CONTINUOQUS SIMULATION IN SMALLTALK

Antoni GUASCH

Departament d'Enginyeria de Sistemes
Universitat Politecnica de Catalunya
Diagonal 647 - 2 planta

08028 Barcelona
guasch@esaii.upe.es

ABSTRACT

Although object-oriented languages such as Smallialk do not seem
very suible for continuous simulation, they offer a set of
characteristics and programming eavironments that are excellent
for prototyping.

This paper describes the previous author’s experience developing
continuous model simulation environments using FORTRAN and
C programming languages and the current results obtained using
Smalltalk. The transition from FORTRAN to C, from C 1o C++
and later on, the move to Smalltalk has been propelled by the need
to develop more flexible and easy 1o use simulation environments.

A continuous modeling and simulntion environment has been
impiemented in the Smalltall\V 286 syseem. The simulaton
environment, called SIMBIOS, stongly supports hierarchical
modeling and simuiation. In this system, users can exarsine their
models in a highly flexible environment. Since interactive
simutation is supported, the usual sequence of editing, translatng,
compiling, linking and simulating the model is avoided.

INTRODUCTION

From 1980 10 1983 a CSSL-like continuous system simulation
language wes developed and coded using FORTRAN 77 (Guasch
1984). This language has been and is stll used for research,
industrial and academic projects. At that time, the limitation of the
CSSL67 based simulation languages were well known: syntactic
deficiencies, hierarchical model were not allowed and the
discontinuity handling mechanisms were incomplete (Oren 1975).
Therefore, a basic research project was undertaken to solve such
problems; as a result, a new approach to hierarchical modeling was
proposed {Huber 1986).

To est these ideas, a simulation environment prototype was
developed from 1986 to 1987. This prototype called MUSS
{("ModUlar Simulation System”) was coded in C (Guasch 1987}
The move from FORTRAN to { was done in order to support
hierarchical structures and submodel instantiation. Moreover, the
availability of Lex and YACC lexical and syntactical tools was
also an important aspect. However, the C prototype could not be
completed because its complete development required important
manpower.

Fortunately, the most important aspects of the proposed
hierarchical and modeling approach can be easily implemented
using object-oriented programming languages. Thercfore, a first
simple object-oriented simulation prototype was coded in Ci+
{Guasch 1989). However, a later move to Smalltalk was done
because the Smalitalk software development environment was
found 10 be much more suitable than C++ for fast prototyping.

Since 1989, we have been developing a Smailtalk-based
continuous simulation environment in collaboration with the
Departament of Computer Science and the McLeod Institute of
Simulation Sciences at California State University, Chico (Guasch
1990). The system is called SIMBIOS ("SIMulation Based on
Icons and ObjectS").

Deparmment of Computer Science
California State University, Chico
Chico, CA 95929-0410

The present SIMBIOS prototype includes over 200 classes and
several thousand methods. These classes make up a rich simulation
environment that includes, among other tools, an icon modeling
interface; a powerful scope window; submodel specific windows;
integraton, state and tme event handling aigorithms; and
hierarchical model support.

The benefiis of using Smalltalk are mostly derived from its
inminsic object-oriented methodology. However, it has been found
that our programming productivity is considerable higher than in
C++ thanks 1o the dynamic binding capabilities and powerful
development 1ools of the Smalltalk environment (Dyke 1989).

.
Object-oriented methodologies and programming languages
atributes have been extensively discussed in the scientific
literamre (Cox 1986; Meyer 1988; Weiner 1988). It is not our

intention to gain a deep insight on the topic but to offer our
particular experience in the area.

Object-Oriented Pro, ing languages support the following
propertics {(Pinson 1988): dama abstraction, encapsulaton,
inheritance and polymorphism. Each one of these properties can
contribute to increase the flexibility and modularity of the
simulation environment. With software mainterance accountng
for & very high proportion (Meyer 1988) of software cost, this
flexibility is very important. It manifests itself in two ways in
particular; extensibility, the capacity w be extended and altered
throughout the software life cycle, and reusability, a measure of
the g}xwm to which code from one applicadon can be uilized in
another.

