Laws of Positioning 2005

the Laws of Positioning 2002

the Laws of Positioning 2002 were created exclusively for surfaces of homogenous light-colour.

the revised Laws of Positioning 2005

the revised Laws of Positioning 2005 introduce a greater range of conditions and deal with any variation of surface light-colour, therefore replace the previous laws

http://creativecommons.org/licenses/by-nc-nd/2.5/es/deed.ca

Joaquim Lloveras i Montserrat, Dr. Architect

to view this virtual document on the Laws of Positioning of the Theory of the Virtual Proportions you must situate yourself at Observation Distance DO1 DO1 is the distance best suited to viewing the letters TK in the case of screens of dimension 32 by 24 cm, is of two palms from the eyes to the screen.

Persons are not blind, nor is the world void of light

there is a zone where we see better then the rest; this is explained by the TK Theory of Visual Proportion this is referred to as the Zone of Good Vision (ZBV) in the TK Theory

it is as if inside ourselves there exists a Control Centre for our visual perception and stability the TK Theory calls it (CGOR) and situates it precisely in the centre of our head

CGOR

we will now mention the mechanisms of vision that we have within the Ellipse of Good Vision

the PC are two cones of equal elliptical section, rotated in respect to the EV, with their vertex in the CGOR of the Observer the major axis is d/2TK and the minor is d/TK, d being the distance from CGOR of the Observer (approximately d/6,66 and d/8,47) the PC surrounds the spatial projection of the observer's PC, the entrance of optic nerve into the optical sphere

at the Observation Distance D01, if the viewer closes his right eye, the Blind Spot (PC) on the right side will disappear the same will occur, in symmetry, if the process is repeated with the left eye

ΤK

Surrounding Areas (CNT) and surfaces of Light-Colour (LC)

CNT= Surrounding Areas: all change suddenly into a surface of Light-Colour (LC)

LC= surface of Light-Colour marked out by a border

all CNT have a background that belongs to another LC

the LC can have a very clearly defined CNT or alternatively be dissolved

PL the Logical Positioning - that clearer Light-Colour surfaces, appear to be further away. PIL . PIL Illogical Positioning - that darker Light-Colour surfaces, appear to be further away

ESP(LCH) LCH of dimensions greater than the EBV ESP(LCH) Space of Homogenous Light-Colour

PR-ESP(LCV) LCV of dimensions greater than the EV and surpassing the CFR but smaller than EBV

FR (LCH) LCH of dimensions greater then the EV but smaller than the CFR FR (LCH) Form of Homogenous Light-Colour FR(LCH)

Law I - all ESP(LCH) has PIL

Law I - all ESP(LCV) has PL

Law II - all MIG-ESP(LCH) has PL

Law II - all MIG-ESP(LCV) has PIL

Laws of Positioning 2005

Law III - all PR-ESP(LCH) has PIL

Law III - all PR-ESP(LCV) has PL

Law IV - all FR(LCH) within any ESP, MIG-ESP or PR-ESP has PL

Laws of Positioning 2005

Law V - all FR(LCH) within any other FR has a positioning that is contrary to the one that contains it

Law VI - all FR(LCV) within any ESP, MIG-ESP or PR-ESP has PIL

Law VII - all FR(LCV) within any other FR (LCV) has PL

Law VIII - sll PR-FR always has PIL

Laws of Positioning 2005

Laws of Positioning Laws of Positioning Laws of Positioning

Law I: all ESP(LCH) has PIL - all ESP(LCV) has PL

TK PR-FR

ESP(LCH)

the ESP(LCH) of the screen keeps an equal LC to neutral grey, for this reason when inverted, it remains where it is to better understand the explanation, we introduce the symbol TK, which being a PR-FR always maintains a PIL

PL = PL . PIL # PIL *

Law I: all ESP(LCH) has PIL - all ESP(LCV) has PL

TK 1213-1513 ...

ESF(LCH) .

