
AbacusFS integrated storage and computational
platform

Isak Nuhić*, Marjan Šterk*, Toni Cortes+

* XLAB d.o.o., Ljubljana, Slovenia

+ Barcelona Supercomputing Center, Barcelona, Spain
Corresponding author: isak.nuhic@xlab.si

Abstract - Today's applications, especially those in the

scientific community, deal with an ever growing

amount of data. Among the problems that arise from

this explosion of data are how to organize the data so

that the information about how the data was

produced is not lost, how to ensure repeatability of

calculations, how to automate calculations, and how to

save computational and storage resources. The

storage is currently a passive component that neither

imposes any rules on data organization nor helps with

associating a calculation with its result. We thus

introduce AbacusFS – an integrated storage and

computational platform which interacts with the file

system and connects the calculations and the storage.

Users and applications see it as a normal file system;

however, the semantics are changed for files that are

results of calculations done with the platform. When

such a file is open for reading, AbacusFS first re-

generates it if the input files used in the calculation

have been modified. Alternatively, result files can be

virtual, i.e. not stored anywhere but rather re-

generated on every read access.

I. INTRODUCTION

 Today's applications, especially those in the
scientific community, deal with an ever growing amount
of data [1]. Major problem in using these applications is
tracking changes of the intermediate data. Users of these
applications want to focus mainly on the final results and
do not want to be considered with intermediate results,
changes in the files, parameters, versions etc. They would
like more automation and repeatability.
 Using storage efficiently and economically is a
major problem because of the increasing amount of data
and the fact that advances in storage, particularly storage
speed, lag behind advances in CPU speed. Depending on
available CPUs, available storage devices and their
location, it may be faster or cheaper to re-generate (re-
calculate) the data whenever it is needed rather than
storing everything. In HPC a lot of data is long term

archived on tape. Re-calculating the data could
sometimes prove more economical than getting it from
tape. Furthermore, from the energy consumption point of
view it may be optimal to start the calculation only when
the results are needed instead of when the user has
requested (because of the differences in costs in different
times, i.e. computing costs at night might be lower than at
day).
 There are thus two significant and related
problems: 1) data organization and 2) performance and
efficiency. In order to solve the problems of data
organization, reproducibility and automation of
calculations we need to make calculations aware of
changes in input files, parameters, software versions etc.
The result that is needed by the user could then be re-
calculated if something has changed. In the case of
workflows of multiple calculations, changes to any initial
or intermediate file could trigger re-calculation of the
dependent part of the workflow. One of the problems that
may arise here is the problem of nondeterministic
applications in which the results might slightly vary in the
last digits. For now we do not tackle these problems,
rather our focus is on the deterministic applications. The
performance and efficiency problem is correlated with the
first one. Some intermediate files in the calculations are
perhaps changed very often and it may be better to re-
calculate them every time rather to store them
permanently. Others may be accessed frequently but
rarely changed, so they are better stored permanently or
even replicated on multiple storage nodes.
 To tackle these problems we propose AbacusFS
which changes the paradigm in which we observe
storage, or more specifically, file systems. Applications
currently just use the storage without any interaction or
integration between the two. Current storage systems
neither impose any rules on data organization nor help
with associating a calculation with its result. The basic
idea of the solution presented in this paper is to make file
systems application-aware in order to improve the
efficiency of storage use, shorten the time to obtain
calculation results, and automate certain repetitive tasks
for the user.

This work was partially supported by the EU Marie Curie Initial
Training Network SCALUS under grant agreement, the Spanish
Ministry of Science and Technology under the TIN2007-60625 grant,
and the Catalan Government under the 2009-SGR-980 grant, no.
238808.

