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Abstract – This paper discusses the control of the positive- and 
negative-sequence components of a large-scale grid-connected 
photovoltaic system (GCPS) under unbalanced voltage sag 
conditions in the grid. Some issues regarding stability and dynamic 
performance of the system occur when applying PI controllers in 
the current control loops. The reason is the delay that the filtering 
method imposes when extracting the current/voltage sequences. 
Because of such a delay, the dynamic response of the system 
becomes slower compared with the case when no filtering technique 
is needed. Furthermore, there is a strong restriction on choosing 
suitable parameters for the current/voltage loop controllers without 
compromising system stability. All these issues are discussed in this 
paper on a 1-MVA GCPV system using MATLAB/Simulink 
software. 

Index Terms— Photovoltaic system, Power system faults, Power 
system dynamics, Moving average filter. 

I. INTRODUCTION 

Due to the increasing demand of grid-connected photovoltaic 
systems (GCPSs), some new issues appear [1], which must be 
taken into consideration for reliable and secure system 
operation. Grid voltage sags are the most concerning issues and 
further research has to be done on system performance under 
such dynamic conditions. Grid voltage sags present symmetrical 
positive- and negative-sequence components. If the negative 
sequence of the grid currents is not controlled, the power 
injected into the ac grid is not constant and has some ripple at 
twice the grid frequency. This produces dc bus voltage ripples, 
which may cause some critical issues to the GCPS. To solve this 
problem, a negative sequence current controller can be included 
to provide proper voltage references to the grid-connected 
voltage source inverter (VSI). This control should contain the 
ability to ride-through any types of faults by supporting the grid 
voltage with reactive power injection. 

Different strategies to determine the references for the 
current control loops with different control frames have been 
investigated. In [2], the target is to maintain the dc-link voltage 

constant under unbalanced grid voltage conditions using 
proportional-integral (PI) controllers in the current control loops. 
The calculation of proper current references is addressed in [3] 
and a remedy to compensate for the power ripple is also 
introduced. In [4], a strategy to provide both active and reactive 
power under unbalanced voltage conditions is used. However, 
only the reactive power is considered in the negative-sequence 
current and the active power is imposed to be zero. Two 
different methods considering the oscillating power components 
produced in the filters have been studied in [5]. Finally, in [6], 
three different current controllers have been compared based on 
symmetrical components using a linear quadratic regulator.  

In all the papers discussed above that are based on PI 
controllers in their current control loops, there is an issue of 
choosing proper PI controller parameters. The reason is that, in 
order to extract the positive and negative sequences from the 
grid currents, the measured magnitudes have to be filtered to 
remove low-frequency ripples produced during unbalanced 
voltage sag conditions. The filtering process produces delays 
and may make the system unstable. 

This issue has not been yet addressed in any technical paper. 
This paper is focused on determining the values of the PI 
controller parameters that make the system stable when 
considering the delays caused by filtering the measured currents. 
These studies are done when the target is to deliver constant 
active power to the grid during the voltage sags. However, this is 
also applicable when the target is to keep the dc-link voltage 
constant.  

The rest of the paper is organized as follows. First, the 
system description is defined in Section II. In Section III, the 
system under study is introduced. The performance of the 
system is assessed in two cases; when operating with a constant 
dc-link voltage provided by a dc source, which is discussed in 
Section IV, and when the VSI regulates the dc-link voltage, 
which is evaluated in Section V. Finally, Section VI summarizes 
the main conclusions of the paper.   
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Fig. 5. Stable region for the parameters of the PI current controllers when 
considering the MAFs in the extraction of the positive- and negative sequences 

of the grid currents. 

To obtain the stability region for the PI controller 
parameters, first, the MAF is linearized through the ‘pade-
approximation’ method, which is available in MATLAB 
toolbox. After linearization, the method in [12] is selected to 
calculate the stable region for the PI controller parameters.  

Considering the filtering parameters and a 5th order 
approximation of the MAFs, the stable region for the PI 
controller parameters is the small green area in Fig. 5. Regarding 
to the other filtering methods such as the one in [6], with a delay 
half of the MAF used in this paper, i.e. a quarter of the grid 
voltage period (T/4), the stable region is considerably larger, 
involving the orange and green areas in Fig. 5. Therefore, as 
expected, smaller delays lead to have wider stable area for the PI 
controllers’ parameters in the current control loops. 

 

B. Simulations 

The green region in Fig. 5 defines low values to the PI 
parameters ( , )p ik k . Therefore, the dynamic performance of the 

controller will be slow. After several tests plotting step 
responses, the values adopted for the PI parameters ( , )p ik k  are 

(0.015, 0.15). Using these parameters for the test system, the 
response during the steady-state and fault time is as shown in 
Fig. 6. As shown in this figure, during the voltage sag process 
and after fault removal, the dynamics of the PI controllers are 
relatively slow. Nevertheless, the system remains stable in both 
steady-state and fault conditions.  

