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Abstract—This paper proposes a new methodology for

efficiency optimization in systems composed by parallel

converters. The proposed methodology takes into account

the individual efficiency curves and determines the

optimum operating point for each converter such that

the maximum efficiency of the arrangement is achieved

for the entire load range. Due to the nonlinearity of the

problem and the complexity of the solution hyperplane,

the optimization process is divided into stages of global

optimization, local optimization and ambiguity resolution.

This latter verifies the existence of multiple global

minima and selects the most appropriate in function of

previous power distributions. Case studies demonstrates

the validity of the proposed methodology for different

systems configurations.

Keywords—Parallel converters, supervisory control,

efficiency maximization, photovoltaic systems

I. INTRODUCTION

The growing applications of renewable power sources and

the increasing development of distributed power generation

are providing great incentives to the power electronics

market. This development has being motivated mainly by

environmental concerns, with the need to use cleaner power

sources. Among renewable sources, the most employed are

wind and photovoltaic, and due to their high installation costs,

it is of fundamental importance that the maximum generated

energy be delivered to the loads or to the grid. This helps

to reduce the return time over the investments and allows a
better use of the generation installed capacity.

One of the main characteristics of wind and solar
energy is the variability of the generated energy due to

environmental aspects. Therefore, converters in charge of the

interface between generation and consumption are constantly

submitted to variations in its operating points. For the case

of solar energy, Dupont et al. shows that for the Brazilian

territory the large share of the processed power by the

photovoltaic modules is found between 20% and 60% of the

peak installed power [1]. However, even converter topologies

or soft switching techniques developed to reduce losses

present low efficiency in light load situations as, for example,

the approaches presented by [2], [3], [4].

One way to overcome this problem is the undersizing

of the power converts, aiming to shift the highest eficiency

region near to the power range that the photovoltaic system

will operate most of its time [5]. In this manner, although

limiting the power handling capacity, one can improve the

overall system efficiency such that in long-term this limitation

is compensated.

Another approach to improve the overall system efficiency

is the use of parallel connected converters [6]. Arrangements

like these allows one to use modular converters, with smaller
power ratings and employing semiconductors with reduced

losses. Besides it enables the use of a minimum number of
operating converters to fulfill the load demand. However,

a control and a supervision strategy that allows the right

power distribution among converters arises as a problem. This

power sharing should also enable the system to achieve the

maximum efficiency for all load values inside the operational

limits of the converters.

Efficiency improvement in systems of parallel converts has

been a research theme for some recently works. Zumel et al.

employ an interleaved buck converter and dynamically varies

the number of active phases as a function of load demand,

aiming to achieve loss reduction in light load operation [7].

Abu-Qahouq et al. investigate the effects that several power

distributions among the phases of an interleaved buck

converter have on the efficiency of the converter. From this

analysis the authors propose an algorithm that promotes the

power distribution among the phases after a given number

of switching events with the objective to find the distribution

that provides a better efficiency [8]. However, for systems

with larger number of phases, the disturbance algorithm can

become too complex. A passive current sharing method is

proposed by Kelly and is based on the first-order digital sinc

filter [9]. This method aims to achieve the current balance in a
cycle-by-cycle manner, improving the transient response. On

the other hand, the author observes that the employed filtering

could be a problem in systems of three or more converters.

The main objective of this paper is to propose a

new approach to power sharing strategies by means of

the design of an efficiency optimization methodology

for systems composed by parallel converters. For any

number of converters, accompanied by their efficiency

curve parameters, the methodology must find the optimal

power distribution among converters in order to achieve the

maximum system efficiency for all its operating points. The

problem formulation and the basic stages of the proposed

methodology will be presented in the following sections.

Finally, case studies that show the employment of the

proposed methodology for different systems configurations

are presented.



II. SYSTEM EFFICIENCY AND PROBLEM FORMULATION

The efficiency η of static converters is defined by the

relationship between the output power delivered to the

loads (pout) and the input power (pin) provided by the

source, i.e.

