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Abstract -  Today's applications, especially those in the 

scientific community, deal with an ever growing 

amount of data. Among the problems that arise from 

this explosion of data are how to organize the data so 

that the information about how the data was 

produced is not lost, how to ensure repeatability of 

calculations, how to automate calculations, and how to 

save computational and storage resources. The 

storage is currently a passive component that neither 

imposes any rules on data organization nor helps with 

associating a calculation with its result. We thus 

introduce AbacusFS – an integrated storage and 

computational platform which interacts with the file 

system and connects the calculations and the storage. 

Users and applications see it as a normal file system; 

however, the semantics are changed for files that are 

results of calculations done with the platform. When 

such a file is open for reading, AbacusFS first re-

generates it if the input files used in the calculation 

have been modified. Alternatively, result files can be 

virtual, i.e. not stored anywhere but rather re-

generated on every read access. 

I. INTRODUCTION 

 
 Today's applications, especially those in the 
scientific community, deal with an ever growing amount 
of data [1]. Major problem in using these applications is 
tracking changes of the intermediate data. Users of these 
applications want to focus mainly on the final results and 
do not want to be considered with intermediate results, 
changes in the files, parameters, versions etc. They would 
like more automation and repeatability. 
 Using storage efficiently and economically is a 
major problem because of the increasing amount of data 
and the fact that advances in storage, particularly storage 
speed, lag behind advances in CPU speed. Depending on 
available CPUs, available storage devices and their 
location, it may be faster or cheaper to re-generate (re-
calculate) the data whenever it is needed rather than 
storing everything. In HPC a lot of data is long term 

archived on tape. Re-calculating the data could 
sometimes prove more economical than getting it from 
tape. Furthermore, from the energy consumption point of 
view it may be optimal to start the calculation only when 
the results are needed instead of when the user has 
requested (because of the differences in costs in different 
times, i.e. computing costs at night might be lower than at 
day).  
 There are thus two significant and related 
problems: 1) data organization and 2) performance and 
efficiency. In order to solve the problems of data 
organization, reproducibility and automation of 
calculations we need to make calculations aware of 
changes in input files, parameters, software versions etc. 
The result that is needed by the user could then be re-
calculated if something has changed. In the case of 
workflows of multiple calculations, changes to any initial 
or intermediate file could trigger re-calculation of the 
dependent part of the workflow. One of the problems that 
may arise here is the problem of nondeterministic 
applications in which the results might slightly vary in the 
last digits. For now we do not tackle these problems, 
rather our focus is on the deterministic applications. The 
performance and efficiency problem is correlated with the 
first one. Some intermediate files in the calculations are 
perhaps changed very often and it may be better to re-
calculate them every time rather to store them 
permanently. Others may be accessed frequently but 
rarely changed, so they are better stored permanently or 
even replicated on multiple storage nodes. 
 To tackle these problems we propose AbacusFS 
which changes the paradigm in which we observe 
storage, or more specifically, file systems. Applications 
currently just use the storage without any interaction or 
integration between the two. Current storage systems 
neither impose any rules on data organization nor help 
with associating a calculation with its result. The basic 
idea of the solution presented in this paper is to make file 
systems application-aware in order to improve the 
efficiency of storage use, shorten the time to obtain 
calculation results, and automate certain repetitive tasks 
for the user. 
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A. Related work 

