SUBMODELS, MODELS, EXPERIMENTS AND PROJECTS

Antoni Guasch

Departament ESATT

Universitat Politécnica de Catalunya

Diagonal 647 - 2 planta
08028 Barcelona (SPAIN)
guasch@esaii upc es

Depart. of Computer Science
California State University
Chico, CA 95929-0410

Kavier Montfort
Depantament ESAIL
Universitat Politcrica de Catalunya
Diagonal 647 - 2 planta
08028 Barcelona (SPAIN)
montfort@esaii upc.es

ADSTRACT

SIMBIOS (STMulation Based on Icons and ObjectS) is an object
oriented continuous simulation environment written in
Smalltalk/V Windows. Models are defined graphically on the
screen using a block diagram format. In this paper, the project
concept is introduced. It is the element responsible of the
simulation project management. A project is composed of a set of
submodels, models and experiment. The submodels are grouped
into models and every model has one or more experiments
associated to it. A submodel can be simultaneously present in more
than one model and any change made to the parameters of that
submodel will be automatically seen in all the models where the
submodel is present. This capability increases the flexibility of the
simulation environment.

INTRODUCTION

Object-oriented programming (OOP) became available with the
release of SIMULA in 1967 (Birtwistle 1973} However, it took
about twenty years to appreciate the virtues of the paradigm.
SIMULA and more recent object-oriented languages have been
extensively used in the area of discrete simulation. Although this
methodology had little impact in the area of continuous simulation
in the past, the use of GOP techniques in continuous simulation is
not new. It should be mentioned the work of Sim (1975) and
Helsgaun (1980} who developed a SIMULA class library extension
each which expand the functionality of SIMULA to allow
continuous as well as combined simulation. Ses Kreutzer (1986)
for a good review of object-oriented simulation topics.

SIMBIOS can be classified at present as an object-oriented
continuous simulation sofrware prototype. This clearly
differentiates it from a modeling saftware (Cellier 1991a). While
this research work has been centered in the area of object-criented
sirmulation, other groups, and specially the simulation teams at the
University of Arizonz and Lund Institute of Technology, have
focus their own in the area of object-oriented modeling. See Cellier
{19915, 1992), Andersson (1989) and Mattsson (1991) for further
references.

Up to now, the main emphasis on the SIMBIOS related research
has ben in the area of the simulation engine architecture of the
description of the model to be exercised and of the simulation
engine itself. The main motivation thet has propeiled this work has
been the need of a more flexible, reliable and in-house simulation
environment that could support further work in the areas of system
modeling and knowledge-based stmulation.

SIMBIOS supports without restrictions hierarchical run-time
simulation models. However, it has to be noticed that hierarchical
modeling does not necessarily imply hierarchical simulation since
the hierarchical model can be expanded for flat execution (flat
simulation model). In fact, while it is generally assumed that
hierarchical object-oriented modeling interfaces are desirable there
is no agreement about the need of object-oriented run-time models
and object-oriented engines (object-oriented simulation). The
detractors advocate that the inefficiency of the run-time object
message passing is critical in continuous simulation due to the tight
coupling between submodels. This is cerainly true in the
Smalitatk SIMBIOS simulation environment prototype. However,
tanguages with object-oriented features such as Cs+ give higher
priority to run-time efficiency criteria that prevail over
methodological purity that could slow down the execution
Therefore, C++'s object-oriented constructs can be used without
major concern for their run-time efficiency (Beck 1990},

USER INYERFACE

The user interface of SIMBIOS is based on the intensive use of
windows and icons. The simulation environment has specialized
windows for the different tasks. For example: an icon-based
window for the model definition, 2 window for the experiment
specification and a window for graphical and numerical results
{Guasch 1991).