A. Related work

 There are two important research fields which
relate to our solution: virtualizing processes with file
systems and building file systems in user space.
 One of the recent solutions in this area is the
concept of a desynchronizing file system or DesyncFS
[2]. DesyncFS deals with the problems of heterogeneity
in supercomputers which imposes problems with
scientific applications with a lot of internal dependencies.
Due to different performances of the hardware the
applications run at the speed of the least powerful
processor. In order for these applications to perform
better they need to be desynchronized.
 In the traditional relationship between
application and file system, control resides in the
application and it calls into the file system as needed for
storage. This can be described as a push-pull relationship.
The file system is passive and the application actively
pushes and pulls data. A desynchronizing file system
inverts this relationship, making the file system active
and the application passive [2].
 Solution which we propose deals with different
problem but it also tries to change the relationship
between storage and applications. One other difference is
that in order to use DesyncFS a user has to adapt the
applications for it where in the case of our solution there
is no need for any changes in the applications.
 Linux has a long tradition of user-space file
systems (e.g. Network File System (NFS) [4] was
implemented this way for quite some time. User-space
file systems are not widely used mostly because of
performance and security reasons [5]. However there are
advantages in building a file system in user space: an
ability to build and modify the file system without
changing the kernel; shaping the file system to the needs
of the user with the ability to use functions from the user
space. One of the most important projects in that area is
FUSE [6]. File System in User Space (FUSE) is a
loadable kernel module for Unix-like computer operating
systems that lets non-privileged users create their own
file systems without editing kernel code. This is achieved
by running file system code in user space while the FUSE
module provides only a "bridge" to the actual kernel
interfaces. FUSE is particularly useful for writing virtual
file systems. Unlike traditional file systems that
essentially save data to and retrieve data from disk,
virtual file systems do not actually store data themselves.
They act as a view or translation of an existing file
system or storage device.
 One of the ever growing problems in the
scientific community is managing and running
workflows. Provenance in the context of workflows, both
for the data they derive and for their specification, is an
essential component to allow for result reproducibility,
sharing, and knowledge re-use in the scientific
community [7]. Scientific workflows has become an
important area of research within workflow platforms and
environments. Workflows are supported in the AbacusFS
and in the future we would like to extend that feature to
add more workflow management. Some important

platforms and frameworks in this area are: Taverna [8],
Askalon [9] and Trident [10].
 The concept of using file systems to store
dynamic (non-persistant data) is present for some time.
The Linux proc file system [11] has been around from
1984 and it is used widely Today. The device file system
(devfs) [12] is also widely used for presenting device
files. It provides a powerful new device menagement
mechanism for Linux.

II. DESIGN AND ARCHITECTURE

A. General design

 We introduce an integrated file
system/computational platform that connects calculations
and storage. This platform is currently implemented on a
single machine with plans to extend it to distributed
systems (cluster/grid/cloud), where the advantages of
such a solution will be more evident. The users of the
platform will be able to deploy scientific calculations
without worrying about re-calculation every time they
make some changes in the calculation parameters or input
files. They will also be able to see how each file was
produced.
 Let us illustrate the usage of the platform with
an use case. Whenever a user runs some calculation, the
full command-line and other information is stored as
metadata associated with the calculation's output file(s).
Then, each time one of the output files is open for
reading, it is first checked whether it is up-to-date, i.e.
whether the input files have changed. If they have
changed, the file is automatically re-generated by running
the original command again and file access is allowed
only after the re-calculation has finished. All existing
command-line applications can be used without
modifications, except for the applications that write to
pre-existing files. The fact that input files can also be
results of previous calculations does not pose any
problem, so workflows are supported natively.
 Running calculation when the command is
issued and then re-calculating whenever the results are
needed and any inputs have changed is not always
optimal. For example, in next generation
supercomputing, moving data from the storage to the
computing nodes may be more time and resource
consuming than recomputing this information because we
may have more available idle CPU power. A part of our
platform is thus a decision-making process that can take
into account parameters such as file size, number of read
accesses, number of re-calculations of the file, and a user-
assigned file importance. In the future we plan to refine
the decision-making process and with it add more
parameters.