 There are two important research fields which 
relate to our solution: virtualizing processes with file 
systems and building file systems in user space. 
 One of the recent solutions in this area is the 
concept of a desynchronizing file system or DesyncFS 
[2]. DesyncFS deals with the problems of heterogeneity 
in supercomputers which imposes problems with 
scientific applications with a lot of internal dependencies. 
Due to different performances of the hardware the 
applications run at the speed of the least powerful 
processor. In order for these applications to perform 
better they need to be desynchronized. 
 In the traditional relationship between 
application and file system, control resides in the 
application and it calls into the file system as needed for 
storage. This can be described as a push-pull relationship. 
The file system is passive and the application actively 
pushes and pulls data. A desynchronizing file system 
inverts this relationship, making the file system active 
and the application passive [2].   
 Solution which we propose deals with different 
problem but it also tries to change the relationship 
between storage and applications. One other difference is 
that in order to use DesyncFS a user has to adapt the 
applications for it where in the case of our solution there 
is no need for any changes in the applications. 
 Linux has a long tradition of user-space file 
systems (e.g. Network File System (NFS) [4] was 
implemented this way for quite some time. User-space 
file systems are not widely used mostly because of 
performance and security reasons [5]. However there are 
advantages in building a file system in user space: an 
ability to build and modify the file system without 
changing the kernel; shaping the file system to the needs 
of the user with the ability to use functions from the user 
space. One of the most important projects in that area is 
FUSE [6]. File System in User Space (FUSE) is a 
loadable kernel module for Unix-like computer operating 
systems that lets non-privileged users create their own 
file systems without editing kernel code. This is achieved 
by running file system code in user space while the FUSE 
module provides only a "bridge" to the actual kernel 
interfaces. FUSE is particularly useful for writing virtual 
file systems. Unlike traditional file systems that 
essentially save data to and retrieve data from disk, 
virtual file systems do not actually store data themselves. 
They act as a view or translation of an existing file 
system or storage device. 
 One of the ever growing problems in the 
scientific community is managing and running 
workflows. Provenance in the context of workflows, both 
for the data they derive and for their specification, is an 
essential component to allow for result reproducibility, 
sharing, and knowledge re-use in the scientific 
community [7]. Scientific workflows has become an 
important area of research within workflow platforms and 
environments. Workflows are supported in the AbacusFS 
and in the future we would like to extend that feature to 
add more workflow management. Some important 

platforms and frameworks in this area are: Taverna [8], 
Askalon [9] and Trident [10]. 
 The concept of using file systems to store 
dynamic (non-persistant data) is present for some time. 
The Linux proc file system [11] has been around from 
1984 and it is used widely Today. The device file system 
(devfs) [12] is also widely used for presenting device 
files. It provides a powerful new device menagement 
mechanism for Linux.   
 

II. DESIGN AND ARCHITECTURE 

A. General design 

 We introduce an integrated file 
system/computational platform that connects calculations 
and storage. This platform is currently implemented on a 
single machine with plans to extend it to distributed 
systems (cluster/grid/cloud), where the advantages of 
such a solution will be more evident. The users of the 
platform will be able to deploy scientific calculations 
without worrying about re-calculation every time they 
make some changes in the calculation parameters or input 
files. They will also be able to see how each file was 
produced. 
 Let us illustrate the usage of the platform with 
an use case. Whenever a user runs some calculation, the 
full command-line and other information is stored as 
metadata associated with the calculation's output file(s). 
Then, each time one of the output files is open for 
reading, it is first checked whether it is up-to-date, i.e. 
whether the input files have changed. If they have 
changed, the file is automatically re-generated by running 
the original command again and file access is allowed 
only after the re-calculation has finished. All existing 
command-line applications can be used without 
modifications, except for the applications that write to 
pre-existing files. The fact that input files can also be 
results of previous calculations does not pose any 
problem, so workflows are supported natively. 
 Running calculation when the command is 
issued and then re-calculating whenever the results are 
needed and any inputs have changed is not always 
optimal. For example, in  next generation 
supercomputing, moving data from the storage to the 
computing nodes may be more time and resource 
consuming than recomputing this information because we 
may have more available idle CPU power. A part of our 
platform is thus a decision-making process that can take 
into account parameters such as file size, number of read 
accesses, number of re-calculations of the file, and a user-
assigned file importance. In the future we plan to refine 
the decision-making process and with it add more 
parameters. 
 

B. Architecture overview 

 AbacusFS has four main modules, as  shown in 
Figure 1. These are: 

1. the Abacus file system implementation, 
2. the decision making module, 



3. the helper script for running the calculations, 
4. the database where extended metadata is stored 

 

C. Abacus file system 

 The FUSE-based file system is the core module 
of our solution. It uses a directory on another file system 
for backing storage. It is the only module that 
communicates with all other modules. The users and 
applications see it as a normal file system; however, the 
semantics are changed for files that are results of 
calculations done with the platform, i.e. files that have 
certain extended attributes set. When such a file is opened 
for reading, it is by default re-generated if needed, as 
explained above. After the file is accessed and read it can 
be 1) stored permanently or 2) not stored – instead re-
generated on every access. 