Law I: all ESP(LCH) has PIL - all ESP(LCV) has PL

TK PR-FR

ESP(LCH)

if we make the ESP darker, given that it has PIL, it seems to get further away and the symbol TK becomes more separated from the background

Law I: all ESP(LCH) has PIL - all ESP(LCV) has PL

TK PR-FR •

ESP(LCV)

if we are dealing with a ESP (LCV) consequently the ESP has a PL as the ESP has a PL the darker elements are perceived in the foreground and the lighter ones in the background

the symbol TK, as it is PR-FR, always has PIL in this case its Luminosity is in unity with the ESP and for this reason it positions itself centrally

Law I: all ESP(LCH) has PIL - all ESP(LCV) has PL

all ESP(LCV), as acting jointly, also have their own positioning
this positioning is a result of the brightness in the Centre of the Observation Space
this is covered in Chapter 3.2 in The TK Theory of Visual Proportions-1997
now we will 'simulate' its calculations to understand what we are trying to say
for this, we will decrease the contrasts in the Observed Space until we find the Luminosity of its Centre

TK PR-FR •

ESP(LCV)

Law I : all ESP(LCH) has PIL - all ESP(LCV) has PL

TK PR-FR •

in this case the Luminosity of the Centre of the Observer spaces is 'similar' to neutral Gray, at %50

ESP(LCV)

to calculate this correctly we must follow the TK Theory

the Luminosity of the Centre of the Observed Space could be anywhere and acts, jointly, as if it were a ESP(LCH); that is to say with PIL

in this case it is a dark ESP (33% Luminosity) and the whole moves away from the Observer

TK IPIR-IFIR

ESP(LCV)

the symbol TK is shown with a LC Luminosity equal to the Centre of the Observed Space, and for this reason it remains situated right in the Center of the Observed Space

PL PL PIL •

Law I: all ESP(LCH) has PIL - all ESP(LCV) has PL

the Luminosity of the Centre of the Observed Space could be anywhere and acts, jointly, as if it were a ESP(LCH); that is to say, with PIL

in this case it is a light ESP (66% Luminosity) and the whole moves towards the Observer

TK PR-FR •

ESP(LOV)

the symbol TK is shown with a LC Luminosity equal to the Centre of the Observed Space and for this reason it remains situated right in the Center of the Observed Space

PL PL PIL •

Law I: all ESP(LCH) has PIL - all ESP(LCV) has PL

when every LC of all ESP (LCV) has a PL, observered as a whole it has a PL that responds to the Luminosity of the Centre of Observed Space

TK

PR-FR

ESP(LCV) ■

PL = PL PIL = PIL

if we introduce a dividing PR-FR

we get two Mid-Spaces (MIG-ESP) of Variable Light-Colour (LCV)

MIG-ESP(LCV)

N

TK

1213-1513

MIG-ESP(LCV)

and consequently the lighter LC is not perceived as further away but nearer

PL = PL PIL = PIL

MIG-ESP(LCV) ■

TK

1213-1513 ·

if we introduce a wider FR (another MIG-ESP) also the same occurs

MIG-ESP(LCV)

PL = PL PIL = PIL

MIG-ESP(LCV)

TK PR-FR

lif the other PR-FR is vertical, the same occurs

PL = PL PIL = PIL

MIG-ESP(LCV) ■

TK PR-FR

we have entered the world of Mid-Space (MIG-ESP)

PL PL

Law II: all MIG-ESP(LCH) has PL - all MIG-ESP(LCV) has PIL

MIG-ESP(LCV)

PR-FR

ESP(LCV)

PL = PL = PIL = PIL =

Law II: all MIG-ESP(LCH) has PL - all MIG-ESP(LCV) has PIL

PR-FR

we have a ESP(LCV) in which its LC has PL

PL PL . PIL .

PR-FR

if we juxtapose two MIG-ESP,

one LCV

and the other LCH

we will understand their specific positioning

in the MIG-ESP(LCV) the lightest parts are perceived as being closer the MIG-ESP(LCH) is visually perceived closer due to its darkness

N

MIG-ESP(LCH)

PL PL . PIL PIL .

Law II: all MIG-ESP(LCH) has PL - all MIG-ESP(LCV) has PIL

PR-FR

in MIG-ESP (LCH) is closer given its darkness

PL = PL = PIL # PIL .

PR-FR

in MIG-ESP(LCH) is further given its brightness

PL = PL . PIL . PIL

Law II: all MIG-ESP(LCH) has PL - all MIG-ESP(LCV) has PIL

if between the two initial MIG-ESP there is a zone of identical brightness, it becomes all a ESP(LCV)

ESP(LCV)

PR-FR

if between the two initial MIG-ESP there is a zone of identical brightness, it becomes all a ESP(LCV)

ESP(LCV)

and the darker zones (below to the right) are perceived as being in the foreground

PL = PL =

Law II: all MIG-ESP(LCH) has PL - all MIG-ESP(LCV) has PIL

furthermore

if every LC of every MIG-ESP has PIL, observed as a whole it has PL

PR-FR

If we are dealing with two MIG-ESP

the whole of MIG-ESP (LVC) has PIL

PL = PL = PIL # PIL .