η =
pout

pin

. (1)

Losses in the conversion process arises from several ways,

either by conduction or switching actions of semiconductors,

ancillary systems such as drive circuits, protection or

signaling, among other phenomena [10], [11].
The total losses of the converter varies depending on its

operating point, as well as in terms of their technological and

constructive characteristics. For light loads, losses in drive

circuits tend to be more significant and also approximately

constant. On the other hand, increasing power levels turn the

switching and conduction losses more significant.
Efficiency of power converters are commonly presented

as graphics for all the load range that the converter is able

to handle. As seen in the literature the efficiency curves of

converters can be approximated, except in particular cases,

by the second order function

η(pin) =
α1pin + α0

p2in + β1pin + β0

(2)

being α1, α0, β1 and β0 coefficients that can be obtained

by curve fitting algorithms over experimental or simulation

results and pin the input power of the converter.
Thus, in a system composed by nc parallel converters,

the global efficiency could be determined by the same

relationship between input and output power as

η(pin,1, . . . , pin,nc
) =

pout,1 + . . .+ pout,nc

pin,1 + . . .+ pin,nc

=

nc
∑

m=1

pout,m

nc
∑

m=1

pin,m

. (3)

Applying (2) in (3), and knowing that pout = pinη(pin),
one can evaluate the efficiency of a set of converters.

Inspecting (3) it is reasonable to suppose that, for the same

input power, the resulting efficiency will be different for each

power distribution among converters. This leads to the need

of a methodology that is able to establish specific power

requirements for each converter in order to ensure that the

global efficiency is maximized for each operating point.
Thus, substituting (2) in (3) and rewriting as an

optimization problem, one has

η(p1, . . . , pin,nc
)máx =

min
pin











−

nc
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m=1

pin,m (α1,mpin,m + α0,m)

p2in,m + β1,mpin,m + β0,m

nc
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pin,m











(4)

whose solution enable the obtention of an optimal set of pin,m

values, ensuring the maximum system efficiency for all

possible operating points.

However, the problem (4) is subjected to constraints.

One of them establishes that the sum of all powers

of the converters must be equal to the power under

optimization (potim), i.e., potim = pin,1+ . . .+pin,nc
. This way,

one has a linear equality to be respected, which is defined by
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Besides, another constraint imposed to the solution of (4)

states that the input power of each converter (pin,nc
) must be

less than or equal to its maximum value (pin,nc,máx). Thus,

one has the linear inequality given by
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











. (6)

Finally, the maximum power that each converter is able to

handle must be respected. Then, the search for solutions must

be bounded by the interval
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...

pin,nc,máx
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As observed below, the optimized function (4) is nonlinear

with restrictions. Moreover, due to its nature it can feature
multiple local minima, or even multiple global minima,

which is generally verified in systems composed by equal

converters. To solve this optimization problem, this paper

proposes a method to overcome these restrictions and

determine the optimal power distribution for each converter.

Thus the system will be able to operate at optimal efficiency

throughout its entire load range.

III. PROPOSED METHODOLOGY

To achieve the goals of the presented efficiency

optimization problem, the methodology must be able to

perform a search in all the solution hyperplane (global

optimization capability) and at the same time provide a good

precision in defining the optimal solution (local optimization

capability). Besides, occurring multiple global minima, some

strategy must arbitrate which is the most appropriate solution

for each situation (ambiguity resolution strategy). These three

characteristics define the basis for the development of the

proposed methodology, whose flowchart is depicted by Fig. 1.

A. Stage 1: initialization

The first criterion to be defined for the application of the

proposed methodology is the specification of its execution

mode. One can choose to optimize a single point or even

the entire load range of the system. The difference between

both modes lies in the fact that for a single solution the

Stage 4, for ambiguity resolution, is not executed. In the
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Figure 1: General flowchart for the proposed methodology for
efficiency optimization.

initialization stage the system characteristics, as the number

of converters, its maximum power and the coefficients α1,

α0, β1 and β0 of the efficiency curves are defined. Based on

both the optimization problem (4) and the constraint matrices

(5, 6, and 7) an optimization algorithm is built.