The use of the MAFs to filter the grid currents has a 
significant impact on the dynamics of the current control loop. 
Furthermore, the measured grid voltages are also filtered in 
order to be used as feed-forward terms, as shown in Fig. 2. 
Again this filtering process produces some delays that 
deteriorate the dynamic of the system. A proposed solution to 
improve the dynamics of the current loops is to include the grid 
voltages 

abce  as feed-forward terms added after the summation 

of the positive and negative voltage references of the inverter. 
Therefore, the feed-forward voltage terms do not need to be 
filtered and the inverter voltage references follow the changes in 
the grid voltages faster. The improved currents with the same 
parameters of the PI controller are depicted in Fig. 7(a) and the 
generated active and reactive powers are shown in Fig. 7(b). For 
the PI parameter pairs out of the stable boundary in Fig. 5, the 
system becomes unstable, which is not shown here. It should be 
mentioned that the system in [6] has been analyzed with a 
constant dc source. However, for a real PV system the dc-link 
voltage should be regulated and this case is studied in Section V. 
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Fig. 6. (a) Voltages and (b) output currents when choosing PI parameters from the stable region and constant dc-link voltage imposed by a dc voltage source. 
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Fig. 7. (a) Improved output currents after applying the grid voltages as feed-forward terms at the end of the current control loops and (b) related active and reactive 
powers. 
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Fig. 8. Output currents when the system regulates the dc-link voltage. 
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Fig. 9. Waveforms when the system regulates the dc-link voltage using low values in the PI parameters of the external loop (dc-link voltage loop). (a) Grid currents and 
(b) generated active and reactive powers.



 

V. ANALYSIS OPERATION WITH DC-LINK VOLTAGE REGULATION 

In this section the performance of the system when 
regulating the dc-link voltage is assessed. During the steady-
state conditions *

0P is obtained by regulating the dc-link voltage 

while during the voltage sag it is set to zero. The reactive power 
reference is as in the previous section. Moreover, as the target is 
to deliver constant power to the grid during the voltage sag, 
there will be power fluctuations in the grid filter because of the 
unbalanced grid currents which will cause the dc-link voltage to 
oscillate. Therefore, a MAF is used to filter these ripples from 
the dc-link voltage measurement. 

The performance of the system is assessed when there is a 
MAF in the measurement of the dc-link voltage control loop as 
well as the inner current control loops. With the same 
parameters as those used in the previous section, the results for 
the PI controllers of the current control loops with settling time 

41msst  , and (7.65, 489) for the dc-link PI controller

( 78ms)st  are shown in Fig. 8. The currents are oscillating 

which may lead to inverter disconnection. The reason is that the 
slow dynamics of the current control loops due to the MAFs 
interact with the external loop (dc-link voltage loop) dynamics. 
The dynamics of the current control loops should be at least five 
times faster than the dynamic of external loop to be able to 
analyze them separately. However, with the inclusion of the 
MAFs in the control loops, the dynamic of external an internal 
loops become almost similar.  

The one alternative to improve the performance of the 
system is to retune the dynamics of the external loop to be 
slower; however, it will affect the dynamics of the whole system 
which is not actually desirable. The new parameters chosen for 
the PI controller of the voltage loop is (2.16, 39), which produce 
the settling time of 176msst  . The grid currents are depicted in 

Fig. 9(a) and the generated active and reactive powers are shown 
in Fig. 9(b).  The system is stable; however, the dynamics are 
relatively slow. 

VI. CONCLUSION 

In this paper, the performance of a GCPS under unbalanced 
voltage conditions considering both positive and negative 
sequences is studied. Using PI controllers for the current loops, 
implementation of a filtering technique is necessary to extract 
the dq components of the voltages and currents. However, all the 
filtering techniques introduce some delays and slow down the 
dynamics of the controllers. As a consequence, these filtering 
techniques restrict the stable region of the parameters of the PI 
controllers. Furthermore, low values for the PI parameters have 
to be chosen.   

In addition, if the dc-link voltage is regulated by an external 
loop, the dynamics of that controller need to be relatively slow 
compared to the current control loops in order to achieve stable 
operation of the system. Therefore, the overall dynamic 
performance is deteriorated considerably. An alternative to the 
use of PI controllers would be using proportional-resonant 
controllers. Since the positive and negative sequences of the grid 
currents would not be needed in the control loops, faster 
dynamics are expected to be achieved. Therefore, our future 
research will be focused on the use of PR controllers. 
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