Our two yesr experience working with object-oriented
programming languages confirms the previous statement:

- Several aspects of the SIMBIOS prototype have been
devetoped by students as part of their Master's project at the
Universitat Politecnica de Catalunya, Barcelona and
California State University, Chico. The used methodelogy
eases the task of imeprating the students code with the
prototype. Furthermore, it is now possible to check it in a
shorter petiod of timme. This is possible because the stress has
shifted to the structure of the project in classes and methods
rather than on the structure and code of each subroutine.

- The existing code can be easily rsused by different
applications. For example, we have two students developing a
control package prototype. They did not have to code a
window for the representation of variables in the tire domain
since they used directly the scope window developed for
SIMBIOS. Moreover, root locus, bode and Nyquist windows
“]rerc eastly implemented as subelasses of the scope window
class.

- The incremental and evolutionary approach to software
development supported by this methodology makes possible
the continuous improvement of the SIMBIOS prototype. This
was not possible in our C prototype since small conceptual
changes could require 2 considerable effort to code them.,

« Using quect—oricr}tcd programming languages there is a
substantial reduction in the size of the existing code.
Therefore, a single person can manage more complexity
{Roberts 1988). The reduction of the size of existing code has
been partcularly imporant in the implementation of the
submodel, model and experiment instantiaton mechanisms
since the instantiation mechanisms are ingrinsic to the object
oriented methodology.

Since in Smalltalk is quite ease to create & prototype by using
programming refinement. Programmers may be tempted to turn
these first attempts into products without reexamining the code or
the overall design. Often, a better strategy consists on developing
one or more proiotypes and then construct a new system reusing
code from the prototype where convenient {Ewing 1987).
SIMBIOS has had three previous prototypes. Figure 1 shows for
each prototype its complexity versus its power. The prototype
should be redesigned when it becomes difficult to grasp the
interrelationship between its classes.

Complaxity

Prototype-3

Protatype~t
Protptype-2

Prototypa-4

Power

Figure 1. SIMBIOS prototypes

Although our programming environment of choice for fast
prowtyping is Smalltalk, it does not seem the right language for a
findl product since irs simuladon performance is very low
compared against C++ (Dyke 1989; Doyle 1690).

N ' Simbios Icon Editor
I e MAU
Simbios Experiment Study Postprocessor Utilities Inspect Help

THE SIMBIOS EROTOTYPE

Object oriented programming was first developed as a convenient
approach 10 implement simulaton problems. The notions of
objects, classes, and message was introduced in the SIMULA
lanpuage {Koschmann 1988) Object oriented simulation attempts
to fili the gap berween the model and what is modeled (Robens
1988). In continuous model simulation, objects (submodels) are
mathematical entities. However, in most cases, the objects are
physical and observable (i e. power plant).

The hierarchical relation among the SIMBIOS classes is shown in
fignre B. SIMBIOS classes are written in reverse video. An
exhaustive analysis of the class hierarchy is out of the scope of this
paper. Therefore, only significant classes are introduced in the
following sections.

Users interface

The simulaton environment associates separate windows for ¢ach
aspect of the work. For example, an icon-based window for the
model definidon, a window for the experiment specification and
windows for graphical and numerical reseits. The users interface
and in particular, the icon modeling window will support several
modeling methodologies. For example, bond-graph, analog-like,

conirol-like and systems theory. Therefore, the user will be able to
choose the modeling formalism that suits him best.

The SIMBIOS modeling window (StmbloslconPane) is icon-
based. Ezch submodel has its own icon. A simulaton is
consucted by specifying icons and connecting them as required.
The icon digraph (IconDigraph) holds topological information
about the graphical model representation, SIMBIOS supports a
hierarchical approach to modeling. A model may be composed of 2
nurnber of submodels, each with its own icon Clicking on the icon
of the submodel opens vp a detsiled represematon of the
submodel.

Figure 2 represents the classical bouncing ball problem. Four
submodels are necded 1o model it. The ground submodel is an
instance of the DownWhen submodel class. An state event is
detected when the ball reaches the ground. At event time, an
impulse signal is sent to the speed submodel
(ReseteableIntegrator class) and the input speed is latched and
sent to the bouncingSpeed submodel (Galn class). Figure 3 shows
the bouncing ball simulation results.