B. Stage 2: global optimization

The second stage in the proposed methodology refers to a

procedure of global optimization with the objective to find a

good estimate of the maximum efficiency point according to

the constraints imposed to the optimization problem and the

possibility of local minima in the solution hyperplane. These

characteristics could present a serious problem for most part

of numerical optimization algorithms.

Methods like Newton-Raphson, secant, bissecant, among

others [12], require an initial guess of the solution, which

may not always be possible or easy to obtain. Besides, since

they are based in gradients, jacobians, and other derivative

terms, these algorithms are sensitive to the inicial guess. If

the estimate is not adequately chosen, the algorithm could

erroneously converge to a local minimum. For this reason, it

is vital that the chosen strategy be able to perform the search

for several sections of the solution hyperplane, allowing a

general evaluation of the possible solutions before converging

to a global minimum point.

The genetic algorithm (GA) is a search and optimization

technique based on the natural selection principle, and is one

of the techniques for evolutive computing that is most used.

The GA are iterative and stochastic algorithms whose goal is

to minimize an objective function by means of evolutionary

adaptation of a population composed of possible solutions.

Among its features it is worth to mentioning that the GA

is a robust method that do not need information about the
objective function derivatives and could optimize variables in

objective functions extremely complex or non-differentiable.

Moreover, it can search different sections of the solution
hyperplane simultaneously [13], [14].

Populations are sets composed of ni chromosomes, or

individuals, that represents all the variables to be optimized

in the objective function (in this case the power processed

by each converter). Each chromosome is composed by a

total of ng genes which represents the variables of the

problem. The GA is initialized with a random population

of chromosomes, and by means of operations similar to those

that occur in nature (as generation of offspring and mutation)

evolve under specific rules to optimize the objective function.

The first step of the algorithm is the creation of the initial

population, which is made from random values that satisfies

all the constraints (5)-(7). After, the objective function (4)

is evaluated for each chromosome and the results are sorted
according to its fitness. A rate xsel with the worst results

are discarded, and the remaining chromosomes are used to

generate offspring.

In this paper the choice of parents is carried out

employing the roulette wheel method, which assigns a

selection probability for each chromosome surviving to

natural selection [13]. Offspring are then generated in pairs

by means of the scattered crossover method, which creates a

random binary vector whose length is equal to the number of

genes. For each 1 in this vector, the corresponding gene is

copied from the first parent. When 0, the offspring inherits

genes from the second parent. The second offspring is

generated in a complementary way. This process is repeated

until the population size ni is reached. In the sequence, the

GA applies random mutations in a given number of genes of

the population. This mutations have the objective to insert

new information and contribute with population diversity.

The objective function is then evaluated again for the new

population and the process is restarted.

The evolution process follows indefinitely, trying to get a

better adjusted population in each new generation. Thus, one

need to introduce a stopping criterion for the optimization

process. Some of the common criteria are the limitation

to a maximum number of generations, or when the best

fitness does not evolve after a certain number of generations.

Besides, one can employ more sophisticated stopping criteria

which identify a possible premature convergence [15].

Due to its stochastic nature, it is possible that the GA may

not present an exact solution, or with the required precision,

of the global minimum value of the objective function.

Moreover, these algorithms are not the best solution to solve

all and any problem. Traditional optimization methods have

been extensively developed to quickly determine the solution

of well defined convex functions. On the other hand, they

feature the problem of the initial guess. From a tradeoff

between pros and cons of each technique, then arises the

alternative to combine the potential of the GA in determining

the global minimum in complex hyperplane with the speed of

a local optimizer. This is carried out in the next stage of the

proposed methodology.

C. Stage 3: local optimization

As soon as the GA find a good estimate of the global

minimum the local optimization stage is started, where the

best chromosome obtained by GA is employed as initial

guess for a local optimizer. In turn, this algorithm is



used to accurately determine the power distribution between

converters that provide the optimal system efficiency for a

given operation point.