B. Architecture overview

 AbacusFS has four main modules, as shown in
Figure 1. These are:

1. the Abacus file system implementation,
2. the decision making module,

3. the helper script for running the calculations,
4. the database where extended metadata is stored

C. Abacus file system

 The FUSE-based file system is the core module
of our solution. It uses a directory on another file system
for backing storage. It is the only module that
communicates with all other modules. The users and
applications see it as a normal file system; however, the
semantics are changed for files that are results of
calculations done with the platform, i.e. files that have
certain extended attributes set. When such a file is opened
for reading, it is by default re-generated if needed, as
explained above. After the file is accessed and read it can
be 1) stored permanently or 2) not stored – instead re-
generated on every access.

Figure 1. Overview of the architecture

D. Decision making module

 The decision of 1) storing the file permanently
or 2) re-calculate it every time it is accessed, is made by
the decision making module. Since one of our
requirements is to use the storage more efficiently and
economically, we need to add some intelligence to these
decisions. We propose an intelligent agent based on fuzzy
logic [13], a proven principle that is widely used in fields
such as computer science (e.g. bioinformatics, image
processing, embedded systems), automation, process
control,h etc.
 The decision making process takes place every
time the file is accessed. The agent must currently decide
between the two options mentioned above. Even though
this may seem trivial, the agent is extensible so that in the
distributed version it will also decide where to put files
and calculating processes, which files to replicate etc.
Efficiency of resource use, performance, and reliability
thus depends on this module.
 We currently observe the following variables as
the basis for the decision: the number of read accesses to
the file, the size of the file, the number of time the

calculation was run and the value user assigns to the file
(optional).

E. Helper abacuscalc script for running calculations

 The third module is the script for running the
calculations. Whenever a user wants to run some
calculation for the first time he needs to use this
predefined script, which takes care of notifying the file
system how the calculation is to be run, what input files it
depends on, what output files it produces etc. For a trivial
example, let us suppose that the user wants to run:
cat -n infile1 infile2 > outfile,

and he wishes the outfile to be managed by the file
system as a calculation result.
Outfile must, of course, be located on the abacus file
system, while the input files can be anywhere. The user
must run the abacuscalc script with the following
modified command line:
./abacuscalc.py cat -n -in infile1 -in infile2 -stdout outfile
Consecutive input files must be preceded by -in,
consecutive output file by –out and consecutive non-file
parameters with –opt. Similarly, < is replaced with -stdin,
> with stdout and 2> with -stderr.
 The helper scripts forwards the information
about the calculation using special, write-only files in a
reserved part of abacus file system, similar to the Linux'
proc file system.

F. The extended metadata database

 The extended metadata database is a Redis [14]
based database which is used to store extended metadata
of the files and calculations. It is essentially a noSQL key
value store in which we store two important types of data:

• associations between each output file and the
calculation that produced it,

• all the informations about each calculation that
are required to re-run it plus some statistics used
by the decision making module.

Whenever a file is accessed the metadata database is
consulted to check whether the file depends on (i.e. is the
result of) a calculation. If this is the case then the record
describing this calculation is also read.
 The database may grow large, particularly once
the platform is extended to distributed systems. We plan
to use similar approaches as the existing metadata servers
of Luster[15], PVFS[16] and other parallel file systems.
 With this metadata database we have extended
the metadata concept which would be harder to do if we
were to use only extended attributes fields of the files.
The problems with using extended attributes on the local
machine would be the increase in file size an thus a
performance problem. Using the metadata database is
also simpler to develop, has no limitations for data model
or size. But the major would be with the files that are not
stored permanently for which we can not use extended
attributes. Also in the future when AbacusFS is extended
on multiple machines the need for a centralized metadata
database will appear.

III. IMPLEMENTATION

 In this section we will describe some technical
details of the modules introduced in the previous section
and also interactions between them.

