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ABSTRACT

An interactive simulation environment prototype for the
study of continuous models has been implemented using the
Smalltalk/V system. Models are designed in a graphical
manner and can be directly executed without preprocessing,
compiling and linking, Therefore, models can
instantaneously react to new configurations, Owing to the
segmentation of the submodel code, the system supports
hierarchical simulation design and execution without
restrictions, A directed graph, which reflects the
computational flow, is used to direct the interactive
experiments.

1 INTRODUCTION

When working with simulation languages, however
"friendly”, a user has to write a program. For many,
programming is a process which is too far removed from the
way that they normally express and think about their
particular application. What is more, the development of a
large simulation in small, well-defined stages is usually not
easy in a programming environment, It is much more
satisfactory to have an interface with the simulation software
which is at the application level, and which also supports
the easy production of large simulations from smaller ones,

During- the last decade a number of developments has
accelerated the evolution of the simulation environment,
which is intended to provide integrated software support for
many aspects of the modelling and simulation process.
Among these developments are the use of multiple
windows, menus and icons, and the more widespread
recognition of the value of object-oriented programming,
The use of artificial intelligence techniques, particularly
expert systems, has also added much power and convenience
by facilitating the so-called intelligent simulation
environment [Luker 1989]. This particular development is

not our concern here, although it will be addressed in our
subsequent work.

In this paper, we describe a prototype of a highly flexible
and user-oriented simulation environment, SIMBIOS.
Although SIMBIOS takes full advantage of icons, menus
and windows for presenting a clear interface to the user, it
should be stressed that object-orientation is the single most
important characteristic of the software. Without this, it
would be extremely difficult to produce a system which is so
flexible and adaptable, and it would have taken much fonger
to develop, SIMBIOS is implemented in SMALLTALK/V.

1.1 Outline of SIMBIOS

From the outset, it was taken for granted that SIMBIOS
should support the hierarchical development of simulations.
A simulation system should facilitate the specification,
execution and testing of submodels, and allow larger models
to ‘be composed from submodels. In turn, these larger
models may themselves be designated submodels and used in
even larger simulations. The theoretical groundwork for
piecewise continuous submodel internal representation and
sorting is described in [Guasch 1987 and 1990]. At present,
only continuous models are handled, however, further
extensions to include discrete and combined simulation are
planned.

The interface, as has been mentioned, is icon-based. Each
element of a simulation, whether a primitive element such
as an integrator, or a submodel such as a distillation
column, will have its own icon, A simulation is constructed
by specifying icons and connecting them as required,

1.2 The ro0le of objects

Object-oriented programming (OOP) became generally
available with the release of SIMULA in 1967 [Birtwistle
1973]. However, it took just under twenty years for the
virtues of the paradigm to be appreciated. Today, QOP and,
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more importantly perhaps, object-oriented design (OOD), are
seen as essential tools for overcoming the software crisis,
There is now a considerable literature which extols the
virtues of the object-oriented approach, with {Meyer 1988)
being, as yet, the best single source of ammunition, Our
intention here is simply to summarize the main advantages
to software engineering of OCD and QOP, and then to relate
this specifically to simulation and project SIMBIOS.

For very many software applications, @OD presents a more
natural way of describing the problem, with a one-to-one
relationship between real-world objects and modules,
Subsequent changes are much more readily integrated into an
object-oriented design than a top-down one. If the QO design
is translated into an OO program, these benefits are inherited
by the software itself. The flexibility that obtains is quite
remarkable,

With software maintenance accounting for a very high
proportion (70% according to Meyer) of software cost, this
flexibility is very important. It manifests itself in two ways
in particular: extensibility, the capacity to be extended
and altered throughout the software life cycle, and
reusability, a measure of the extent to which code from
one application can be utilized in another. Objects are very
amenable to reuse,

Some of the characteristics of object-oriented software which
contribute to maintainability are the high level of
abstraction that can be achieved (more so in some
languages than others) coupled with inhkeritance through
the ‘class/sub- class hierarchy. Abstraction enables the
general properties of a large set of objects to be represented
once, and only once, at an ancestral level in the class
hierarchy, These general properties are inherited by the
descendants, who can add their own characteristics and even
over-ride inheritance when this is appropriate. Abstraction
therefore encourages a focus on properties at an appropriate
point of the design and coding, The reusability of abstract
classes is high,

A companion to abstraction is polymorphism, which
enables' different objects to be treated in the same way. If we
want to print the name of an object, MyObject then it is
nice to be able to say something like: MyObject printName,
in the knowledge that this will work, regardless of what kind
of object MyObject represents.