In constrained optimization processes such as this, most

approaches transform the main problem in a simpler

subproblem, without constraints, and employ a penalty

function for results near or outside the limits of constraints.
Nowadays this approach is considered inefficient and has

been substituted by methods that solve the Karush-Kuhn-

Tucker (KKT) equations, which are necessary conditions to

the optimization of constrained problems [16]. The KKT

equations can be expressed as

∇f(x∗) +

m
∑

i=1

λi∇Gi(x
∗) = 0 (8)

λiGi(x
∗) = 0 i = 1, . . . ,me (9)

λi ≥ 0 i = me, . . . ,m (10)

being x a vector with length n that corresponds to the

number of parameters to be optimized, f(x) is an objective

function that returns a scalar value, G(x) is a function that

returns a vector with length m containing the equality and

inequality values of the constraints evaluated in x, and λi is

the Lagrangian multiplier needed to balance the deviations

in magnitude of the objective function and the gradients of

constraints.
The solution of KKT equations form the basis of many

algorithms for nonlinear programming, among them the

Sequential Quadratic Programming (SQP), so called once a

quadratic programming (QP) subproblem is solved in each

major iteration.

The SQP performs an inline search using a figure of

merit similar to the proposed in [17], [18]. Also, the SQP

approximate the Newton method for constrained optimization

as is done for unconstrained problems. At each iteration an

approximation of the Hessian is performed, which is given by

∇
2

xxL(x, λ) = ∇
2f(x) +

∑

λi∇
2Gi(x) (11)

that is the second derivatives of the Lagrangian

L(x, λ) = f(x) +
∑

λg,iGi(x) (12)

employing a quasi Newton updating method. The

optimization procedure based on the sequential quadratic

programming employed in this paper is described in detail

in [19].
When the convergence of the local optimizer is detected,

the algorithm is stopped and one has the optimal power

distribution among the converters such that the maximum

system efficiency is achieved for that operation point.

D. Stage 4: ambiguity resolution

In systems of two or more parallel converters with identical

specifications one can observe that the objective function (4)

may feature multiple global minima. This means that different

power distributions can be attributed to the converters, but in

these points the same efficiency will be reached, and it will

be maximum.

Table I: Coefficients for the efficiency curves employed in the
case studies.

Curve α1 α0 β1 β0

ηA 7.317 −0.081 5.85 0.77

ηB 5.072 −0.037 4.4 0.18

ηC 8.249 −0.113 5.45 2.15

Since the GA is a stochastic process, one can not guarantee

its convergence to the same region of the global minimum at

each new iteration (in case of multiple global minima). Thus,

there is no way to ensure that a given power distribution

sequence will be employed in a similar manner for the next

point when the methodology is running in sweep mode.

For this reason, an ambiguity resolution strategy must be

employed so that, in case of multiple global minima, the

methodology can chose the most appropriate solution against

qualitative variables that are not included in the objective

function.
To overcome this problem, the ambiguity resolution

strategy sorts the results of the power distributions obtained

in the previous and current iterations. If the order between

the two iterations remains the same, the power distribution

obtained by the local optimization algorithm is retained

and the next iteration is started. On the other hand, power

distributions are sorted according to the previous iteration

(i.e. the converter that processed more power remains with

the largest share of energy produced and so on), and the

resulting efficiency is compared with the efficiency obtained

in the current iteration. If both are the same (occurrence of
multiple global minima), the order of the previous iteration is

maintained. Otherwise, the power distribution obtained by the

local optimizer in the current iteration is retained.

By means of this strategy, the problem of sudden power

redistributions without achieving improvements in the system

efficiency is avoided. Thus, power distribution trajectories are

kept as smooth as possible for the entire load range that the

system is able to operate.

IV. CASE STUDIES

The case studies presented in this section aim to

demonstrate and validate the efficiency optimization proposed

in this paper. For this, three efficiency curves will be

employed, whose coefficients are given in Table I. Notice that

the evaluated cases do not particularize any specific topology,

semiconductor technology, or assembly of a given converter.

A. Case 1: two different converters

The first analyzed case involves two different converters

with different nominal powers and different efficiency curves.