 
Figure 1. Overview of the architecture 

 

D. Decision making module 

 The decision of 1) storing the file permanently 
or 2) re-calculate it every time it is accessed, is made by 
the decision making module. Since one of our 
requirements is to use the storage more efficiently and 
economically, we need to add some intelligence to these 
decisions. We propose an intelligent agent based on fuzzy 
logic [13], a proven principle that is widely used in fields 
such as computer science (e.g. bioinformatics, image 
processing, embedded systems), automation, process 
control,h etc. 
 The decision making process takes place every 
time the file is accessed. The agent must currently decide 
between the two options mentioned above. Even though 
this may seem trivial, the agent is extensible so that in the 
distributed version it will also decide where to put files 
and calculating processes, which files to replicate etc. 
Efficiency of resource use, performance, and reliability 
thus depends on this module. 
 We currently observe the following variables as 
the basis for the decision: the number of read accesses to 
the file, the size of the file, the number of time the 

calculation was run and the value user assigns to the file 
(optional). 
 

E. Helper abacuscalc script for running calculations 

 The third module is the script for running the 
calculations. Whenever a user wants to run some 
calculation for the first time he needs to use this 
predefined script, which takes care of notifying the file 
system how the calculation is to be run, what input files it 
depends on, what output files it produces etc. For a trivial 
example, let us suppose that the user wants to run: 
cat -n infile1 infile2 > outfile, 

and he wishes the outfile to be managed by the file 
system as a calculation result. 
Outfile must, of course, be located on the abacus file 
system, while the input files can be anywhere. The user 
must run the abacuscalc script with the following 
modified command line: 
./abacuscalc.py cat -n -in infile1 -in infile2 -stdout outfile 
Consecutive input files must be preceded by -in, 
consecutive output file by –out and consecutive non-file 
parameters with –opt. Similarly, < is replaced with -stdin, 
> with stdout and 2> with -stderr.  
 The helper scripts forwards the information 
about the calculation using special, write-only files in a 
reserved part of abacus file system, similar to the Linux' 
proc file system. 
 

F. The extended metadata database 

 The extended metadata database is a Redis [14] 
based database which is used to store extended metadata  
of the files and calculations.  It is essentially a noSQL key 
value store in which we store two important types of data: 

• associations between each output file and the 
calculation that produced it, 

• all the informations about each calculation that 
are required to re-run it plus some statistics used 
by the decision making module. 

Whenever a file is accessed the metadata database is 
consulted to check whether the file depends on (i.e. is the 
result of) a calculation. If this is the case then the record 
describing this calculation is also read. 
 The database may grow large, particularly once 
the platform is extended to distributed systems. We plan 
to use similar approaches as the existing metadata servers 
of Luster[15], PVFS[16] and other parallel file systems. 
 With this metadata database we have extended 
the metadata concept which would be harder to do if we 
were to use only extended attributes fields of the files. 
The problems with using extended attributes on the local 
machine would be the increase in file size an thus a 
performance problem. Using the metadata database is 
also simpler to develop, has no limitations for data model 
or size. But the major would be with the files that are not 
stored permanently for which we can not use extended 
attributes. Also in the future when AbacusFS is extended 
on multiple machines the need for a centralized metadata 
database will appear. 
 



III. IMPLEMENTATION 

 
 In this section we will describe some technical 
details of the modules introduced in the previous section 
and also interactions between them. 
 

A. Communication between abacuscalc script and 

Abacus file system 

 As said before, the helper script uses write-only 
files in a special directory to forward the information on 
the calculation to the file system. Such a directory is 
created for each new calculation and named after a 
calcualtion's unique identifier (CUID) that the file system 
assigns to it. To illustrate how the communication works, 
we will show the equivalent commands that the user 
could enter for the before mentioned example of 
calculation 
 cat -n infile1 infile2 > outfile. 

The whole process is explained in Table I. We will 
assume that abacus file system is mounted at /abacusfs. 

TABLE I.  EXPLANATION OF THE COMMAND-LINE OF THE ABACUSCALC 
SCRIPT 

Command-line equivalent of helper 
script action 

Comment 

# cd /abacusfs/newcalc  
# ls Each ls in directory 

/abacusfs/newcalc 
signals a new 
calculation. 
 
The file system will 
now generate a new 
CUID, e.g. 34ac5, and 
return the directory 
34ac5 as the only file in 
/abacusfs/newcalc. 

# cd 34ac5  
# echo 'cat -n \ 

/home/isak/infile1 \ 

/home/isak/infile2 \ 

> outfile' >cmd 

Note that if the helper 
script is bypassed, 
which we only do here 
as illustration, absolute 
file paths must be used 
everywhere. 