It is not insignificant that it was a need to be able to
describe (discrete event) simulations in a natural way that led
to the design of SIMULA. However, the language designers
had the wisdom and foresight to make SIMULA a general
putpose programming language, complete with object-
oriented features. Any simulation is a software
representation of real world objects. What could be more
natural than to mirror the real world with software objects?

As with any software, simulations have to be maintained,
and extensibility (as well as reusability) is highly desirable.
Class hierarchies provide a natural framework for
accommodating submodel hierarchies. Abstraction and
inheritance should be used to the maximum extent. In a
continuous system simulation, for example, there will be
certain properties that all dynamic objects will share,
whatever the nature of the particular submodel in question.

The relationship between objects and WIMP
(Window/Icon/Menus that Pop up) interfaces is very strong.
Apple has long used an object-oriented approach on the
Macintosh, and now NeXT and Hewlett-Packard have object-
oriented interfaces. Again, it is abstraction and inheritance
that come to the rescue. For example, all windows have the
same general characteristics, so it makes sense to only
describe a window once, as a class. Each time we want a
new window to be drawn, it is simply a matter of creating a
new instance (object) of a window with the desired
parameters,

In summary, without OOP, project SIMBIOS would be an
entirely theoretical undertaking!

1.3 The implementation language

One of the authors has produced a series of impiementations
of his ideas, The first of these was in C, and then C-++ was
used. The move to C++ provided a much more productive
environment than the original one, thanks entirely to the
object-orientation. C++ does not come equipped with a
library of pre-defined classes, therefore the programmer has
to be concerned with details at a lower level than is
necessary in Smalltalk (and Objective-C.) As object-oriented
languages go, C++ is really little better than C. However,
C++ lacks dynamic (i.e. run-time) binding, which
maximizes the level of polymorphism (and thereby
abstraction) that can be obtained.

C++ was inspired by SIMULA; so was Smalltalk.
However, Alan Kay's aim was to improve upon the
inspiration, not just transplant it into a different base
language. Smalltalk has evolved into an extremely powerful
software development environment. It comes with well over
one hundred pre-defined classes, which form the basis for all
the interface operations, i/o and data structuring you are ever
likely to need. What doesn't suit, you modify, or add your
own subclass. Smalltalk does support dynamic binding, at
some expense in terms of run-time efficiency, it must be

SIMBIOS is currently implemented in Smalltalk/V on IBM
and Macintosh platforms.
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1.4 Overview of paper

‘The rest of this paper is concerned with some of the details
of SIMBIOS, and begins with an overview of the
submodel/model.structure. Subsequent sections address the
experimentation mechanisms and the class hierarchy. The
paper concludes with & discussion and the conclusions the
authors have drawn from their work to date.

2 SUBMODEIL STRUCTURE

A SIMBIOS simulation submodel (class) holds the dynamic
code needed to perform a simulation experiment and static
information needed for the management of the submodel
during the different phases of a simulation study. For
example, a submodel class stores three levels of
representation that can be used by the simulation
environment to perform modelling-related tasks:

1) The submodel graphical representation
inclodes the submodel icon representation (class
Submodellcon) plus the representation of the input and
output variables (Symbollcons).

2) The submodel icon digraph (class
SubmodellconDigraph) is a digraph that relates the
submodel output symbol vertices (class
OutputSymbolVertex) to the submodel input symbol
vertices (InputSymbolVeriex) through the submodel icon
vertex (class SubmodelVertex). The submodel icon
digraph is used to specify the model icon digraph
{({fconDigraph) introduced later,

3) The segment-link digraph (class
SégmentLinkDigraph) shows the sorting relationship
between submodel segments and is used to specify the
model digraph (ModelDigraph) introduced later, The
submodel dynamic code is grouped into several segments
(submodel segments) to allow a clean structuring of the
hierarchical model. Furthermore, in object-oriented
programming, each segment is implemented as an
instance method. There are six possible submodel
segments: initial, discontinuous, state, algebraic,
derivative and output segments [Guasch 1990]. The
initial segment has to be called to initialize the submodel
before a simulation run; the discontinuous segment
computes the discontinuity functions; the output
segment has to be executed at each communication point;
and the state, algebraic and derivative segments are needed
to compute the submodel derivatives.