A. Communication between abacuscalc script and

Abacus file system

 As said before, the helper script uses write-only
files in a special directory to forward the information on
the calculation to the file system. Such a directory is
created for each new calculation and named after a
calcualtion's unique identifier (CUID) that the file system
assigns to it. To illustrate how the communication works,
we will show the equivalent commands that the user
could enter for the before mentioned example of
calculation
 cat -n infile1 infile2 > outfile.

The whole process is explained in Table I. We will
assume that abacus file system is mounted at /abacusfs.

TABLE I. EXPLANATION OF THE COMMAND-LINE OF THE ABACUSCALC
SCRIPT

Command-line equivalent of helper
script action

Comment

cd /abacusfs/newcalc
ls Each ls in directory

/abacusfs/newcalc
signals a new
calculation.

The file system will
now generate a new
CUID, e.g. 34ac5, and
return the directory
34ac5 as the only file in
/abacusfs/newcalc.

cd 34ac5
echo 'cat -n \

/home/isak/infile1 \

/home/isak/infile2 \

> outfile' >cmd

Note that if the helper
script is bypassed,
which we only do here
as illustration, absolute
file paths must be used
everywhere.

echo '/abacusfs/isak/infile1' > in
echo '/abacusfs/isak/infile2' >> in
echo 'outfile' > out
cat status Reading the status file

signals that all the
information has been
written.

 Once the status file is being opened for reading,
the file system stores all calculation metadata to the
database using the key 34ac5. It then asks the decision-
making agent whether this calculation should be first run
right away. If the decision is no, the file system
immediately returns as the contents of the status file a
value that signalizes that the calculation has not been
started. If, on the other hand, the decision is yes, the file
system will:

1. run the calculation and wait for it to finish,
2. set an extended attribute of file outfile that will

mark it as the result of calculation 34ac5,

3. return an OK value as the contents of the status
file. This will results in the user having to wait
for the calculation to finish, which is the
expected behavior.

B. Extended metadata database

 Redis, which our metadata database is based on,
is an advanced open source key-value store. The key of
each record must be string while the value can be a string,
a map (termed a hash in Redis), a list, a set, or a sorted
set. Redis supports atomic operations such as appending
to a string, incrementing the value in a hash etc. Redis
works in-memory to achieve better performance but can
also make data persistent by dumping the dataset to the
disk on request or by appending each command to a log.
In our solution we decided to dump the dataset to disk but
also to use logging as well in the case of system. Since
we use redis hashes as data structures to store
information, it is important to underline that redis hashes
are stored in such a way that takes very little space, so it
is possible to store millions of objects in a small Redis
instance.
 Two pieces of data we currently store in the
metadata server database are shown in Table II.

TABLE II. SAMPLES OF THE DATA STORED IN THE
METADATA SERVER DB

Files that

are derived

from some

calculation:

'34ac5'' calculation hash Explanation

'outfile1:34a
c5'

'in':
'/abacusfs/isak/infile1:1234
/abacusfs/isak/infile2:1234'

Input files with
absolute paths and
ctimes1 of the files.

 'inno': '2' Number of input files.
'out': 'outfile:1234' Output files with

relative paths to
/abacusf and ctimes of
output files.

'outno': '1' Number of output
files.

'count': '45' Number of times the
calculation was run
(the file has been re-
calculated)

'time': '0.351' Time it needed for the
calculation to execute
(last execution time).

'cmd': 'cat -n \
/home/isak/infile1 \
/home/isak/infile2 \
> outfile'

Full command-line of
the calculation.

'nfa': '1034' Number of times tihe
file was accessed.

'uv': '3' A value that user
attaches to the file
when running the
calculation for the first
time trough
abacuscalc script.

1 Currently, when working on the local machine we read the ctimes
from the stat structures of the files but when the soulution is extended
on multiple machines we will need a metadata server which will serve
all nodes. Of course that would meen that we also need a
synchronization of the clock between nodes.

