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We demonstrate an optical scheme for measuring the thickness of thin nanolayers with the use of light beam’s spa-
tial modes. The novelty in our scheme is the projection of the beam reflected by the sample onto a properly tailored
spatial mode. In the experiment described below, we are able to measure a step height smaller than 10 nm, i.e., one-
eightieth (1∕80) of the wavelength with a standard error in the picometer scale. Since our scheme enhances the
signal-to-noise ratio, which effectively increases the sensitivity of detection, the extension of this technique to
the detection of subnanometric layer thicknesses is feasible. © 2014 Optical Society of America
OCIS codes: (120.3180) Interferometry; (120.2830) Height measurements; (120.5050) Phase measurement; (130.6010)

Sensors; (310.6628) Subwavelength structures, nanostructures.
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The search for new optical methods to measure thickness
in the range of a few nanometers or even hundreds of
picometers is a topic of great interest. This is fuelled
not only by the desire to reach the limit of resolution
on the use of light in the nanoworld but also to develop
new methods that can complement and/or substitute
somewell-established techniques, such as x-ray spectros-
copy, atomic force microscopy, and ellipsometry [1–3].
Moreover, the continuous shrinking of all kinds of optical
and electronic devices and the explosive growth of the
exploration of the inner working of cells and molecular
bio machines demand detection techniques that apart
from being highly sensitive, must also be noninvasive,
faster, and easy to implement in different scenarios. These
requirements can be met by photonics technologies.
Most of the time, high-resolution optical metrology

is closely related to the evaluation of the phase of an
electromagnetic field. In general, phases cannot be
readily obtained and the desired information must be
extracted indirectly by some other methods. The most
widely used of these methods is interferometry. By look-
ing at the intensity produced at the output port of an
interferometer, the relative phase can be measured
and consequently, the relative thickness of a layer.
Hugely small global phase differences between two inde-
pendent beams up to ∼1 × 10−7 rad can be detected [4,5].
The detection of small structures, such as a step [6], is
more cumbersome since the reflected beam contains a
spatially varying phase instead of a global phase which
should be resolved.
A major problem in interferometry is the presence of

uncontrollable disturbances that can also introduce
phase differences. This is especially critical when tiny
phase changes are being measured. A way to circumvent
this problem is by using a common path interferometer
(CPI) where an unperturbed part of the beam acts as
a reference beam and travels the same path as the
signal beam [7,8]. A CPI has been used extensively in
quantitative phase measurements since Dyson’s seminal

paper in 1953 [9]. A CPI scheme at quadrature condition
(i.e., the phase difference between the reference and
signal beams is centered around π∕2) is very sensitive
to minute changes in the phase of the signal beam
[10–12]. At this condition, a CPI provides a linear rela-
tionship between the observed intensity modulation
and the change in the optical phase that induces the in-
tensity change.

One successful application of CPI at quadrature condi-
tion is in spinning-disk interferometry (SDI) [10–12]. SDI
is used primarily in microimmunoassay wherein specific
antigens attach to engineered substrates that fulfil the
quadrature condition. Unfortunately, the need to fulfil
the quadrature condition may limit the use of SDI since
the phase ultimately depends on the wavelength, the
thickness, and the index of refraction of the substrate.
Moreover, there are situations where the quadrature
condition cannot be achieved easily, such as when the
required wavelength is either not available or might
damage the sample.

In this Letter, we put forward a novel way to circum-
vent this limitation. The key point of our approach is to
project the reflected light onto appropriately tailored spa-
tial modes (spatial mode projection) before its power is
measured. Instead of engineering surfaces or construct-
ing spokes or ridges such that the quadrature condition is
met that condition is passed on to the mode projection
detection system. We demonstrate this method in an ex-
periment where we measured a step height that is 1∕80 of
a wavelength with a standard error in the range of
picometers. We also show that the power of the beam
upon projection has a linear dependence with tiny height
changes for any substrate with an appropriate mode.
Moreover, by means of spatial mode projection, the sig-
nal-to-noise (SNR) is improved compared to standard
SDI. We briefly mention here that there are other optical
methods that use the difference in total power detected
between light that are reflected with and without the
sample to infer the thickness and refractive index of
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multilayers [13]. However, these methods are highly sen-
sitive to the optical characteristics of the substrate and
these do not work for low-loss highly reflecting samples.
In our scheme, the detected signal P can be written as