The SIMBIOS icon-oriented interface is similar to graphical
interfaces available in software systems such as EASYS and
MATRIX (Simulab), Each element of a model, let say, a

primitive element such as an integrator, or a submodel such a
distiflation column, has its own icon. A model is constructed by
placing the icons on the screen and connecting them as reguired.
The graphical modeling interface is based on the concept of block
diagram madeling {Cellier 1991a).

The graphical modeling window behaves like a virtual screen, ie,
the virtual screen is as large as needed and the physical screen can
move arbitrarily over the virtual screen. Also, the user will be able
to collapse a set of interconnected icons into a single icon. This
feature introduces hierarchy at the graphical (modeling) level but
not in the simulaton model. SIMBIOS supports hierarchical
simulation, however, the mechanisms to create a submodel class
frorn a set of graphical interconnected icoms have not been
implemented vet because Smalltallk/V Windows does not allow the
dynamic creation of classes in run-time mode. The SIMBIOS
hierarchical simulation capabilities have been tested with hand
made hierarchical models.

A SIMBIOS graphical model is not the static representation of &
meodel that requires further analysis, preprocessing and compilation
before execution, In SIMBIQS, a submodel or primitive element
instance is automatically created when its associated submodel icon
is picked and placed in the screen. Therefore, the model can be
directly executed since the traditional sequence of editing,
preprocessing, compiling, linking and simulating is avoided.
Moreover, model analysis is on-line with the graphical editing and
it is performed each time that an icon is inserted or connected. For
exarnple, implicit loops are detected and graphically emphasized
on line with the model set-up.

The cxample in figure 1. shows the format of the icon«bas.cd
graphical modeling interface. It models a hydroelectric turbine
automatic contro} system.

= = Model Edito
Simblos Expedment Study Manzgement
inspect Help Model Editor

Utilities ACSL

PRIMARY AEGULATOR

gala
opening

i =t .
DeadSawaijeArrd e

T R N e] W et A N o R AN
AutomaticMadel

-

Figure 1. Hydroelectric turbine automatic control system model
{(AutomaticModel}.

Figure 2 shows the system response gate opening versus time.

CrossHalr

Optjons Scale

Fudesly
182
it}

Figure 2. Gate opening versus time.

The current SIMBIOS prototype runs in the Windows 3.0
environment. Therefore, the simulation model ot the graphical and
numerical simulation results (in general, any SIMBIOS window)
can be directly imported into word processors such as Microsoft
Word for Windows (WinWord) that work in the Windows
environment. This easiest the task of generating project
documentation.

The SIMBIOS model and related experiment can be directly
translated into ready-to-run ACSL. code. Thus, SIMBIOS can be
used as & block-oriented model editing interface for ACSL and
faster execution speed can be achieved.

MODULARITY AND HIERARCHICAL APPROACH

In medium to large simulation projects, simulation users can be
interested in studying or working with more than one modet at a
time:

1) Sometimes, the simulation user needs to work
simultaneously with different models, ie., models that
represent the systemn behaviour at different levels of
complexity or models that emphasize different aspects of
the systemn. This usually happens when the user has to find
a model that best suits his particular needs.

2) In large-scale modeling and simulation it is usually
convenient to represent and simulate the model in a
hierarchical manner The model coding is naturally
performed bottom-up and it is always convenient to execute
experiments for every level of the hierarchy. Therefore,
every submodel can be seen a5 a model if a particular
experiment i applied over that submodel.

3) For validation purposes, it is very useful to compare real
data collected from the physical system with data available
from simulation. Therefore, beside the simulation model,
we would like to handle the real data in another active
model.

SIMBIOS can hold several active models at a time within the
systemn. In this context active model means: ready-to-run model
although it can not be executed concurently with other models. For
example, let us suppose that the goal of a project is to design a
controller for a non linear process. In this case, a first simulation
model of interest can be the non linear process, and a possible
experiment is the identification of the process parameters. The
second model can be the whole system and the objective of the
experiment is the tuning of the controller (figure 3.).

