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Figure 4: Strength as a function of the effect
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fatigue notch sensitivity (data from notched samples). This is indeed the main aim of this study- ltis a |
required exercise if structural design issues are to be considered for selecting cemented carbides with
optimal microstructures towards enhanced mechanical performance.

2. Materials studied: microstructure, hardness and toughness ,

The study was conducted on two microstructurally different WC—-Co cemented carbides. They ,
correspond o experimental grades provided by Sandvik Hard Materials (Coventry, UK). Designation,
binder content (%Co), mean carbide grain size (dwc), binder mean free path (o) and carbide
contiguity (Cwc) are listed in Table 1. Values for the two-phase microstructural parameters (Aco and
Cwc) were estimated from best-fit equations, attained after compilation and analysis of data published
in a large number of literature studies, on the basis of empirical relationships given by Roebuck and
Almond [1] but extending them to include carbide size influence [16,17]. Hardness (HV30) and fracture
toughness (Kic) for the two hardmetal grades are also included in Table 1. Hardness was measured
using a 30 kgf (294 N) Vickers diamond pyramidal indentation. Fracture toughness was evaluated
following the single edge notched pend method. The sample geometry employed was a rectangular
bar of 45x10%5 mm dimensions. A detailed description of the pre-cracking and fracture toughness
testing procedure used has been reported elsewhere [18]. As itis expected, hardness and toughness
exhibit an inverse dependence with binder mean free path.

dWG 7\‘ca cwc
(nm) (wm)
“ 15.9+ 0.4 1.1+£05 0.54

Table 1. Microstructural and mechanical (hardness and toughness) characteristics
for the materials investigated.

%Co
(Yout)

Hardmetal

grade

L22 0.57

3. Fracture strength and fatigue endurance testing of smooth and notched specimens

Fracture and fatigue strength were assessed under four-point bending, with inner and outer spar
20 and 40 mm respectively. Prismatic specimens of 45x4x3 mm dimensions were employed. In
unnotched case, before testing the longitudinal section later subjected to the maximum st
bending was ground and polished. On the other hand, a through-thickness slot was mech
machined for evaluation of notch effects. Notch depth and root radius were set to 250 um and 6
respectively, corresponding to a theoretical stress concentration factor (ki) of 4.22 [19]. Addi
longitudinal edges of all the samples were beveled.

Strength tests under monotonic loading were conducted using @ servohydraulic machine. Ont
hand, fatigue tests were carried outin a resonant device at frequencies of about 150 Hz and lod
of 0.1. Fatigue endurance was defined as the fatigue strength corresponding o an infinite fatig
of 2 x 10° cycles. It was determined following the staircase method [20], using at least 15 SP
per grade and testing condition.

4. Fatigue endurance and notch sensitivity

Fatigue experimental findings were attained from statistical analysis of up—and-down 7
described above. An example of complete testing sequences for hardmetal grade M23, corresP
to smooth and notched specimens, is shown in Figure 1. Fatigue endurance results for poth h
grades studied are listed in Table 2. Fracture strength data are also included, for com

fatigu B
t gue sensitivity (&) and fatigue notch sensitivit
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Figure 1. Up and down fatigue test sequence used for determining the 2 x 10° cycles fatigue
endurance of hardmetal grade M23: a) smooth, and b) notched specimens.

such that the material exhibits less sensitivity to notch effects under cyclic loading, as q gets lower
(within the 0 to 1 range).

Taking into consideration the physical meaning of & and q parameters, as described above, it may be
pointed out that the similar value measured for the 2 x 10° cycles fatigue endurance of L22 and M23
notched specimens is a consequence of different phenomenological responses. Thus, the tough-like
grade is intrinsically more susceptible to fatigue degradation because the higher effective ductility

Euro PM2013 — Hardmetals

Hardmetal grade k, k¢ 8¢ q
I

L22 4.22 3.63 0.26 0.82
S

M23 422 2.30 0.52 0.40

Table 3. Notch stress concentration factor (k,), notch fatigue factor (k;), microestructural-related fatigue
sensitivity (8¢ — estimated from oo, ratio measured in smooth specimens) and notch fatigue
sensitivity (q — measured by relative comparison of theoretical k, and experimental k).

associated with its less constrained binder [8]. However, such enhanced ductility also favors local
plasticity at the notch tip, diminishing then the theoretical stress rising effect. Such reasoning applies
for the harder (brittle-like) material too, but here trends are inversed with respect to those described for
M23 grade.

The concept of local plasticity breaking the linear increase of the applied stress at the edge of the
stress concentration, up to the theoretical value given by k; (4.22 in this study) is also validated by the
relatively high fracture strength values determined for the notched specimens. Furthermore, its higher
prominence in the tough-like material is also supported by the relative differences found for the
hardmetal grades studied: about 50% and 30% higher than expected for M23 and L22 materials,
respectively. Although the reliability of these fracture strength values may be questioned, because
they have been determined on the basis of linear elasticity, the experimental findings may be taken as
real trends, i.e. higher levels of local plasticity developed at the notch tip of M23 specimens, as
compared to L22 grade.