P � η

Z
r�x; y�E�x; y�U�x; y�dxdy; (1)

where η is the detection efficiency, r�x; y� is the reflec-
tion coefficient due to the presence of the step, E�x; y�
is the electric field of the incident beam, and U�x; y� is
spatial mode we project onto. This projection can be ef-
ficiently made with diverse optical devices, such as com-
puter-generated holograms in spatial light modulators
(SLMs) or liquid crystal switchable plates. The selection
of the mode to project onto the reflected light depends on
the geometry of the sample. For simplicity, but without
any loss of generality, we use a step sample in all our ex-
periments. We define a step as a sharp discontinuity of
height h of the reflecting surface.
When a Gaussian mode illuminates a step, the most ap-

propriate modes for projection are also Gaussian modes
of the form

U�x; y� ∼ exp
�
−

x2 � y2

w2
0

�
x ≤ 0

U�x; y� ∼ exp
�
−

x2 � y2

w2
0

�
exp�iΔφ� x > 0; (2)

where w0 is the waist of the beam and Δφ is the relative
phase difference between the two regions of the modes
with which we project onto. When a Gaussian beam
reflects from this sample and is projected on the mode
given by Eq. (2), the normalized detected power is given
by

P
−Δφ � 1

2
�1� cos�δ� Δφ��; (3)

where δ is related to the height of the cliff as δ � 4πh∕λ.
Note that Eq. (3) is derived when the discontinuity in the
phase of the mode coincides with the position of the cliff.
We use Eq. (3) to measure samples with different step
heights.
The experimental setup is shown in Fig. 1. A collimated

He–Ne laser (λ � 632.8 nm, w0 � 1.1 mm) is incident on
a sample with a step height of h. Our samples are etched
SiO2 on top of a Si wafer. We image the reflected light
with a telescope onto the SLM (Hamamatsu). The SLM
is controlled to have a phase profile as in Eq. (2). This
is done by using appropriate 8-bit gray level values. Each
gray level corresponds to a particular value of phase that
the beam will acquire. Half of the beam acquires a phase
of Δφ with respect to its other half. The beam after the
SLM is then sent to a single-mode fiber (SMF). The SMF is
connected to a Si photodector that is attached to a lock-in
amplifier system. The laser beam is chopped before the
sample and its chopping frequency is used as the refer-
ence frequency of the lock-in amplifier. The chopping
frequency used is 3 kHz and the integration time of
the lock-in amplifier is 300 ms. The data are logged by

a digital oscilloscope (DO, Agilent) to the computer. In
our measurements, we have also obtained the normalized
intensity P

−Δφ, the power reflected for a phase -Δφ. This
is done by switching the gray level values of the two
regions of the SLM.

Figure 2 shows our experimental results for different
step heights. Note the good correspondence of the exper-
imental curve with the theoretical calculations. The val-
ues used for the theoretical curves are 0, 8, and 31 nm,
respectively. These are measured by a commercial pro-
filometer (Alpha-Step IQ Surface profilometer). To quan-
tify the height of the step from our measurements, we
take the difference between PΔφ and P

−Δφ. The difference
of the normalized powers is given by

P
−Δφ − PΔφ � sin δ sin Δφ: (4)

Note that the step height is readily accessible with
sin δ as P

−Δφ − PΔφ is plotted as a function of sin Δφ.
The uncertainty in the measured height comes from
the standard error of the slope of the plotted line.

Figure 3 is an example of the analysis done to the ex-
perimental data. The experimental results fit nicely to the
data. No fitting parameters are used. The maximum am-
plitude happens at quadrature Δφ � π∕2, as seen in
Fig. 3(a). The measured thickness layers are summarized
in Table 1. The uncertainty comes from the fact that the
sample is not smooth as observed in the profilometer
scans (not shown). Moreover, we ascribe the 1.9 nm off-
set in our data to the existence of a nonlinear relationship
between the gray level value and the phase introduced by
the SLM near π, which we found during initial calibration
of the SLM [see, for example, the difference in the line fit
with the theoretical line in Fig. 3(b) near π].