C. Decision making module based on fuzzy logic

 As said before, the intelligent decision making
agent currently decides only between two options:

1. the calculation is run the first time with the
abacuscalc script and afterwards every time the
file is accessed but it is out-of-date, and

2. the file is not stored permanently but rather
calculated every time it is accessed. Obviously,
in this case the calculation should not be run
when the helper script is invoked.

The agent bases its decisions on the following variables:
• number of accesses to the file (NFA) – this

parameter tells us how often the file was
accessed, which is important in the decision-
making process, because the more the file is
used will tip towards storing it permanently,

• size of the file (SF) – since one of the important
issues is using the storage efficiently this
parameter is very important,

• number of time the calculation was run (NCR) –
this parameter will tell us how often is the file
re-calculated,

• the value user attaches to the file (optional)
(UV) – we need the parameter which will give
the value that user can attach to the file thus
making it more or less important.

All variables except SF are stored in the metadata
database. UV can be changed by the user and is by
default 5 out of 10. The extreme values 0 and 10 are
intended to override most of the influence of the other
variables.
 Each variable is a member of three fuzzy sets
(small, medium and large). The boundaries of the sets are
different for different variables, e.g. a smallish 30 MB file
could have a 0.6, 0.4, 0.0 memberships in the three sets,
respectively.
 The decision variable DV is obtained to
determine what to do with the file. It can take two
possible intervals:
[1] [0 –50] – re-calculate every time
[2] [50– 100] – store permanently

The agent uses a set of rules to obtain such as:

if NFA == large and SF == small and NCR == small

and UV == large then DV = store_permanently

if NFA == small and SF == large and NCR == large and

UV = small then DV = recalculate_every_time

If the file is small in size, accessed frequently and has a
high user value assigned it is optimal to store the file
permanently. On the other hand if the file is large in size
but accessed rarely and has small user value it may prove
better to re-calculate every time the file is needed. Thus,
user-given file importance, calculation time, frequency of
access will tip the scales towards storing the file
permanently and the output file size will tip it towards re-

calculating the file when needed. One other important
variable which will be added latter in the process is the
time needed for the execution of the calculation. The
shorter the calculation time the more likely it is that the
file will be re-calculated and if the time grows large it
may prove optimal to store the file permanently.
 Since we have four input variables which are
members of three sets we get 34 = 81 rules. This currently
crude process is a starting point for a search of optimal
set of rules. Particularly the distributed version of the
platform will require additional variables and a detailed
study of the rules that achieve the best performance.

IV. TESTS

 The AbacusFS platform obviously performs
similarly to the underlying file system, only imposing an
overhead when dealing with calculation-dependent files.
The following operations could potentially induce a
measurable overhead:

1. running the calculation for the first time, as
opposed to running it without AbacusFS,

2. checking whether the file is up-to-date on each
read access,

3. re-running the calculation when it is not up-to-
date.

Note that the overheads of running calculations include
the decision-making process. The performance of the in-
memory files which are not stored permanently has not
yet been tested.
 The tests were conducted on the machine with
Intel i7-2600 3.40 GHz CPU, Intel 80 GB SDD, on the
3.0.0. Linux kernel.

A. Running the calculation for the first time as opposed

to running it without AbacusFS

We have conducted tests with the simple cat a b

> c command where the input files a and b are located on
the underlying file system and the output file c is stored
on Abacus file system. The size of input files varied from
0 to 2 MB and tests were conducted with flushing the
cache every time before the command was run and
without flushing the cache. The results are in tables III.
and IV and they show that the overhead increases with
file size.

When comparing these results it can be seen that
overhead also increases when the cache is flushed.
Abacus file system uses a directory on the underlying file
system for backing storage. FUSE in its implementation
does not handle caches by itself, but relies on kernel
caching. This means that the data is being cached twice
since kernel sees abacus file system and the backend file
system as different ones. We also did more tests to find
out which part of the whole process takes most time.
These tests showed that the time for execution of the
command increases as file size increases and
communication between abacuscalc script and abacus file
system remains constant. This indicates latency issues
more than bandwidth issues. We proved this by testing

with flushing only page cache and directory entries and
attributes, which showed that additional overhead comes
when the page cache is flushed. Result is anticipated
since FUSE always introduces some additional overhead
related to data read/write operations. In the future we will
try to optimize it and thus decrease the overhead.