3 MODEL STRUCTURE

This first SIMBIOS prototype only supports the modelling,
simulation and experimentation of piecewise continuous
models. A model is composed of a hierarchical set of

submodels. However, a model can itself be a submodel
within some larger model. Therefore, a model is a relative
concept, which depends on the experiment being performed.
In this study, the model is the particular submodel that we
are trying to specify by using pre-defined submodels and
experiments via the graphical modelling interface.

The graphical interface and, in particular, the icon modeling
pane (SimbiosiconPane) will support several modeling
methodologies, such as those based on bond-graphs, analog
computation, control system theory and general system
theory. Therefore, the user will be able to choose the
modeling formalism that best suits the application.
Although the graphical interface is an important aspect of
the system, two more model representations are needed in
order to manipulate the graphical representation of the model
and to guide the dynamic execution of that mode} (see Figure
1)

* An icon digraph (class JconDigraph) that holds
topological information about the graphical
fepresentation.

* A model digraph (class ModelDigraph) that represents
the sorting relationship between called submodel
segments and therefore reflects the computational flow
of the model,

These three model representation levels are not independent.
They interact continuously throughout all the graphical
model editing operations. In general, every intended
graphical operation is broadcast first to the IconDigraph
level and then, to the ModelDigraph level. Each level checks
the validity of the operation and performs internal changes
related to that operation. If the editing operation is incorrect
it is cancelled. For example, if we want to connect two
submodel icons through input/output symbol icons, the
IconDigraph will check that any connecting path icon
segment does not overlap with the other path segments, and
the ModelDigraph will check that this connection does not
provoke an implicit Joop in the model code. Moreover, if
the connection is authorized, the IconDigraph and the
ModelDigraph will update their internal model
representations to reflect the new connection,

3.1 Graphical level (SimbiosIconPane)

‘This level administers three graphical elements: submode!
icons (Submodellcon), input and output symbol
icons (Symbollcon), and connections between input and
output symbol icons (Pathlcon). Al these elements are
active, therefore, each one will answer according to its clags
type when it is selected with a mouse. This active behavior
is supported by the fconDigraph. Besides broadcasting any
desired graphical operation to the IconDigraph and 1o the
ModelDigraph, the operation is also broadcast to an editor
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controller (/conEditor) which may authorize or deny the
intended menu operation, This feature can be used, for
example, to guide the user through a set of training steps.

The following basic Submodellcon menu-editing operations
have been implemented:

* insert the submodel icon in a chosen position.

* move the submodel icon to a new position. If it is
already connected to any other submodel icons, the
corresponding connecting Pathicons have to be updated
automatically.

* delete the submodel icon. Again, if it is connected, the
attached Pathlcons have to be deleted automatically.

* connect one of its associated input or output
Symbolicons to an output or input Symbollcon
through a Pathicon.

+ disconnect one of its associated input or output
Symbollcons,

So far, little has been said about the input/output
Symbollcons. A Symbollcon has a default position with
respect to the virtual origin of its Submodellcon.
Furthermore, a Submodellcon drags its associated
Symbollcons through its editing operations. Therefore,
when a Submodellcon is moved to a new position, the
associated Symbollcons are also moved.

A Symbollcon can be moved, connected or disconnected, but
it cannot be inserted or deleted directly. These operations are
performed indirectly when the associated Submodellcon is
inserted or deleted. Moreover, a Symbollcon can only be
moved to a position adjacent to or inside the associated
Submodellcon, Finally, a Pathlcon can énly be deleted,

New menu-editing operations will be added in the future.
Additionally, the graphical icons support information
retrieval operations not mentioned here. At present, the
FreeDrawing class included in the Smalltalk system is used
to specify the Submodellcon graphical representations.
However, a more specialized class is preferable,

3.2 Icon digraph (IconDigraph) level
A model icon digraph is a directed graph 1=(V,E), where:
V = (Vi,Vs,Vp) is the set of vertices, such that;
+ Vi is a set of submodel vertices {class

SubmodelVertex). Bach Submodellcon has an associated
SubmodelVertex.

