IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 54, NO. 1, JANUARY 2006 265

Preconditioning Techniques in the Analysis of Finite
Metamaterial Slabs

Eduard Ubeda, Juan M. Rius, and Jordi Romeu

Abstract—In the method of moments (MoM) electric field integral equa-
tion (EFIE) analysis of slabs of metamaterials, we show that a left-precon-
ditioning scheme by blocks gathering interactions between basis functions
belonging to each basic cell of the metamaterial reaches convergence in
less iterations and with less computational time than a left-preconditioner
based on discarding interactions between basis functions beyond a given
distance.

Index Terms—Electromagnetic scattering, method of moments (MoM),
numerical analysis, preconditioning.

I. INTRODUCTION

Metamaterials are composite arrays of conducting elements—thin
strips and elementary spires—which, at resonance, behave as mate-
rials with negative index of refraction [1]. Since these structures have
large electrical dimensions, they can be modeled as infinite and pe-
riodic, which allows the method of moments (MoM) analysis based
on the expansion in the transformed domain (formulation in Floquet
modes) [2]. The required memory and CPU time are moderate since
they only depend on the discretization of one single cell. However, this
approach is too restrictive for a general real-life case because the effect
of the borders is neglected and because a periodic excitation needs to
be assumed.

A MoM-formulation based on the discretization of the whole struc-
ture is a brute-force method that leads to the accurate solution for a
realistic case under an arbitrary exciting source. Due to the modeling
of the elements in the array as open surfaces, the MoM-EFIE formula-
tion needs to be employed. Since metamaterials are resonant and finely
meshed to allow for the intricate details of the split ring resonators
(SRRs), the MoM-EFIE formulation results in poorly-conditioned ma-
trices and thus the iterative algorithm converges very slowly or even
stagnates. It is thus obligatory the implementation of robust iterative
methods [3] together with efficient preconditioning schemes [3], [4]
to ensure fast convergence. In this work, the generalized minimum
residual (GMRES) method is adopted as iterative algorithm because
it is more robust to poorly-conditioned systems than other Krylov-sub-
space algorithms, such as the generalized conjugate residual (GCR)
algorithm. Also, for electrically large arrays, which manage a large
number of unknowns, the implementation of the multilevel fast mul-
tipole algorithm (MLFMA) [5] accelerates the matrix-vector product
at each iterative step.

II. THEORY

The preconditioning techniques are based on the generation of a ma-
trix, the preconditioner, which pre-multiplies both sides of the original
linear system of equations with the objective of reducing the condition
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number of the associated matrix and, therefore, the number of iterations
to reach convergence. The preconditioner P must be a good, computa-
tionally cheap and sufficiently sparse approximation of inv(Z), where
Z denotes the linear system matrix arising out of the MoM formula-
tion: Zx = b.

In this paper, we use left-preconditioned schemes [3] so that in the
GMRES-search of the solution the residual norm of the system PZx =
Pb is minimized. The construction of P comprises the generation of
a sparse matrix M including relevant interactions in Z and the com-
putation of P through an approximation of inv(}M ) because the direct
computation of inv(M) increases the memory requirements dramati-
cally. The incomplete lower upper (ILU) decomposition or memory-ef-
ficient related implementations such as ILU(0) and ILUT [3] are em-
ployed to keep the matrix element fill-ins restricted. The ILU decom-
position is computed in the same column-oriented manner as the LU
factorization but, during the process, all the entries in each column of
either L or U below a preset threshold are discarded. This threshold
is defined by the parameter drop-tolerance (drop-tol). ILU-based pre-
conditioning techniques [6], [7] are widely used and become normally
more efficient than the approximate inverse preconditioners (AIPC)
[3], which are based on the more time-consuming minimization of the
Frobenius-norm of the residual matrix I — Z . Recently, Eibert [8]
has proposed a preconditioning scheme that implicitly accounts for
inv(M) through an approximate iterative search of I” nested in the
GMRES-search of the solution. It excels as a very memory-efficient
scheme, especially suited for electrically large objects. We obtain the
two preconditioning schemes under study in this work through the ILU
decomposition of M. These two preconditioners differ in the way M
is constructed.

A. Geometric Banded-Diagonal (Band-Geom)

In the generation of M those interactions between pairs of basis
functions within a given distance—the radius of preconditioning
(Rpc)—are considered. For a given testing function, a row in Z, we
take into account the MoM-interactions with all the basis functions
belonging to a sphere with radius Rpc and centered at that testing
function. The selection of the relevant elements in Z for M is thus
carried out in terms of their physical proximity, which represents a
conventional strategy to define the band around the main-diagonal
of M [6], [7], [9]. Other preconditioners [8] select the band in M
by keeping the matrix elements with largest modulus, which, in our
experience, becomes somewhat less effective.

B. Geometric Block-Diagonal (Block-Geom)

In accordance with the conventional definition of the block-diag-
onal preconditioner, M is defined from the extraction of a set of square
blocks along the main diagonal from the original matrix Z [4]. Since
the ILU of a block-diagonal matrix is the summation of the ILU of each
of the diagonal-blocks, the computational requirements are linked with
the required memory and CPU time to handle each block separately.
This allows the management of electrically large problems where the
banded-diagonal schemes fail because their memory requirements are
beyond the available resources.