TABLE III. TEST OF RUNNING THE CALCULATION

FOR THE FIRST TIME ON ABACUSFS AND ON UNDERLYING

FS WITH FLUSHED CACHE

Size of
input
files

AbacusFS –
with flushed
cache

Underlying FS
– with flushed
cache

Overhead

0 B 0.0544 s 0.0098 s 44.6 ms
4096 B 0.0639 s 0.0104 s 53.5 ms
0.5 MB 0.0729 s 0.0202 s 52.7 ms
1 MB 0.0825 s 0.0240 s 58.5 ms
2 MB 0.1117 s 0.0373 s 74.4 ms

TABLE IV. TEST OF RUNNING THE CALCULATION

FOR THE FIRST TIME ON ABACUSFS AND ON UNDERLYING

FS WITHOUT FLUSHED CACHE

Size of
input
files

AbacusFS –
without flushed
cache

Underlying FS
– without
flushed cache

Overhead

0 B 0.0177 s 0.0021 s 15.6 ms
4096 B 0.0180 s 0.0023 s 15.7 ms
0.5 MB 0.0288 s 0.0023 s 26.5 ms
1 MB 0.0360 s 0.0064 s 29.6 ms
2 MB 0.0496 s 0.0113 s 38.3 ms

B. Checking whether the file is up-to-date on each

access and re-calculating if it is not

Option of checking whether the file is up-to-date
and re-calculating the files which are out-of-date is the
major option of AbacusFS. Since file systems by default
do not have this option the tests were conducted in two
parts. First the files are up-to-date and we are measuring
the overhead of read access to the files on abacus file
system in opposed to the underlying file system. In
second part the files are not up-to-date and they are
automatically re-calculated. This measurement gives an
information how much more overhead does the re-
calculation part produces in the system. The tests were
done only on small (6 bytes in size) files with and without
flushing cache.

TABLE V. READ ACCESS TIME ON UNDERLYING

FILE SYSTEM AND ON ABACUS FILE SYSTEM

Underlying FS
– flushed cache

AbacusFS –
flushed cache

Underlying FS
– without
flushed cache

AbacusFS –
without flushed
cache

0.0074 s 0.0151 s 0.0017 s 0.0035 s

TABLE VI. TIME NEEDED FOR READ

ACCESS AND RE-CALCULATION WHEN THE FILE IS NOT UP-
TO-DATE ON ABACUS FILE SYSTEM

AbacusFS – flushed cache AbacusFS – without flushed cache
0.0232 s 0.0035 s

When comparing the results from Tables IV. and V. it
can be seen that the re-calculation brings no additional
overhead without flushed cache and with flushed cache
only another 8 ms. This results is very important since the
option of automatic re-calculation is one of the key
advantages of AbacusFS.

C. Workflows

The third test which we conducted considers
workflows. Since it was already said that workflow
support is one of the key advantages of AbacusFS we
needed to test it.

In order to test it we made a simple workflow
which consists of simple cat commands:
cat a b > c,
cat a b c > d,
cat a b c d > e,
cat a b c d e > f,
where a and b are on the underlying file system and all
other files or on abacus file system. The files are small in
size (10 bytes). In underlying file system if the file a is
changed it is necessary to manually run all the commands
in order to get the file f. In AbacusFS if the file a is
changed and file f read the whole workflow is
automatically run and the file f re-calculated.

D. Tests overview

 The conducted tests showed that for files smaller
than 0.5 MB overhead is between 13 and 30 ms. The
problem with larger files is within the FUSE
implementation. Tests with the workflows show two
things: 1) that the workflows are supported natively in
AbacusFS and 2) that this does not causes any extra
overhead.
 The large files problem needs to be assessed
more in the future and with optimizing the file system
module decreased.