# echo '/abacusfs/isak/infile1' > in  
# echo '/abacusfs/isak/infile2' >> in  
# echo 'outfile' > out  
# cat status Reading the status file 

signals that all the 
information has been 
written. 

 
 Once the status file is being opened for reading, 
the file system stores all calculation metadata to the 
database using the key 34ac5. It then asks the decision-
making agent whether this calculation should be first run 
right away. If the decision is no, the file system 
immediately returns as the contents of the status file a 
value that signalizes that the calculation has not been 
started. If, on the other hand, the decision is yes, the file 
system will: 

1. run the calculation and wait for it to finish, 
2. set an extended attribute of file outfile that will 

mark it as the result of calculation 34ac5, 

3. return an OK value as the contents of the status 
file. This will results in the user having to wait 
for the calculation to finish, which is the 
expected behavior. 

 

B. Extended metadata database 

 Redis, which our metadata database is based on, 
is an advanced open source key-value store. The key of 
each record must be string while the value can be a string, 
a map (termed a hash in Redis), a list, a set, or a sorted 
set. Redis supports atomic operations such as appending 
to a string, incrementing the value in a hash etc. Redis 
works in-memory to achieve better performance but can 
also make data persistent by dumping the dataset to the 
disk on request or by appending each command to a log. 
In our solution we decided to dump the dataset to disk but 
also to use logging as well in the case of system. Since 
we use redis hashes as data structures to store 
information, it is important to underline that redis hashes 
are stored in such a way that takes very little space, so it 
is possible to store millions of objects in a small Redis 
instance. 
 Two pieces of data we currently store in the 
metadata server database are shown in Table II. 

TABLE II.  SAMPLES OF THE DATA STORED IN THE 
METADATA SERVER DB 

Files that 

are derived 

from some 

calculation: 

'34ac5'' calculation hash Explanation 

'outfile1:34a
c5' 

'in': 
'/abacusfs/isak/infile1:1234 
/abacusfs/isak/infile2:1234' 

Input files with 
absolute paths and 
ctimes1 of the files. 

 'inno': '2' Number of input files. 
'out': 'outfile:1234' Output files with 

relative paths to 
/abacusf and ctimes of 
output files. 

'outno': '1' Number of output 
files. 

'count': '45' Number of times the 
calculation was run 
(the file has been re-
calculated) 

'time': '0.351' Time it needed for the 
calculation to execute 
(last execution time). 

'cmd': 'cat  -n \ 
/home/isak/infile1 \ 
/home/isak/infile2 \ 
> outfile' 

Full command-line of 
the calculation. 

'nfa': '1034' Number of times tihe 
file was accessed. 

'uv': '3' A value that user 
attaches to the file 
when running the 
calculation for the first 
time trough 
abacuscalc script. 

                                                           
1 Currently, when working on the local machine we read the ctimes 
from the stat structures of the files but when the soulution is extended 
on multiple machines we will need a metadata server which will serve 
all nodes. Of course that would meen that we also need a 
synchronization of the clock between nodes. 



 

C. Decision making module based on fuzzy logic 

 As said before, the intelligent decision making 
agent currently decides only between two options: 

1. the calculation is run the first time with the 
abacuscalc script and afterwards every time the 
file is accessed but it is out-of-date, and 

2. the file is not stored permanently but rather 
calculated every time it is accessed. Obviously, 
in this case the calculation should not be run 
when the helper script is invoked. 

The agent bases its decisions on the following variables: 
• number of accesses to the file (NFA) – this 

parameter tells us how often the file was 
accessed, which is important in the decision-
making process, because the more the file is 
used will tip towards storing it permanently, 

• size of the file (SF) – since one of the important 
issues is using the storage efficiently this 
parameter is very important, 

• number of time the calculation was run (NCR) – 
this parameter will tell us how often is the file 
re-calculated, 

• the value user attaches to the file (optional) 
(UV) – we need the parameter which will give 
the value that user can attach to the file thus 
making it more or less important.  