Law II : all MIG-ESP(LCH) has PL - all MIG-ESP(LCV) has PIL

furthermore

if every LC of every MIG-ESP has PIL, observed as a whole it has PL

PR-FR

If we are dealing with two MIG-ESP

the whole of MIG-ESP (LVC) has PIL

PL ■ PL ■

furthermore

if every LC of every MIG-ESP has PIL, observed as a whole it has PL

PR-FR

If we are dealing with two MIG-ESP

the whole of MIG-ESP (LVC) has PIL

PL = PL = PIL # PIL .

Law II : all MIG-ESP(LCH) has PL - all MIG-ESP(LCV) has PIL

furthermore

if every LC of every MIG-ESP has PIL, observed as a whole it has PL

PR-FR

If we are dealing with two MIG-ESP

DO1 DO2

PL ■ PL ■ PIL ■

Law II: all MIG-ESP(LCH) has PL - all MIG-ESP(LCV) has PIL

furthermore

if every LC of every MIG-ESP has PIL, observed as a whole it has PL

PR-FR

If we are dealing with two MIG-ESP

the whole of MIG-ESP (LVC) has PIL

Law III : all PFI-ESP(LCH) has PIL - all PR-ESP(LCV) has PL

PL . PIL . PL PIL

PR-FR

ESP(LCV) ■

we have a ESP(LCV) with its PL

002

Law III : all PFI-ESP(LCH) has PIL - all PR-ESP(LCV) has PL

PL = PL =

PR-FR

we have seen how we they can be converted into two MIG-ESP

ESP(LCV)

S

the PR-ESP can situate themselves within a ESP in this case given that it has PIL, the PR-ESP is situated in the background

TK PR-FR . PR-ESP(LCH) .

ESP(LCV)

the PR-ESP can situate themselves within a ESP

in this case given that it has PIL, the PR-ESP is situated in the foreground

ESP(LCV)

S

if we introduce a PR-ESP(LCV) inside a ESP(LCV) both have PL

ESP(LCH) .

N

if we introduce a PR-ESP(LCV) inside a ESP(LCH)
the ESP(LCH) has PIL (we perceive it in the background) and the PR-ESP(LCV) has PI

ESF(LCH) *

PL # PL = PIL # PIL .

Law III: all PR-ESP(LCH) has PIL - all PR-ESP(LCV) has PL

if we introduce a PR-ESP(LCV) inside a ESP(LCH) the ESP(LCH) has PIL (we perceive it in the foreground) and the PR-ESP(LCV) has PL

that is to say, the FR(LCH) has a PL and the lighter LC are perceived as being further away

as if we are dealing with a space of Homogenous Light Colour ESP(LCH) ESP(LCH) =

that is to say, the FR(LCH) has a PL and the lighter LC are perceived as being further away

or if we are dealing with a space of Variable Light Colour ESP(LCV)

ESP(LCV)

DO1 DO2

Law IV: all FR(LCH) within any ESP, MIG-ESP or PR-ESP has PL

PL PL PL PIL

MIG-ESP(LCH)

MIG-ESP(LCH)

that is to say, the FR(LCH) has a PL

and the lighter LC are perceived as being further away

or if we are dealing with a Mid-Space of Variable Light Colour MIG-ESP(LCV)

PL PL PIL •

MIG-ESP(LCV)

MIG-ESP(LCV)

that is to say, the FR(LCH) has a PL

and the lighter LC are perceived as being further away

or if we are dealing with a Mid-Space of Homogenous Light Colour MIG-ESP(LCH)

Law IV all FR(LCH) within any ESP, MIG-ESP or PR-ESP has PL

PL PL PL PIL

FR(LCH)

the FR(LCH) has a PL

and the lighter LC are perceived further away

also as if we are dealing with a Pre-Space of Variable Light Colour PR-ESP(LCV)

PL PL

DO1 DO2 Lows of Positioning 2005

Law IV: all FR(LCH) within any ESP, MIG-ESP or PR-ESP has PL

Law V: all FR(LCH) within any other FR has a positioning that is contrary to the one that contains it

Law VI: all FR(LCV) within any ESP, MIG-ESP or PR-ESP has PIL

Law VII: all FR(LCV) within any other FR (LCV) has PL

FR(LCH) =

PR-FR

ESP(LCH)