V. CONCLUSION

 This paper has introduced the AbacusFS
computational platform which tries to change the
paradigm of storage such that the file system interacts
with computations, thus connecting computational tasks
and storage. It tries to solve two problems: 1) automating
the process of running scientific calculations which are
complex with lots of intermediate results and lots of
dependencies thus reducing the need for user interaction;
and 2) optimizing the use of storage to use the resources
more efficiently and economically. Access to the files is
changed in a way that if the file is a product of some
calculation it can be re-calculated if some inputs of the
calculation changed. Also some files are always re-
calculated rather then saved permanently to save storage
resources. All this is done by building a new file system
and connecting the calculations and the file system with
the extended metadata database that extends the metadata
concept.

 Preliminary tests show that the overhead of the
platform is small for small files and larger overhead for
larger files. The tests have also shown that adding the
option of automatic re-calculation (which also adds the
option of workflow support natively) does not bring any
new overhead to the system. The scalability to large
number of files and calculations is currently being
assessed.
 Future work involves primarily refining the
decision making process, refining the metadata concept,
optimizing the FUSE based file system module and
extending the solution to multiple machines
(cluster/grid/cloud). The latter will also require
incorporating a task scheduler, a resource manager and a
distributed file system for backing storage. Furthermore
we may add some prediction of users’ behavior in order
to achieve more automation as well as more efficient use
of storage resources.

 REFERENCES

[1] A. Ailamaki, V. Kantere, D. Dash, “Managing Scientific Data”,
Communications of the ACM Vol. 53 No.6, pp 68-78, 2010.

[2] L. Stein, D. Holland, M. Seltzer and Z. Zhang, „Can a file system
virtualize a processors?“, Association for Computing Machinery, Inc.,
March 2007.

[3] A. Shoshani, S. Klasky, R. Ross, Scientific data management:
Challenges and approaches in the extreme scale era, SciDAC 2010.

[4] C. M. Smith. Linux NFS faq, http://nfs.sourceforge.net/, 2002.

[5]FUSE - implementing filesystems in user space,
 http://lwn.net/Articles/68104/, 2006.

[6] M. Szeredi. File System in User Space. http://fuse.sourceforge.net,
2006.

[7] S. B. Davidson, J. Freire , „Provenance and Scientific Workflows:
Challenges and Opportunities“, SIGMOD Conference, 2008.

[8] P. Missier, S. Soiland-Reyes, S. Owen, W. Tan, A. Nenadic, I.
Dunlop, A. Williams, T. Oinn, and C. Goble, „Taverna, reloaded“, in
SSDBM 2010, Heidelberg, Germany, 2010.

[9] R. Prodan, „Specification and runtime workflow support in the
ASKALON Grid environment“, Scientific programming, vol 15, no 4,
IOS Press, 2007.

[10] Microsoft External Research, „Trident Workbench: A Scientific
Workflow System“, December 2008.

[11] T. Bowden, B. Bauer, J. Nerin, S. Feng, „The /proc file system“,
original: 1999., update: 2009.

[12] R. Gooch, „The Linux Device File-system“, EMC Corporation,
2002.

[13] Z. Kovacic, S. Bogdan, Fuzzy Controller Design: Theory and
Applications, Taylor & Francis Group, NW, 2006.

[14] S. Sanfilippo, Redis key-value store, http://www.redis.io, 2009.

[15] F. Z. Boito, R. V. Kassirc, P. O. A. Navaux, „Evaluating the
Performance of Lustre File System“ VII Workshop de Processamento
Paralelo e Distribuído, Porto Alegre, 2009.

[16] Kuhn M. M., Kunkel J. M., Ludwig T, „Dynamic file system
semantics to enable metadata optimizations in PVFS“, Concurrency and
Computation: Practice and Experience, 2009

