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1 Introduction

Inventory Routing Problems (IRP) are currently getting a lot of attention (e.g. [1-3]). Besides
the routing parameters, inventory and handling costs at the customers are also taken into
account. Until now, a vehicle routing problem for which no inventory variant has been
considered is the Orienteering Problem (OP). The goal of the regular OP [4] is to maximize the
total score, collected by visiting a selection of customers, without violating a time constraint.
Every customer can be visited at most once and the travel times between the customers are
given. For the Inventory Orienteering Problem (IOP), inventory and handling costs are added.
The IOP considers n potential customers (i=1,...,n), each with an inventory cost (/; in
euro/ton*hour), a handling cost (H; in euro/delivery), a constant demand rate (D; in tons/hour)
and a fixed reward (R; in euro/hour). The time required to travel between two customers i and j
is given by #; and is considered constant. A maximum time limits the availability to visit the
customers. Other aspects related to distribution taken into account are the fixed vehicle
operating cost (y in euro/hour), the average speed of the vehicle (v in km/hour), the travel cost
(8 in euro per km) and the vehicle capacity (Q in tons). It is assumed that every customer has
an infinite inventory capacity. Traditionally the objective is to minimise the total cost, although
the reward may change the optimization into maximising profit. This problem is almost the
same as the Single-Vehicle Cyclic Inventory Routing Problem (SV-CIRP) [5,6,7]. The only
difference is that the available time to visit customers is not limited explicitly in the SV-CIRP.
We think the TOP would be closer to model reality than the SV-CIRP, since the IOP can
limit this cycle time to a given upper bound, e.g. a number of hours or a working day.
Nevertheless, this upper bound will only make the IOP easier to solve than the SV-CIRP.
Moreover, benchmark test instances are only available for the SV-CIRP. Therefore, we will
focus on the SV-CIRP, knowing that the proposed solution technique can also solve the IOP.
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An important property, increasing the complexity of the problem, is that the single vehicle is
allowed to make multiple trips from the depot during one cycle.

This means we are now looking for a cyclic distribution plan for a single vehicle, starting
and ending at a single depot, for a set S of selected customers. A key decision variable will be
the cycle time 7, .i.e. the time between two deliveries to each customer. The total travel time
will be T". Based on this cycle time, the total cost (Cost in euro/hour) can be defined as:
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Please note that this total cost includes four terms, respectively, the vehicle cost, the handling
cost, the inventory cost, the travelling cost and the rewards of visiting customers.

The cycle time is lower and upper bounded. It must be not shorter than the shortest travel
time required to visit all selected customers divided in multiple trips (7min) and is limited to
Tmax, based on the capacity Q of the vehicle. For a selection of customers divided in multiple
trips, the ideal cycle time would be the “economic-order-quantity” cycle time Teoq [3]:
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However, Teoq can only be selected if it lies between Tmin and Tmax. If Teoq is shorter
than Tmin, the optimal cycle time Topt will be Tmin and if Teoq is longer than Tmax, it will be
Tmax. Otherwise, Topt=Teoq.

The IRP was first introduced by Bell et al. [§]. A number of comprehensive survey papers
about the IRP and its variants are available [1, 9-11]. The SV-CIRP and some exact and
(meta)heuristic solution approaches are discussed in [3, 6, 7, 12, 13]. In Zhong and Aghezzaf
[12], an in-depth analysis of the SV-CIRP reveals that the objective function is non-smooth
and non-convex with many local minima. Zhong [7] discusses in detail the complexity of the
SV-CIRP and presents an efficient mathematical formulation. Benchmark instances are
available in [3,6,7].

2 Iterated Local Search

The Tterated Local Search (ILS) framework was successfully implemented before to deal with
the SV-CIRP [3] and a variant of the OP [14]. The general structure of ILS is described by
Lourengo et al. [15]. Algorithm 1 gives an overview of our ILS implementation, which is
completely different from the implementation of Zhong and Aghezzaf [3]. The most important
functions of this algorithm are Initialisation, Local Search, Perturbation, Acceptance and
Stopping Criterion. Nevertheless, it is interesting to first discuss two building blocks used by
these functions: Divide and Insert.

Divide tries to determine, for a given selection of customers S, the best division in
trips and the best sequence of visits in each trip. Remember that the single vehicle can make
multiple trips from the depot during one cycle. This division in trips is based on solving a
Capacitated Vehicle Routing Problem (CVRP), for an increasing number of trips. The CVRP
is solved by using the parallel version of the Clarke and Wright Savings Algorithm [16]. The
CVRP-solution is improved, if possible, to decrease the total Cost.

Insert adds an extra customer to a given solution, without changing the division of the
customers in trips. One by one, all non-visited customers are considered for insertion and the
customer leading to the highest decrease in Cost is inserted. Then again, all non-visited
customers are considered until no more customers can be inserted. When testing a customer for
insertion, all possible positions in all possible trips are considered. The best position in each
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trip is selected based on the lowest increase in travel time, and the best trip to insert the
customer is selected based on the highest decrease of Cost.

Algorithm 1: ILS for the SV-CIRP

Nolmprove <— 0

Solution €— Initialisation

BestFound <— Solution

while NoImprove < MaxNolmprove do

Solution €— Local Search (Solution)

if Solution better than BestFound then
BestFound €<— Solution
Nolmprove <—0

else
Nolmprove=Nolmprove+1

end if

Solution €— Acceptance Criterion(BestFound, Solution)
Solution <— Perturbation(Solution)

end while
Return (BestFound)

Initialisation starts by selecting randomly half of the customers. Then, Divide is applied
in order to determine the best division in trips. If this division has a negative Cost, meaning it
is worthwhile for the vehicle to be used for this tour, an initial solution is found. If this is not
the case, again half of the customers are removed and Divide is applied again, until a solution
with a negative Cost is found.