All variables except SF are stored in the metadata 
database. UV can be changed by the user and is by 
default 5 out of 10. The extreme values 0 and 10 are 
intended to override most of the influence of the other 
variables. 
 Each variable is a member of three fuzzy sets 
(small, medium and large). The boundaries of the sets are 
different for different variables, e.g. a smallish 30 MB file 
could have a 0.6, 0.4, 0.0 memberships in the three sets, 
respectively. 
 The decision variable DV is obtained to 
determine what to do with the file. It can take two 
possible intervals: 
[1] [0 –50] – re-calculate every time 
[2] [50– 100] – store permanently 
 
The agent uses a set of rules to obtain such as: 
 
if NFA == large and SF == small and NCR == small 

and UV == large then DV = store_permanently 
 
if NFA == small and SF == large and NCR == large and 

UV = small then DV = recalculate_every_time 

 
If the file is small in size, accessed frequently and has a 
high user value assigned it is optimal to store the file 
permanently. On the other hand if the file is large in size 
but accessed rarely and has small user value it may prove 
better to re-calculate every time the file is needed. Thus, 
user-given file importance, calculation time, frequency of 
access will tip the scales towards storing the file 
permanently and the output file size will tip it towards re-

calculating the file when needed. One other important 
variable which will be added latter in the process is the 
time needed for the execution of the calculation. The 
shorter the calculation time the more likely it is that the 
file will be re-calculated and if the time grows large it 
may prove optimal to store the file permanently. 
 Since we have four input variables which are 
members of three sets we get 34 = 81 rules. This currently 
crude process is a starting point for a search of optimal 
set of rules. Particularly the distributed version of the 
platform will require additional variables and a detailed 
study of the rules that achieve the best performance. 
 

IV. TESTS 

 
 The AbacusFS platform obviously performs 
similarly to the underlying file system, only imposing an 
overhead when dealing with calculation-dependent files. 
The following operations could potentially induce a 
measurable overhead: 

1. running the calculation for the first time, as 
opposed to running it without AbacusFS, 

2. checking whether the file is up-to-date on each 
read access, 

3. re-running the calculation when it is not up-to-
date. 

Note that the overheads of running calculations include 
the decision-making process. The performance of the in-
memory files which are not stored permanently has not 
yet been tested. 
 The tests were conducted on the machine with 
Intel i7-2600 3.40 GHz CPU, Intel 80 GB SDD, on the 
3.0.0. Linux kernel. 
 

A. Running the calculation for the first time as opposed 

to running it without AbacusFS 

We have conducted tests with the simple cat a b 

> c command where the input files a and b are located on 
the underlying file system and the output file c is stored 
on Abacus file system. The size of input files varied from 
0 to 2 MB and tests were conducted with flushing the 
cache every time before the command was run and 
without flushing the cache. The results are in tables III. 
and IV and they show that the overhead increases with 
file size.  

When comparing these results it can be seen that 
overhead also increases when the cache is flushed. 
Abacus file system uses a directory on the underlying file 
system for backing storage. FUSE in its implementation 
does not handle caches by itself, but relies on kernel 
caching. This means that the data is being cached twice 
since kernel sees abacus file system and the backend file 
system as different ones. We also did more tests to find 
out which part of the whole process takes most time. 
These tests showed that the time for execution of the 
command increases as file size increases and 
communication between abacuscalc script and abacus file 
system remains constant. This indicates latency issues 
more than bandwidth issues. We proved this by testing 



with flushing only page cache and directory entries and 
attributes, which showed that additional overhead comes 
when the page cache is flushed. Result is anticipated 
since FUSE always introduces some additional overhead 
related to data read/write operations. In the future we will 
try to optimize it and thus decrease the overhead. 
 

TABLE III.  TEST OF RUNNING THE CALCULATION 

FOR THE FIRST TIME ON ABACUSFS AND ON UNDERLYING 

FS WITH FLUSHED CACHE 

Size of 
input 
files 

AbacusFS – 
with flushed 
cache  

Underlying FS 
– with flushed 
cache  

Overhead  

0 B 0.0544 s 0.0098 s 44.6 ms 
4096 B 0.0639 s 0.0104 s 53.5 ms 
0.5 MB 0.0729 s 0.0202 s  52.7 ms 
1 MB 0.0825 s 0.0240 s 58.5 ms 
2 MB 0.1117 s 0.0373 s 74.4 ms 

 

TABLE IV.  TEST OF RUNNING THE CALCULATION 

FOR THE FIRST TIME ON ABACUSFS AND ON UNDERLYING 

FS WITHOUT FLUSHED CACHE 

Size of 
input 
files 

AbacusFS – 
without flushed 
cache  

Underlying FS 
– without 
flushed cache  

Overhead  

0 B 0.0177 s 0.0021 s 15.6 ms 
4096 B 0.0180 s 0.0023 s 15.7 ms 
0.5 MB 0.0288 s 0.0023 s 26.5 ms 
1 MB 0.0360 s 0.0064 s 29.6 ms 
2 MB 0.0496 s 0.0113 s 38.3 ms 