@Od)

¥

¥ v+|Resete |
[Inteq.]

speed

speedd
E]

.—‘.

[Thompson 19851
Example 3.
Bouncing Ball

height@

t

height

Do wn
Mhean fac

bouncingSpeed ground

Figure 2. SIMBIOS icon modeling window

IEI symbol icExperiment]E[!:HEI

s;:ee?%(
4.7 N\ N S, .
-2.2 h . N A N N \V N
“9.1 f NN N ~]
-16.0 ™~ time
8.8 a.8 1.6 2.4 3.2
height\x i
3.8 L
2.0 \ N
1.8) / IS

8.a \/

N NN tine

a.8 a.8 1.6 2.4 3.2
ground\s1he
1.8
a.9 L ided
a.e a.g 1.6 2.4 3.2

Figure 3. Scope window

The scope window (ScopeWindow class) is not a passive
element; on the conrrary, it has many useful features that can be
activaied with a mouse. Figure 7 shows three differemt capabilities:
zooming, drawing a mark over each solution point and looking at
the numerical value associated with any graphic point.

Experiment

The experiment {CompiledExperiment class) has been defined
as an extension {subclass) of the geperic submodel (Pcs) since it
has the same structure plus a control segment and an ourput
segment. The experiment is similar o the generic submodel class
since it only holds experiment static characteristics. The
procedural and declarative code specific to each experiment is
defined in the experiment subclasses. Only compiled experiments
are stored as subclasses of the CompiledExperiment class.
Interactive experiments are instances of the
SymbollcExperiment class.

The experiment window (ExperimentPane) is used to specify
the experiment start time, end tdme, inidal integration step, and the
intepration algorithm. A simulation clock is automarically created
at the beginning of a simulation experiment and removed at the
end of the experiment (figure 4).

-@ Siwulation Tine [}

Figure 4. Simulaton clock

Model

This SEMBIOS prototype supports only the modeling, simulation
and experimentation of plecewise continuous models. A model is
made of 4 hierarchical set of submodels. However, a model ¢an be
itself a submnodel within a broader model. Therefore, a model is a
relative concept which depends on the experiment being
performed.

In SIMBIOS, large models may themselves be designated
submodels and used in even larger simuladons. The theoreticad
groundwork for piecewise continuous model and submodel
internal represemtation and sortng is described in (Guasch 1987)
Though, at present, only continuous models are handled, further
extenstons to discrete and combined simulaton are expected.

SIMBIOS does not provide the basic CSSL program regions.
However, its internal sordng algorithm does the same
functionality. It splits the model into the following main segments:
-initial, ode {derivative in CSSL languages), output {operations at
communication intervals) and discontinuous segments Figere 5
represents the ordered submodel message sequence for each
bouncing ball model segment.

Each submodel message is represented as a vertex in a model
digraph (ModelDigraph). The first vertex of the bouncing ball
initial segment is an initial vertex {InitialVertex), the owner of this
vertex is the height submodel, and the message name that
initializes this submodel is x0:

The model digraph reflects the model computatonal flow and is
directly used to perform the interactive experiments since it
represents the sorting relatdonship between calied submodel
segments. Moreover, it is employed in the translation of the model
into a submodel class which can later be reused as a submodel ina
bigger model.

The way in which the uvser-supplied model is converted into
executable code obviously affects the question of providing
interaction. In continuous siruiation the favoured approach is to
use an interpretive language. It can be based on existing languages
such as BASIC or it can be written from scratch {Crosbie 1982).

The SIMBIOS approach to interacdve simulation differs nowbly
from the previous osnes. In classical interactive simulation
languages the users model code is a siatic representation of the
final executable model. Both model representations are related by
a converior which analyzes the users source code and translaies it
to executable code. On the contrary, in SIMBIOS the users model
is made of active submode! instances. Therefore, no conversion is
needed and a greater degres of flexibility can be achieved.

The SIMBIOS model is reordered and segmented before every
simulation experiment.