* Vs is a set of symbol vertices (class SymbolVertex)
associated with the Symbollcons (input/output
variables). Two types of symbol vertices can be defined;
output symbol vertices (Vsg), represented by class
OutputSymbolVertex, associated with output symbol
icons (QutputSymbollcon) and input symbo! vertices
(Vsi) UnputSymbolVertex) associated with input
symbol icons.

* Vsp is a set of path vertices (class PathVertex). Each
graphical connection between an output symbol vertex
and an input symbol vertex has an associated path
vertex.

The following properties are intrinsic to model icon
digraphs:

* The predecessors of a submodel vertex are instances of
InputSymbolVertex and the successors are instances of
OutputSymbolVertex, Therefore, for all vie Vi

I lvi) € Vs and I(vy) € Vso.

* The predecessor of an output symbol vertex is a single
instance of Submode!Vertex and the successors are
instances of PathVertex. Therefore, for all vj e Vsg:

I‘"l(vi) e Vi,T(vj)e Vp,
Ir-1(v)l = 1(if it is connected)
0 (if it is not connected)

* A PathVertex has a single InputSymbolVertex as a
predecessor and a single QutputSymbolVertex as a
successor. Therefore, for all vi e Vp:

lv e Vs;, T(vi) & Vo, vl = 1, [Tvy) = 1.

* An InputSymbolVertex has a single PathVertex as a
predecessor and a single SubmodelVertex as a successor.
Therefore, for all v e Vs;:

I“(vi) e Vp, [(v) & Vi, I(vp)l = 1,
IT-Y(v)l = 1 (if it is connected)
0 (if it is not connected)

The fconDigraph class supports the graphical editing
operations described in the previous subsection. Therefore,

* When a submodel icon (and its associated input/output
symbol icons) is inserted in the SimbiosfconPane, the
associated submodel icon digraph is inserted into the
icon digraph. Moreover, the icon digraph checks that the
submodel icon does not overlap any other submodel
icon, symbol icon or path icon.
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* In a moving operation, the icon digraph checks that the
submodel icon does not overlap any other submodel
icon, symbol icon or path icon.

* When an output symbol icon is connected to an input
symbol icon through a path jcon, the associated path
vertex and the related directed edges are inserted in the
icon digraph, Moreover, the icon digraph is used to
check that the input symbol icon is not yet connected
and that the proposed path icon does not overlap with
other path icons, symbol icons or submodel icons.
When a submodel icon is deleted, the icon digraph is
used to check whether or not it is connected, If it is, the
connecting path icons are also deleted. In addition, the
associated edges and vertices are removed from the icon
digraph,

Other graphical editing operations, have a complementary
effect in the icon digraph. In conclusion, the main purpose
of the icon digraph is to support the SimbioslconPane
model and experiment editing operations.

3.3 Mode! digraph (ModelDigraph) level

The model digraph concept explained here and used in
SIMBIOS is a simplification of the submodel digraph
concept introduced in [Guasch 1990). A model digraph
G=(V,E) is a directed graph, where:

V = (V5,Ve) is the set of vertices, such that:

* Vs is the set of symbol vertices as defined in the
previous section,

* Ve is a set of executable vertices (class
ExecutableVertex), Each executable vertex is associated
with a call to a submodel segment.

Different subsets of Ve can be defined:

* Veq: derivative vertices (class DerivativeVertex);
each call to a lower level derivative segment has an
associated derivative vertex,

* Vegs: discontinuous vertices {class
DiscontinuousVertex) associated with calls to lower
level discontinuous segments,

* Veg: state vertices (class StateVertex), each call to a
lower level state segment has an associated state vertex,

¢ Vep: initial vertices (class InitialVertex), each call
to a Iower level initial segment has an associated initial
vertex.