In Local Search, a heuristic considers one by one, all non-visited customers for insertion
and the best one, decreasing Cost most, is inserted. Then again, all non-visited customers are
considered until no more customers can be inserted. This heuristic alternates between two
ways to look for the best non-visited customer: Divide (after adding the “non-visited customer”
to the current set) and /nsert. The most important advantage of this alternation is a high saving
of computation time compared to using only Divide.

Perturbation evaluates a different combination of customers each iteration. It will remove
Nr of subsequent customers from the current solution, starting at “position” Pos. The
parameter Nr is initialised to one and is increased by one every iteration. Nr is limited to a
given percentage of the customers in the current solution. If it becomes larger, it is reset to one.
Similarly, Pos is initialised to one and is increased by Nr every iteration. If Pos would be
larger than the number of customers in the solution, it is reduced by the number of customers.
As a result of this setting of Pos and Nr, a different combination of customers is evaluated
every iteration. This is one of the crucial elements in order to obtain high quality solutions.
After the perturbation, the local search heuristic is applied to find a new local optimum.

The Acceptance Criterion typically has two extreme implementations [15]: with “random
walk”, the search always continues from the current solution, regardless its Cost; with “better”
the search always continues from the best solution (BestFound). Our algorithm uses something
in between. As a result, the algorithm is able to spend enough effort to further improve the best
found solution. But when the number of iterations without improvement increases, the
algorithm can spend more and more time on diversification in order to try to improve the
current solution.

The algorithm stops when the number of subsequent iterations without improvement
(NoImprove) reaches the value of MaxNolmprove. After testing several values, the following
results were obtained with MaxNolImprove =200.
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3 Experimental Results

The experimental results are based on five sets of ten benchmark instances for the SV-CIRP [3,
6, 7]. We made all sets available here:
http://www.mech.kuleuven.be/en/cib/op/opmainpage#section-21.

The results are summarised in Table 1. Our algorithm is compared with the best available
metaheuristic for the SV-CIRP, called “Zho”, of Zhong and Aghezzaf [3]. Our ILS algorithm
was coded in Java and all experiments were executed on a Dell Latitude E5410 notebook, with
Intel Core i5 2.40GHz processor and 4.0GB of RAM. The specifications for “Zho” can be
found in [3] and [7].

The first two columns of Table 1 present the name of the set and the number of customers
in these instances. The third one indicates the number of instances where our algorithm found
better solutions than “Zho”. The fourth column gives the average gap (in %) between the two
approaches, calculated in this way: Gap = 100*(Costz,, — Costy s)/Costzn,. Thus, a negative
gap means that our approach outperforms “Zho”. Finally, the fifth and sixth columns show the
average CPU time of both solution methods.

Set n Better Average CPUof CPU of
instances gap (%) ILS (s) Zho (s)

1 15 3 -0.32 2 3

2 20 10 -21.62 4 212

3 25 2 0.67 28 106
4 30-67 10 -32.71 86 896

5 30-67 10 -26.22 221 1666
All 15-67 -16.04 68 577

Table 1: Summary of experimental results

Our ILS algorithm clearly outperforms the best technique currently available on all sets
of instances, except for the instances of Set 3. For five of these instances, Zho performs better
than our ILS. For three instances, both procedures reach the same results and for two instances
our ILS performs better. When analysing these ten instances, it appeared to us that for these
instances, it is very easy (and worthwhile) to visit all customers. The only decision that needs
to be made is how these customers should be divided in trips in order to optimise the cycle
time and the total cost; no selection is necessary. Zho focuses much more on that aspect and
succeeds in obtaining a better division in trips than our ILS. Nevertheless, for two instances of
Set 3, our ILS obtains new best known solutions.

When considering all 50 instances, our ILS obtains on average a Cost that is 16.04%
better, and it is significantly faster. 32 new best known solutions are found. The quality
improvement and the computation time reduction are the most noticeable for the larger
instances of Set 4 and 5. Nevertheless, for all ten instances of only 15 customers (Set 1), the
solutions obtained by our algorithm are the optimal solutions, in only 2 seconds on average.
Only for Set 1 optimal solutions are available [6].

According to us, the main reason we outperform Zho is that we have a stronger
diversification during the search process. We remove a changing number of customers in each
diversification phase while Zhong and Aghezzaf [3] only relocate customers by swapping pairs
of customers from different tours. Furthermore, we exploited some typical characteristics of
the SV-CIRP.

4 Conclusions

In this paper, a fast and effective metaheuristic to deal with the inventory orienteering problem
(IOP) as well as the single-vehicle cyclic inventory routing problem (SV-CIRP) is presented.
One of the characteristics to consider it a very challenging optimisation problem is the fact that
the single vehicle can make multiple trips. As a result, not only a selection of customers needs
to be made, but the selected customers should also be divided in trips in an optimal way. We
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developed an efficient Iterated Local Search (ILS) metaheuristic by exploiting this problem’s
characteristics.

The experimental results clearly show that our algorithm outperforms the existing
solution approaches. On average, our ILS improves the results of Zhong and Aghezzaf [3] by
16.04% and 32 new best known solutions are found and reported. For the twenty largest
instances with 30 to 67 customers, our approach improves the results with 29.46% and is eight
times faster.

Moreover, the fact that our implementation of the ILS framework obtains much better
results than the implementation by Zhong and Aghezzaf [3] clearly shows that different
implementations of the same framework can lead to significantly different solution algorithms
and that the performance obtained by any given framework depends strongly on the specific
implementation of that framework.
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