INETIAL SEGMENT

Vertex(InitialVertex height xB8:)
Vertex(StateVertex height x?
Vertex(InitialVertex ground contrgl:)
Vertex(InitialVertex ground x8:)
Vertex(§StatellhenVertex ground sing)
Vertex(StatelfhenVertex ground y)
Vertex(Algebraiclertex bouncingSpeed x:y)
Vertex{initialVertex speed xB8:)

ODE SEGMENT

Vertex(StatelhenVertex ground sine)
Vertex(StateWhenVertex ground y)
Vertex(filgebraicVertex bouncingSpeed xiy)
Vertex(filgebraicVertex speed xB:controlix)
Uertex(DerivativeVertex height dx:)
Vertex(DerivativeVertex speed dx!contral!)
DISCONTINUCUS SEGMENT

Vertex(StateVertex height x)
Vertex(fAlgebraicVertex bouncingSpeed xiy)
Vertex(AlgebraicVertex speed xBcontrolix)
Vertex(DiscontinuousVertex ground comtrolix:)
QUTPUT SEGHENT(

Figure 5. Bouncing ball code segments

Submodels

SIMBIOS has an wminimal repertoire of linear, non-linear,
algebraic, logic, interface and eveni-drive functions (figure 7). AR
the SIMBIOS submodels inherit from a generic submodel class
(Pcs class) which holds the information and methods that are
common to all the submodels. These methods access or modify the
submodel static characteristics. Since each submodel has its own
dynamic characteristics (initial region procedural code and
dynamic region declarative code), the methods of each submeodel
classes, created as an extension of the submodel class, must
contain the procedural and declaratdve code that models its
particular behavior.

Classic block-oriented languages suffer from a lack of flexibility
and from limits imposed on the number of blocks of different types
whith could be handled These restrictions are and should be
removed in the new simulaton environments. SIMBIOS has no
restrictions on the number of components. In SIMBIOS, the basic
submodel library is equivalent to that of available CSSL. or block
oriented simuladon languages. However, since submodels are
implemented as objects, preater flexibility can be achieved.
Moreover, submode! specialization can be done by inheritance.

A generic submodel window (PcsPane) has been defined 10
internct with submodel instances (figure 6). Specific windows have
also been defined for several submodels. These windows are
subclasses of the OperatorWindow class.

S e [@EE)
Class =) Integrator

% 1T integral{dx) + xB
Called subnodels:
Submodel parameters:
k 1.8 |
Enputs:
speedx => dx (1.8
height\x8 => x8 4.9
Outputs:
x il |

Figure 6. Generic submodel window

Engine

The simulaton engine is the systern component respossible for
the execution of the simnlation. After a SIMBIOS model has been
specified by the user and before performing a simulation
experiment, the environment sorts the submodel messages in order
10 execute them in the appropriate sequence. At simulation time,
those messages and their associated input variables are explicitly
sent to their associated submodel instances. This slows down the
simulation process. However, a speed up of 50% can be achieved
if we decide to compile the model translating it into a new class.

A generic integration {IntegrationAlgorithm elass) has been
defined in the SIMBIOS environment. It is a complete integrator
except for the integration formula which is defined on its
subclasses. Therefore, the generic submodel holds the mechanisms
for output synchronization, and state and Hme event management.
The generic integrator subclasses hold the method responsibie of
performing & simulaton step.

SIMBIOS provides the most commonly used discoatinuous
operators. A discontinuity is detected by noting a change of sign in
the value of a discondnuity function at the end of an integradon
step. The state event {StateEvent subclasses) proprietary of the
discontinuity function uses lincar and quadratic interpolaton
(Crosbie 1974) to predict the root tme The priority state event
quene (StateEventQueue class) ensures that multiple
discontinuities are dealt in the correct sequence. The state events in
this priority queue are sorted out dyramically according 1o its
expected root Hme. Once a discontinuity has been accurately
detected, all the other state events than meet the error wlernces
requirements are also taken care off.

SIMBIOS swmte event management mechanisms have been
successfully tested using representative problems found in the
literature (Thompson 1985 Birta 1985). Figure 7 is a scope
window zoom that shows a bouncing ball discontinuity point.

CONCLUSIONS

SIMBIOS is an interactive icon-based continuous simulation
environment. No translation or compilation is required. Therefore,
interactive turnaround is very fast, SIMBIOS is curently
implemented in Smalltolk/V 286 on IBM platforms. Smalltalk kas
been the !qnguagc.of choice because the dynamic binding and its
Programming environment case the development of interactive
PIOETAIn pro1otypes.

