. NUMERICAL RESULTS

In this section, we provide numerical results to assess the
performance of the QST (9) in terms of the receiver operat-
ing characteristics (ROC) curve (missed-detection probability
PMD versus false-alarm probability PFA) in several scenarios.
As a benchmarking, we will consider the following additional
signal detectors. On the one hand, we consider the feature de-
tector (FD) which is given by the invariant detector (6) with
side information of the channel coefficients Ĥ, i.e.,

TFD(y) =
1

yHy

tr(ĤĤ
H
R̂)

kĤĤHkF

, (28)

with

Ĥ =

r
1

1 + ✏2
H+

r
✏2

1 + ✏2
�, (29)

where H is the true channel matrix, and � is uniformly dis-
tributed within the range k�k  1 to model the error incurred
in the estimation of the channel in pilot-based cognitive radio
networks. We will consider both the perfectly known case
✏ = 0, and the FD with channel uncertainty ✏ = 1. On the
other hand, we consider the NME, given by [9]

TNME(y) ⇡
�1(R̂)

P
L

i=1 �i(R̂)
. (30)

We simulate the transmission of K QPSK symbols over
a fading channel H containing K realizations of the chan-
nel coefficients according to the block fading model [17], i.e.,
throughout K channel realizations, we assume that the chan-
nel response h remains constant through T realizations and
then changes independently to another value. In the sequel,
we consider the slow fading scenario (T � K), and the fast
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Fig. 2. Receiver operating characteristics (ROC) of the QST
(9), the FD (28) with ✏ = 0 and ✏ = 1, as well as the NME
(30) in a fast-fading scenario.

fading scenario (1  T ⌧ K). The local receiver operates at
a SNR of 5 dB and acquires N = 256 samples. We consider
a channel of length L = 12 unit variance i.i.d. lags.

The ROC of the QST (9), the FD (28) with ✏ = 0 and
✏ = 1, as well as the NME (30) in a slow-fading and fast-
fading (T = 5) scenarios are depicted in Fig. 1 and Fig. 2,
respectively. As it can be appreciated, the FD with channel
errors incurs a severe performance loss compared to the FD
without errors in both scenarios due to the mismatching be-
tween the true channel and the available side information. On
the other hand, both QST and NME outperform the FD with
errors. In general, we observe that the QST has a performance
gain with respect to the NME, as the NME is only concerned
in extracting a channel feature corresponding to the largest
eigenvalue. Finally, whereas detecting the channel structure
in fast-fading scenarios is a challenging task for both QST
and NME, in the slow-fading scenario the QST provides good
performance characteristics and approaches the upper-bound
established by the FD with perfectly known channel.

5. CONCLUSIONS

In this paper, we have introduced the quadratic sphericity test
(QST) for blind detection of wide-sense stationary (WSS)
signals in time-varying frequency-selective fading channels.
We have derived a correlation-matching optimal invariant test
statistic, and we have shown that the QST is the solution
in the blind case. The QST evaluates the ratio between the
squared mean and the arithmetic mean of the eigenvalues
of the autocorrelation matrix. We have provided numerical
results to assess and benchmark the performance of the QST
in slow and fast-fading scenarios.
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