Comparison of Stay Green and non Stay Green Maize Hybrids for Forage Use

** Facultat de Veterinaria. UAB. (08193) Bellaterra. Spain

INTRODUCTION

It is often assumed that genotypes remaining green through the final phase of the maturation of the grain (stay green) can increase stover yield. This is desirable in forage maize. By retarding the drying of the plant (Gentinetta et al., 1986), the stay green trait also allows for flexibility in the silage period. In order to clarify these aspects, stay green (SG) hybrids were compared with non stay green (NSG) hybrids with respect to characters relevant to forage during the optimum silage period.

MATERIAL AND METHODS

Three hybrids considered to be SG: P-3186(1), Furia(2) and Adour-850(3) were studied along with another 3 hybrids considered to be NSG: PR-3374(4), AE-703(5) and FS-734(6). All are commercial hybrids with similar development, a late cycle and high grain production. Four harvests were made with 3 days between successive harvests. The dry matter of the whole plant ranged between 31 and 34% (which is considered to be within the optimal range for silage). The experimental layout was a triple factorial design (hybrid, harvest, and block) with 3 blocks and 16 plants per plot. The following traits were considered: number of dry leaves, % dry matter of the stover (%sDM), ear dry weight and stover dry weight.

RESULTS AND DISCUSSION

Significant differences were obtained for the effects of hybrid, harvest and hybrid x harvest for all controlled traits.

While the presumed SG hybrids confirmed this trait, the hybrid 4 proved to be closer to the SG than the NSG hybrids (Fig. 1a). The three indices proposed for the quantification of the SG trait (Fig. 1) provide coherent results and could therefore be used to describe other materials.

The evolution of stover yield for each harvest can be described as decreasing, this effect being more pronounced in the NSG hybrids (Fig. 2a). Therefore, given equal production, it would be recommendable to choose SG hybrids, as the slower degradation of the stover in plants with this trait allows a greater margin of time for silage.

ACKNOWLEDGEMENTS

This work has been done with a grant from "La Caixa de Pensions de Catalunya i Balears".

REFERENCES