 

B. Checking whether the file is up-to-date on each 

access and re-calculating if it is not 

Option of checking whether the file is up-to-date 
and re-calculating the files which are out-of-date is the 
major option of AbacusFS. Since file systems by default 
do not have this option the tests were conducted in two 
parts. First the files are up-to-date and we are measuring 
the overhead of read access to the files on abacus file 
system in opposed to the underlying file system. In 
second part the files are not up-to-date and they are 
automatically re-calculated. This measurement gives an 
information how much more overhead does the re-
calculation part produces in the system. The tests were 
done only on small (6 bytes in size) files with and without 
flushing cache.  
 

TABLE V.  READ ACCESS TIME ON UNDERLYING 

FILE SYSTEM AND ON ABACUS FILE SYSTEM 

Underlying FS 
– flushed cache 

AbacusFS – 
flushed cache 

Underlying FS 
– without 
flushed cache 

AbacusFS – 
without flushed 
cache 

0.0074 s 0.0151 s 0.0017 s 0.0035 s 

 

TABLE VI.   TIME NEEDED FOR READ 

ACCESS AND RE-CALCULATION WHEN THE FILE IS NOT UP-
TO-DATE ON ABACUS FILE SYSTEM  

AbacusFS – flushed cache AbacusFS – without flushed cache 
0.0232 s 0.0035 s 

When comparing the results from Tables IV. and V. it 
can be seen that the re-calculation brings no additional 
overhead without flushed cache and with flushed cache 
only another 8 ms. This results is very important since the 
option of automatic re-calculation is one of the key 
advantages of AbacusFS. 
 

C. Workflows 

The third test which we conducted considers 
workflows. Since it was already said that workflow 
support is one of the key advantages of AbacusFS we 
needed to test it. 

In order to test it we made a simple workflow 
which consists of simple cat commands: 
cat a b > c, 
cat a b c > d, 
cat a b c d > e, 
cat a b c d e > f, 
where a and b are on the underlying file system and all 
other files or on abacus file system. The files are small in 
size (10 bytes). In underlying file system if the file a is 
changed it is necessary to manually run all the commands 
in order to get the file f. In AbacusFS if the file a is 
changed and file f read the whole workflow is 
automatically run and the file f re-calculated.  
 

D. Tests overview 

 The conducted tests showed that for files smaller 
than 0.5 MB overhead is between 13 and 30 ms. The 
problem with larger files is within the FUSE 
implementation. Tests with the workflows show two 
things: 1) that the workflows are supported natively in 
AbacusFS and 2) that this does not causes any extra 
overhead. 
 The large files problem needs to be assessed 
more in the future and with optimizing the file system 
module decreased.  
 

V. CONCLUSION 

 
 This paper has introduced the AbacusFS 
computational platform which tries to change the 
paradigm of storage such that the file system interacts 
with computations, thus connecting computational tasks 
and storage. It tries to solve two problems: 1) automating 
the process of running scientific calculations which are 
complex with lots of intermediate results and lots of 
dependencies thus reducing the need for user interaction; 
and 2) optimizing the use of storage to use the resources 
more efficiently and economically. Access to the files is 
changed in a way that if the file is a product of some 
calculation it can be re-calculated if some inputs of the 
calculation changed. Also some files are always re-
calculated rather then saved permanently to save storage 
resources. All this is done by building a new file system 
and connecting the calculations and the file system with 
the extended metadata database that extends the metadata 
concept. 



 Preliminary tests show that the overhead of the 
platform is small for small files and larger overhead for 
larger files. The tests have also shown that adding the 
option of automatic re-calculation (which also adds the 
option of workflow support natively) does not bring any 
new overhead to the system. The scalability to large 
number of files and calculations is currently being 
assessed. 
 Future work involves primarily refining the 
decision making process, refining the metadata concept,  
optimizing the FUSE based file system module and 
extending the solution to multiple machines 
(cluster/grid/cloud). The latter will also require 
incorporating a task scheduler, a resource manager and a 
distributed file system for backing storage. Furthermore 
we may add some prediction of users’ behavior in order 
to achieve more automation as well as more efficient use 
of storage resources. 
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