O,
-.ﬁ_,_,_,,,m_‘_‘_w
"'0-._.__‘"__‘.‘
System Process
Experment tdenitication
Experiment
Controiler
Process
I PROJECT ..

e T

Figure 3. SIMBIOS hierarchical approach.

If as a result of the identification experiment, the process
parameters are modified The changes wiil be automatically seen
when executing the systermn experiment.

The following subsections introduce the project, experiment, model
and submodel SIMBIOS concepis

Project

The project is responsible of the simulation project management. A
project is composed of a set of submodels, models and
experiments. The submodels are grouped into models and every
model has one or more experiments associated to it. A submodel
can be simultaneously present in more than one model and any
change made to the parameters of that submodef will be
automatically seen in all the models where the submeodel is present,
This capability must not be confused with the parameterized
MACRO or the submodel block since they are templates (classes in
object-oriented programming terminoiogy) from which submodels
can be instantiated. Therefore, in the present simulation languages
several models can have instances of a particular submodel block.
However, a particular instance is only active {visible) in a single
model but not simultaneously in several models.

Figure ! shows a model which is part of the TurbineRegulation
project. This project has the following submodel set: Limiter,
RealPole, gate, error, motor, sigma, kt, Limiter, DeadSpace,
MesureAmp, errorl, Pulse, SinWave, Pulsel, ISE, SE, E and
DataStream. These submodels are grouped into the following
models: AuromaricMode! (figure 1), PrimaryRegulator (figure 4.)
and NonLinearBlocks (figure 5.). Notice that, for example, the
RealPole submode! appears in two models, the AuromaricModel
and the PrimaryRegulator. Thus, if as a consequence of an
optimization study performed to the PrimaryRegularor model the
RealPole time constant is set to a value that minimizes the Integral
Square Error criteria (ISE), the AwomaticModel will also be
affected since they both use the same submodel instance.

PRIMARY REGULATOR

Manual Stat

gite gats

“ISE TF 5

CataStusam

Figure 4. PrimaryRegulator model.

LExperiment
In SIMBIOS and from the implementation point of view, we rather

distinguish between a simulation experiment and a simulation
study. A simulation experiment can be defined as a run of a
model and the associated experiment over a period of time from a
known initial frame and a simulation study can be defined as a set
of related simulation experiments (Symons 1986).

The system currently has two predefined studies, the sensitivity
study and the barch study:

Barch study: A set of experiments or studies placed on an ordered
queue which are executed in its sorted order. For example,
the first element of the queue can be an optimization study
over the PrimaryRegulator that identifies the RealPole time
constant, the second element can be an experiment over the
AutomaticModel and the last element can be a sensitivity
study which analyzes the sensitivity of the
PrimaryRegulator response to parameter deviations.

Sensitivity siudy: A parameter is changed linearly from = start
value to an end value. For each value of the parameter an
experiment or study is execute.

Two more studies will be implemented, the optimization study and
the random study.

The experiment does not allow the inclusion of dynamics externat
to the system model yet. They have to be included in the model.

Maodet

In continuous model simulation, a model or a submodel is
described by a set of first-order differential equations writien in
terms of the state variables (x1,x3, . . . ,Xp), the input variables

{s3u9, . . . Uy and the output variables (0,09, - . . ,0p). The
continzous model takes the form:

x'(8) = fy(tx(t)ult)
oft} = fa(t,x(t),uit))
x{tg) = f3{ultp)

derivative computations
ourpit computations
inirializarions

the model may include a set of discontinuity (constraint) functions:
0 = fg{tx(B),ut)

The model discontinuities can be written in terms of the
discontinuity functions (g1,82, - - - .8} ©
glt) = fae,x(t) ult)) discontinuity funcrions

A discontinuity is detected by noticing a change of sign in the
value of a discontinuity fanction.

A model or a submodel includes, in general, code for its
initializations, derivative computations, discontinuity function
computations and output computations. Therefore, it seems
advisable to cluster the code in sets, called segments in SIMBIOS,
consistent with the previous division (Guasch 1987). Furthermore,
each segment can be directly implemented as a method in the
chiect oriented language.