5. Summary and final remarks

The fatigue behavior of two microstructurally different WC-Co cemented carbides has been
investigated. The study has been aimed to evaluate and analyze the individual influence of
microstructure on intrinsic fatigue sensitivity (smooth specimens) and fatigue notch sensitivity (notched
samples). It is concluded that fatigue susceptibility rises as the effective ductility of the constrained
binder increases. However, higher toughness levels also yield a lower severity of the stress
concentration effect under cyclic loading. Accordingly, a complex effect of microstructure on the
fatigue endurance of notched hardmetals is identified, pointing out the need for simultaneous
consideration of both intrinsic (microstructure — fatigue sensitivity) and notch-related influence, if their
fatigue performance wants to be enhanced. In this regard, compromising microstructure
arrangements, similar to those defined on the basis of mutual accounting of hardness and toughness
as critical design parameters, should be tailored. In order to validate these ideas, further research in
this field is clearly required.
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Hardmetals with Alternative Fe/Co/Ni and Fe/Ni Binders
A Study on Mo Doping, Mechanical Properties and Creep Behaviour

C. Buchegger™, R. Koos*, W. Lengauer*, K. Rédiger**, H. van den Berg**
*\lienna University of Technology, **Kennametal Shared Services GmbhH

Properties of hardmetals with a Fe/Co/Ni = 40/20/40 wt.% binder alloy were measured. Green bodies
were prepared on a usual powder metallurgical route and sintered under vacuum conditions. The
sintering behaviour of hardmetals in dependency on the binder content, and Mo-addition from various
sources such as molybdenum nitride, molybdenum carbide and alloyed molybdenum was investigated
by dilatometry. Microstructure analysis shows an improved grain-growth inhibiting effect of y-MoN,., as
compared to both Mo,C and alloyed Mo. Hardness HV30, fracture toughness K¢, magnetic saturation
and coercive force were determined as a function of the carbon content. The influence of WC grain-
size on the creep behaviour was compared to cobalt containing and a cobalt-free Fe/Ni = 15/85 wt.%
binder alloy by a three-point bending test under power-law conditions. From experimental data creep

parameters such as Norton exponents (n = 3.7 — 8.7) and activation energies (Q = 313 — 318 kJ/mol)
were estimated.

Introduction

In the last decades several fundamental studies [1-6] on so-called alternative binder alloys for
hardmetals have been published. They were driven by a possible improvement of the mechanical
properties. It turned out that for particular properties and applications specific Fe/Co/Ni binder alloys
perform equal or even superior as compared to cobalt, but do not reach its wide application range and
combination of properties. Hence, the economic impact as well as the research activities were limited
to specific fields of interest. Due to geostrategic and health concerns in recent years there is again an
increasing interest on alternatives to cobalt, despite its outstanding mechanical properties [7].

In comparison to the well-developed Co-based hardmetals and despite some important works [1-12],
the properties of hardmetals with Fe/Co/Ni binders are relatively unexplored. The purpose of the
present work is to achieve a deeper understanding for the Fe/Co/Ni = 40/20/40 wt.% binder alloy,
which was found to be suitable for metal tooling applications [9], i.e. to get more insight into (1) the
sintering behaviour, (2) the dependency of the hardness, fracture toughness as well as the magnetic
properties of a Mo,C, VC and CriC, doped hardmetal on the carbon content, (3) the influence of
molybdenum as a grain-growth inhibitor added from different sources, (4) the creep behaviour as

compared to cobalt and a cobalt-free Fe/Ni binder and (5) the influence of the WC grain size on the
creep behaviour.

Experimental
Preparation and characterisation of samples

The samples for investigation of the mechanical and magnetic properties, the sintering behaviour as
Well the influence of grain-growth inhibitors and molybdenum from different sources were prepared on
4 Usual powder metallurgical route by liquid-phase sintering at 1440°C. A characterisation of the
Specimens is given in Tab. 1. The Ampersint® MAP A6050 (H.C. Starck, Fe/Co/Ni = 40/20/40 wt.%)
alloy was used as binder, 4NP0 (H.C. Starck) was used as tungsten carbide powder. Hardness HV30
and fracture toughness Kic (Shetty), the magnetic saturation as well as the coercive force were
m}?asured by standard techniques. The microstructure was characterised using light-optical
Microscopy (LOM) and scanning electron microscopy (SEM). The linear-intercept method (ISO 4499-
2:2009) was used to achieve grain-size distributions.
Fpr Creep test samples with three different binder systems as well as two different initial WC grain
Sizes were prepared and sintered by conventional industrial methods. The samples were doped with
C as well as Cr3C, for grain-growth inhibition (identical amount for all grades), the binder content was
6.3 vol.%. A characterisation of the creep-test samples is given in Tab. 2.