Converter 1 has a nominal power of 0.6 pu and its efficiency

curve is described by ηA, while the efficiency curve of

Converter 2 is given by ηB and its maximum power is 0.4 pu.

For this system, the efficiency surface for all the possible

power distributions is depicted by Fig. 2.
Using the system characteristics and applying them in

the proposed methodology, the power distribution curves
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Figure 2: Surface of possible obtained efficiencies for
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Figure 3: Optimal power distributions obtained by the
proposed methodology for Case 1.

shown by Fig. 3 are obtained. To validate these results,

Fig. 4 shows the efficiency values that can be achieved

to four random operating points. In this case, 0.28 pu,

0.5 pu, 0.57 pu and 0.78 pu. Being p1 and p2 the power of

converters 1 and 2, respectively, the horizontal axis represents

the power difference p2 − p1 between converters. Thus,

when p2 − p1 = 0 the converters process the same power.

The resulting efficiency for each power distribution is given

in the vertical axis. Comparing the results of Fig. 4 with the

curves of Fig. 3 one can notice that the proposed methodology

is able to find and guarantee that the system is capable to

operate with maximum efficiency for every operation point.

B. Case 2: three equal converters

The second case investigates the convergence of the

algorithm for a system composed by three converters with

equal power ratings and equal efficiency curves. In this case,

Converters 1, 2 and 3 has its efficiency curves described

by ηC and its maximum power is 1/3 pu. The symmetry

of this configurations aims to also validate the ambiguity

resolution strategy, Stage 4 of the proposed methodology.

The results obtained after running the proposed

methodology for this case are depicted by Fig. 5. This figure

shows the optimal power distribution among the converters in

order to ensure the maximum efficiency of the system for the

whole power range.

Fig. 6 validates the methodology to other four operating

points. Again, the horizontal axis represents the power

difference between converters 1 and 2, while the vertical
axis represent the power handled by Converter 3. The surface

in turn represents the possible efficiency values that could

be obtained from the different power distributions. In this

case, the symmetry of the problem can be clearly seen,

as well as the need of the ambiguity resolution stage to
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Figure 4: Validation of the optimization methodology for the
configuration analyzed in Case 1. Optimal solution found
and possible efficiency curves for (a) 0.28 pu; (b) 0.5 pu;
(c) 0.57 pu e (d) 0.78 pu.
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Figure 5: Power distribution curves obtained by the
methodology for Case 2.

solve the multiple global minima problem. In this sense, it

must be highlighted the correct operation of the Stage 4

of the methodology, since there is no unnecessary power

redistributions that would result in the same maximum system

efficiency, as it can be observed in Fig. 5.

V. CONCLUSIONS

This paper proposes a new methodology to optimize the

global efficiency of systems composed by parallel converters.

The nonlinearity of the problem, the constraints imposed to

the solution hyperplane and the possible existence of multiple

global minima makes that many numerical algorithms are

not able to solve this problem properly. The proposed

methodology is comprised by a global optimization stage

to search for an initial guess of the point of maximum

efficiency, a local optimization stage to refine results and

improve precision, and an ambiguity resolution stage that

is capable to chose the most appropriate global minimum

in case of multiple ones. Finally, case studies are presented

to validate the proposed methodology for generic cases, in

which the efficiency curves and power ratings of converters

are different, as well as symmetric cases, where the problem

of multiple global minima occurs. The optimal solution has

been properly found for all cases analyzed, making this
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Figure 6: Validation of the optimization methodology for the
configuration analyzed in Case 2. Optimal solution found
and possible efficiency surfaces for (a) 0.31 pu; (b) 0.4 pu;
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methodology an excellent strategy for maximizing efficiency

in systems of parallel converters, especially when the system

works under reduced power levels for a while as in case

of photovoltaic energy generation. In this sense, although

with different objectives, MPPT strategies together with

the proposed methodology enable the system to extract the

maximum available energy and that this energy will be

handled with the maximum possible efficiency, improving the

economic viability of installations.
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