* Vey output vertices (class QuiputVertex), each call
to a lower level output segment has an associated
output vertex,

Although each graphical editing operation invokes an
equivalent action in the ModelDigraph, there is not a
straightforward relationship between it and the graphical
model. This is because the ModelDigraph is concerned with
the computational flow and not with the graphical model.
Therefore, a vertex equivalent to the PathVertex does not
exist. An OutputSymbolVertex is directly connected to an
InputSymbolVertex. Moreover, instead of using a single
vertex associated with each Submodelicon, the number of
vertices depend on the number of submodel methods
(segments). The latter information is retrieved from the
SegmentLinkDigraph explained earlier,

The ModelDigraph has two main r6les. First, it is employed
in the translation of the model into a submodel class which
can later be reused as a submodel in a bigger model. Second,
it can be used directly to perform an interactive experiment.

4 EXPERIMENT MANAGER
(SymbolicExperiment)

Before the execution of a SymbolicExperiment, the
executable vertices have to be grouped in sorted order into
four different segments (arrays):

* initialSegmentArray contains the executable vertices
needed to initialize the experiment (model). The
associated code is only executed once before every
simulation experiment.

* odeSegmentArray (ordinary differential equation segment)
contains the executable vertices needed to computed the
experiment (model) derivatives.

* discontinuousSegmentArray contains the executable
vertices needed to compute the experiment {model)
discontinuity functions.

= outputSegmentArray clusters the executable vertices
whose associated code needs to be executed only at
communication points.

When a Submodellcon is inserted in the SimbiosiconPane,
instances of the associated submodel and submodel
input/output variables are also created and stored in the
simulation environment. Furthermore, each executable
vertex of the ModelDigraph holds a pointer to its associated
submodel instance and stores the symbolic name needed to
call the associated submodel segment. Moreover, each
input/output SymboiVertex holds a pointer to its associated
input/ouput variable instance.
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Therefore, to execute a simulation experiment (class
SymbaolicExperiment) interactively, the segment code
associated with each executable vertex has to be executed in
a sorted order, After the 'execution' of a submodel segment
(ExecutableVertex), its output values are propagated through
the ModelDigraph to the input of other submodel segments,

Every time a change is made to the graphical model
{experiment), the ModelDigraph is updated in an equivalent
manner. Therefore, the only task left to be performed before
a simulation experiment commences, is to split the
executable vertices and group them into the previous
segment’s arrays. This is a rapidly executed task which is
not significant in terms of computation time,

5 CLASS HIERARCHY

Although Table 1 includes all the classes mentioned in this
paper, it only represents a partial list of the classes designed
for the SIMBIOS simulation environment. The Pane,
SubPane, GraphPane and IconPane classes belong to the
Smalltalk/V (286 and MAC) environments.

6 CONCLUSIONS

The design and implementation of project SIMBIOS to date

have clearly highlighted the value of object-oriented design
and programming. The system can be amended and be
operational again in a time which has staggered the
onlooker. It is particularly pertinent to have a software
environment which is so supportive of an experimentally-
oriented approach to programming, which, of course,
simulation so often is.

Smalltalk has been found to be a far superior and higher
level development environment than C++, which remains
no more than just a language. Being interpreted, execution is
not always as rapid as one might like, however, it is
nowhere near as unacceptable as some would have you
believe, For those who must have speed, compilation,
automatic translation (to Objective-C) or specialised
hardware are options.

SIMBIOS itself is a very powerful, yet flexible, platform on
which we can build incrementally. It is our intention to
enhance the capabilities of SIMBIOS by adding further
experimentation features, by moving towards the
incorporation of discrete event elements, and by adding
“expertise” in the form of expert system rules.
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IconEditor
Pane
SubPane
GraphPane
fconPane
SimbioslconPane
feon
Submaodellcon
Symbollcon
Pathlcon
Graph
DirectedGraph
TconDigraph
SubmodelfconDigraph
ModelDigraph
SegmentLinkDigraph
Vertex
SimbiosVertex
ExecutableVertex
InitialVertex
DiscontinuousVertex
StateVertex
AlgebraicVertex
DerivativeVertex
OutputVertex
PaneVertex
SubmodelVertex
PathVertex
SymbolVertex
InputSymbolVertex
OutputSymbolVertex
EnvironmentElement
Submodel

----------
..........

Experiment
SymbolicExperiment
Variable

Table 1. Partial SIMBIOS class hierarchy.
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