As in the SDI, the maximum sensitivity in our scheme
happens at the quadrature condition. The main differ-
ence, however, is the detection scheme. Consider, for
example, a step geometry that fulfils the quadrature
condition with a thin layer sample placed on top of
the step. The system is illuminated by a Gaussian beam

Fig. 1. Experimental setup. A He–Ne laser beam impinges per-
pendicularly to the sample (the diagram of the sample is exag-
gerated). The reflection from the sample is then projected onto
an SLMwhere a desired phase is encoded. The resulting beam is
sent to a SMF. A lock-in amplifier with a chopper is used to
lessen technical noise. See text for details.
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with beam waist w0 and power P0. The signal of interest
is the normalized differential signal P1 − P2, where P1 and
P2 are the power of the detected signal from the step with
and without the thin layer. In the SDI, there is an opti-
mum area of detection that gives the maximum value
of P1 − P2. Increasing the area of detection decreases
P1 − P2. In the mode projection scheme on the other
hand, the total power of the projected signal is measured
and hence, the power does not depend on the detection
area. More importantly, given the proper choice of mode
the SNR will be higher. In the step geometry considering
shot-noise condition, the SNR ratio is enhanced by ∼2 dB
compared to SDI when using spatial mode projection
with Δφ � 0.

The importance of the quadrature condition is the
large linear change in the differential signal produced
by a tiny layer if the substrate is at quadrature. When
the system is not at quadrature, the differential signal
is diminished dramatically. This is not an issue in the
scheme we present here as spatial modes can be easily
engineered such that the linear dependence of the nor-
malized differential signal P1 − P2 is preserved for any
optical height h∕λ. We show this for a thin layer on
top of a flat substrate (inset Fig. 4). In this case, the
SDI will not work since the thin layer is on top of a sub-
strate that does not meet the quadrature condition. In our
scheme we can reintroduce the quadrature condition on
the mode. Figure 4 shows the differential signal when the
reflected signals are projected onto Gaussian modes
with different phase steps. Notice that at Δφ � π∕2,

Fig. 2. Normalized intensities for P when projected onto a
mode of phases Δφ and −Δφ for different heights: (a) sample
1 (1.9 nm measured height, 0 nm profilometry measurement),
(b) sample 2 (9.7 nm measured height, 8 nm profilometry meas-
urement), and (c) sample 3 (29.0 nm measured height, 31 nm
profilometry measurement). All measurements have standard
error of ∼0.2 nm. The measurements based on the experimental
data are discussed in the text. Theoretical curves were calcu-
lated based on the measurement done with a commercial
profilometer.

Fig. 3. Typical data for analysis. (a) Normalized power differ-
ence P

−Δφ − PΔφ as a function of Δφ. (b) The difference as a
function of sin Δφ is linear as described by Eq. (4). Line fit
is from the calculated height (dashed line) and from theoretical
calculations (solid line). For all plots, the theoretical curve is
calculated from a step height of 31 nm, which is independently
measured with a profilometer.

Table 1. Experimental Thickness Layer (in
Nanometers)

Sample Profilometrya CPI with Mode Projection Std Err

Sample 1 0 1.89 0.23
Sample 2 8 9.72 0.17
Sample 3 31 29.01 0.21
aAlpha-Step IQ Surface profilometer. The standard error in the height
obtained with the profilometer is in order of nanometers (1–2 nm)
owing to the uneven surface of the sample.

Fig. 4. Normalized differential signal �P1 − P2�∕P0 as a func-
tion of the sample height when the reflected signal is projected
onto a Gaussian mode with phase step Δφ. The solid, dashed,
and dashed–dotted (×10) lines correspond to Δφ � 0, π∕2, π∕4,
respectively.
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the differential signal is linear with the height of the layer
at the same time giving the maximum differential signal.
On the contrary, Δφ � π∕4 and Δφ � 0 do not give opti-
mal differential signals. This is what we observe in our
experiment [Fig. 3(a)]. We note, however, that similar
to SDI, the lateral resolution of our technique is diffrac-
tion limited.
The measurement of subnanometric steps requires the

detection of small power differences P1 − P2. In our
scheme, a normalized height h∕λ ∼ 10−4 and an initial la-
ser power of 1 mW would give a differential signal of
δ∕2 ∼ 600 nW. This differential signal can be detected
in principle. One can use the intensity measurement
method by Freudiger and co-workers [14,15] where a
high-frequency detection scheme is used to get rid of
lower-frequency laser noise, thus allowing the detection
of fractional power losses of up to ∼10−7. The SNR is
S∕N � δ∕2

���������������������
2πE0λ∕ℏc

p
∼ 14 dB in our scheme using the

parameters above.
In conclusion, we have demonstrated that extremely

small step heights can be measured without the need
to impose stringent conditions on the substrate by using
spatial mode projection in a CPI. We have measured a
layer thickness as low as 9.7 nm with a standard error
of 170 pm in our experiment. Moreover, we have shown
that our scheme enhances the sensitivity of detection and
hence, can also be used for subnanometric step height
measurements.
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