Limiler\y
SineWavely

860
0.

Limiterty >
04

8e0
398

B p3—fH

A

Sinewave MesweAmpl | DesdSpace Limiter

' power Amplifies -

Figure 5. NonLinearBlocks model.

Figure 5. show the NonLinearBlocks model and its associated
experiment resuits. Most of the discontinuous SIMBIOS submodels
are accurately modeled using time and state event mechanisms.

Subrmodels

Since a primitive element, ie. integrator, is a hand-made
submodel, we also use in this section the term submodel to refer
the lower level submodels (primitive elements).

SBMBIOS has a large set of linear, non-linear, afgebraic, interface,
discrete, fuzzy and event-driven submodels

The present submodel library is equivalent to that of available
CS31, or block oriented continuous simulation languages.
However, since submodels are implemented zs objects, greater
flexibility can be achieved.

CONCLUSIONS

This paper introduces the project concept implemented in the
SIMBIOS object oriented simulation environment prototype. The
objective of the project is to integrate in the simulation
eavironment all the documentation, submodels, models and

experiments that have been defined por a specific simulation
project.

Smaltalk has been the language of choice for fast prototyping of
SIMBIOS, but we are considering to port it to a more efficient
language in run time such as C++. The migration of the SIMBIOS
environment from a Smalkatk platform to a more performing one
in real-time such as C4+ is envisaged as feasible with a relative
low effort.

SIMBIOS is available for distribution from the authors. The
present prototype is currently available for PC 386 and 486
platforms.

REFERENCES

Andersson, M. (1989),"Omolz - An Object-Oriented Modeling
Language", Report TFRT-7417, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

Beck B. (1990}, "Shared-Memory Paralle! Programming in Ces",
IEEE Software, pp. 38-39. (July).

Birtwistle G.M., Daht B., Myrhaug B. and Nygaard K (1973).
SIMULA begin. Studentlitteratur

Cellier F.E. (19%1a),"Continuous System Modeling",
Verlag New York, Inc.

Cellier FE, Zeigler BP, and Cutler AH. (1991b), "Object-
Oriented Modeling: Tools and Techniques for Capturing
Properties of Physical Systems in Computer Code,"
Proceedings CADCS'91 -- IFAC Symposium on Computer-
Aided Design in Control Systems, Swansea, Wales, UK.,
July 15-17, pp. 1-10.

Ceilier F.E. and Elmqvist H. (1992), "The Need for Antomated
Formula Manipulation in Object-Oriented Continuous-
System Modeling," Proceedings CACSD'92 -- [EEE
Compurer-Aided Control System Design Conference, Napa,
CA, March 17-19 (1992).

Guasch A. (1987),"MUSS: A Contribution to the Structural
Analysis of Continuous System Simularion”, Ph.D. Thesis,
Universitat Politecnica de Catalunya, Barcelona, Spain.

Guasch A, (1991}, "Contineous Simulation in Smallalk”, 1991
European Simulation Multiconference, Copenhagen,
Densmark, pp. 120-126, (June).

Helsgaun K (1980} "DISCO - a SIMULA-based language for
continuous, combined and discrete simulation”, Simulation,
Vol. 35 (1), pp. 1-12 (Juiy).

Kreutzer W. (1986), System Simulation: Programming Sryles and
Languages, Addison-Wesley 1SBN 0-201-12914-0.

Mattsson 5. E. (1990),"A Kernel for System Representation",
IFAC 11th Worid Congress, Vol 10, pp. 91-96.

Sim R {1975), CADSIM Users” Guide and Reference Manual.
London: Imperial College Publication #75/23.

Symons A, (1986), "Summary of some current issues®, TC3-
IMACS Simulation Software Commiree Newsletter No 86101
(Januvary}.

Springer-