The ESP(LCH) remains stationary and the FR(LCH) is within in

The PR-FR stands out

PL PL

the ESP(LCH) remains stationary; the lighter FR(LCH) is situated in the background and the darker appears closer the PR-FR stands out

PL PL PL PIL

The ESP(LCH) moves further away from us and is nearly on the same level of that of the light FR(LCH)

The darker FR(LCH) moves towards us

The PR-FR stands out

the ESP(LCH) moves towards us and is nearly on the same level as that of the darker FR(LCH) the lighter FR(LCH) moves to the background.

the PR-FR stands out

PL PL

DO1 DO2 Lows of Positioning 2005

Law IV: all FR(LCH) within any ESP, MIG-ESP or PR-ESP has PL

Law V: all FR(LCH) within any other FR has a positioning that is contrary to the one that contains it

Law VI : all FR(LCV) within any ESP, MIG-ESP or PR-ESP has PIL

Law VII: all FR(LCV) within any other FR (LCV) has PL

the lighter parts of the FR(LCV) move closer towards us and the darker ones move away from us

PL PL PIL | PIL

DO1 D02 Lows of Positioning 2005

Law IV: all FR(LCH) within any ESP, MIG-ESP or PR-ESP has PL

Law V: all FR(LCH) within any other FR has a positioning that is contrary to the one that contains it

Law VI : all FR(LCV) within any ESP, MIG-ESP or PR-ESP has PIL

Law VII: all FR(LCV) within any other FR (LCV) has PL

PR-FR

ESP(LCH)

TK

PL PL

DO1 DO2 Lows of Positioning 2005

Law IV: all FR(LCH) within any ESP, MIG-ESP or PR-ESP has PL

Law V: all FR(LCH) within any other FR has a positioning that is contrary to the one that contains it

Law VI : all FR(LCV) within any ESP, MIG-ESP or PR-ESP has PIL

Law VII: all FR(LCV) within any other FR (LCV) has PL

PR-FR

the FR(LCH), given its Positioning and LC, appear to be very close together the FR(LCV) continues having PL

Law VI : all FR(LCV) within any ESP, MIG-ESP or PR-ESP has PIL

PL PL PL PIL

that is to say, the FR(LCV) has PIL and its parts of lighter LC are perceived as being nearer

as if we are dealing with a Space of Homogenous Light Colour ESP(LCH)

Law VI : all FR(LCV) within any ESP, MIG-ESP or PR-ESP has PIL

PL PL

that is to say, the FH(LCV) has PIL and its parts of lighter LC are perceived as being nearer

as if we are dealing with a Space of Variable Light Colour ESP(LCV)

DO1 DO2

Law VI : all FR(LCV) within any ESP, MIG-ESP or PR-ESP has PIL

PL PL PL PIL

MIG-ESP(LCH)

MIG-ESP(LCH)

that is to say, the FR(LCV) has PIL and its parts of lighter LC are perceived as being nearer

as if we are dealing with a Mid-Space of Variable Light Colour MIG-ESP(LCV)

Law VI : all FR(LCV) within any ESP, MIG-ESP or PR-ESP has PIL

PL PL PIL •

MIG-ESP(LCV)

MIG-ESP(LCV) .

that is to say, the FR(LCV) has PIL and its parts of lighter LC are perceived as being nearer

as if we are dealing with a Mid-Space of Homogenous Light Colour MIG-ESP(LCH)

PL PL PL PIL

Law VI : all FR(LCV) within any ESP, MIG-ESP or PR-ESP has PIL

the FR(LCV) has PIL and its parts of lighter LC are perceived closer

also if we are dealing with a Pre-Space of Variable Light Colour PR-ESP(LCV)

remember, the brighter Light-Colour surfaces appear further away ... and the darker appear closer Law III - all PR-ESP(LCV) has PL

remember, the brighter Light-Colour surfaces appear further away ... and the darker appear closer Law III - all PR-ESP(LCV) has PL

remember, the brighter Light-Colour surfaces appear further away ... and the darker appear closer Law III - all PR-ESP(LCV) has PL

remember, the darker Light-Colour surfaces appear further away ... and the brighter appear closer

remember, the darker Light-Colour surfaces appear further away ... and the brighter appear closer

remerremember the darker Light-Colour surfaces appear further away

remember, the brighter Light-Colour surfaces appear further away ... and the darker appear closer

remember, the brighter Light-Colour surfaces appear further away ... and the darker appear closer

Laws of Positioning 2005

Joaquim Lloveras i Montserrat, Dr. Architecter

nothing is but for Person