Our future goal is to enhance the capabilities of SIMBIOS by
expanding the sysiem, adding discrete event elements and
including Al components (Luker 1989)

-8.03
2.398

2.47 2.542 2.614

Figure 7. A scope window detail

REFERENCES

Birta L G, Oren T. [and Kentenis D. L. 1985 "A Robuyr
Procedure for Discortinuity Handling in Continuscus System
Simuiation” Transectons of the Society for Computer
Simulation. Vol. 2 no. 3, 189-206 (Sept.).

Cox B. J. 1984 “Object Oriented Progromming Language. An
evolutionary approach”, Addison Wesley 10393, Reading,
Massachusetts.

Croshie R E and Hay J. L. 1974 "Digital techniques for the
Simulation aof Discontinuities”, Summer Computer Simulation
Conference, Houston, Texas.

Crosbie R E. 1982. "Interactive and Real-Time Simulation”,
Progress in Modelling and Simulation, ed. Cellier F. E,,
Academic Press, 393-406.

Doyle JR. 1990. "Objecr-Orignted Simulation Programming”
Object-Oriented Simulation, ed. Guasch A., SCS, 1-6.

Dyke RPT. and Kunz J.C. 1989, “Objeci-Oriented
Programming”, IBM Systems Journal Vol. 28 ro. 3, 465-478.

Ewing I.J. 1987. "Smalltaik isn't meaningless charter”, Computer
Design Vol. 15 (Jan.): 76-79.

Guasch A., Huber R. and Dari J. 1984. “/CDSL. Hacia una nueva
definicion de los lenguajes de simulacicn de sistemas
contintos”, TFAC Simposivm, Automatica en la Industria,
Zaragoza. (Nov) 349-356.

Guasch A. 1987 "MUSS a contribution to the structural analysis
of continuous system simularion languages.” PhD. thesis
Universidad Polisécnica de Catalufia. Barcelona - Spain (Pec).

Guasch A. and Humsinger R.C 1989 "Objecr-oriented
continuous system sirmulation” Summer Compurer Simulation
Conference. Austin, Texas (July).

Guasch A. and Luker, P. 1990. "SIMBIOS. SIMulation Based on
fcons and ObjectS”. Object Oriented Simuladon The Society
for Computer Simulation. Ed. A. Guasch. {Jan }:61-67.

Huber R. M. and Guasch A. 1986. "Towards a specificarion of the
structure for Continuous System Simularion Languages.
Evolution and a proposal draft” Vol. 2 in Computer Systems:
Architecture, Applications, ed. M. Ruschitzka, North-Holland.

Koschmann T. and Walton Evens M. 1988, "Bridging the Gap
between Object-oriented and Logic Programming”, [EEE
Software (July):36-42.

Luker P. A. 1989 ‘'Intelligent Simulation Environments",
Arificial Intefligence in Scientific Computation: Towards
Second Generation Systems, ed. R. Huber er al, J.C. Balizer
AG. 15-25.

Meyer B. 1988. "Objecr-oriented Software Construction”
Prentce-Hall. Series Ed. C.A.R. Hoare.

Oren T. L 1975. "Syntactic Errors of the Original Formal
Definition of CSSL 1967, IEEE Computer Society Repository
N. R75-78, Computer Science Dept., University of Ouawa.,
Ottawa (1975).

Pinson LJ. and Wiener R.8. 1988, "An fnrroduction to Object-
Oriented Programming and Smalltalk" Addison Wesley
Publishing Company.

Roberts .5, and Heim J. 1988 "4 perspective on object-griented
simulation”. Proceedings of the 1988 Winter Simuladon
Conference, 277-281.

Thompson S. 1985. "Rootfinding and Interpolation with Runge-
Kurta-Sarafyan Methods", Transactions of the Society for
Computer Simulation Vol. 2 no. 3, (Sept.):207-218.

Wienner R.S. and Pinson L J. 1988, "Ar Inireduction to Object-
Oriented Programming and C+", Addison-Wesley Publishing
Company, Reading, MA.