The block-diagonal approach is very often refined so that each block
gathers all the interactions between the elements belonging to a limited
region of the geometry [5], [10]. J. Song [5] propose a block-diagonal
scheme by assigning the blocks to the interactions in the cubes at the
finest level of the MLFMA-MoM-CFIE formulation. However, since
the MoM-CFIE formulation is better conditioned than MoM-EFIE [6],
insight into the choice of the preconditioner is less peremptory than
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Fig. 1. Finite composite array with an exciting elementary dipole at a distance
of 55.5 mm. The SSRs are meshed with either a coarse or a fine discretization.
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Fig.2. X Z andY Z sections of the 2 layer array of SRR and thin-strips: D, =
8mm, Dy, = 8mm, D. = 10mm, W = 6.6mm, wd = 0.5mm; g = 0.3mm;
d = 0.2mm; ¢ = 0.8mm.

in the MoM-EFIE analysis. J. R. Poirier [10] show the good perfor-
mance of a block-diagonal scheme with the transpose-free quasi-min-
imal residual method (TFQMR) iterative algorithm in the MoM-EFIE
analysis of patch-arrays. In view of the array structure of the metama-
terials, we propose to assign each of the blocks in M to the interactions
between the elements inside each of the basic cells of the metamaterial;
that is, the SRRs and the thin-strips.

III. GEOMETRIC AND COMPUTATIONAL CONSIDERATIONS

We analyze composite arrays of split ring resonators (SRRs) regu-
larly distributed over thezy plane and z-oriented thin-strips (see Figs. 1
and 2). The SRRs are formed by two concentric slotted square rings
[11] oriented perpendicularly to the yz plane whereas the thin-strips lie
onto the yz plane. In this paper, we name an arbitrary composite array
with m layers over the x-direction of a combined structure of nxn
SSRs and p z-oriented thin-strips as [m layer, nxn SRR, p thin-strips].

At the working frequency (5.4 GHz), where our metamaterial slab
is resonant, the same structure with only SSRs shows very little trans-
mitted power and behaves as magnetic conductor [12]. We have placed
an exciting elementary dipole in front of the composite structure as
shown in Fig. 1. Note that the dipole is oriented so that the radiated
electric and magnetic fields are parallel, respectively, to the thin-strips
and to the axes of the SSRs in order to enhance the electromagnetic
coupling on the structure.

The composite arrays have been analyzed with a Rao-Wilton-
Glisson (RWG) MoM-EFIE formulation [13] with accurate integration
of the Kernel. In the self-interactions, the integration of 1/R is carried
out analytically [14] and the field-integration is computed folllowing
a 3-point Gaussian quadrature rule. For interactions between different
triangles, the integration over the source triangle is undertaken numer-
ically with a 4-point rule and the field-integration is carried out with
1 point at the centroid. Since this is a problem with four-folded sym-
metry, we have only computed one fourth of the MoM-interactions to
save time and memory in the generation of Z and in the matrix-vector
products. We have used a processor AMD Athlon(tm) XP 1800+ (1.54
GHz) and 1.50 Gbyte of RAM.

The meshing of the SSRs has been made with either a coarse or
a fine grid, which involve, respectively, one or two rows of triangles
across the transversal section (see Fig. 1). Such meshings represent an
average length of the sides of the facets of, respectively, 0.02 A and
0.01 A. In all the cases, we have stopped the iterative solver GMRES
for relative residual norms below 0.1%. To check the behavior of band-
geom and block-geom, we have analyzed two sets of composite arrays
(moderarely small and moderately large).

A. Moderately Small

This set of arrays follows the structure depicted in Fig. 2, which
yields the composite arrays [m layer, nxn SRR, n+1 thin-strips]. The
thin-strips are continuous along z and discretized with a mesh-size of
0.02 A. We have tested the cases m = 1,2 and » = 6, 8. The matrices
related with the preconditioning scheme M and P could be saved in
memory whereas Z had to be stored in disk.

B. Moderately Large

This set of composite arrays also follows the general structure de-
picted in Fig. 2 but the thin-strips are somewhat wider (wd=1.5 mm)
and noncontinuous along z. They are split in portions of length 27.52
mm (about half a wavelength at 5.4 GHz) so that they can be more
easily manufactured. We have tested the composite arrays [1 layer,
18 x 16 SRR, 15 thin-strips] and [2 layer, 18 X 16 SRR, 15 thin-strips],
which lead to moderately big electrical dimensions (3.18X x 2.26)).
Since the conventional MoM approach requires too much computa-
tional effort, we use the MLFMA instead. In general, some loss of ac-
curacy must be presumed but with an adequate value for the precision
parameter, this error becomes unnoticeable for far-field magnitudes. In
our experience, a precision factor of 2, within the range proposed by
J. Song in [4], is satisfactory. Moreover, we have adopted a minimum
box size of 0.1 A and an interlevel interpolation degree of 4. We also
relax the meshing criterion in the thin-strips to mesh-sizes of 0.04 A.
Due to the large number of unknowns to be handled, the matrices M
and P were to be stored in disk along with the near-interactions linked
to MLEMA.

IV. RESULTS

In order to establish a fair comparison between both preconditioners,
we have checked first the best-performing configurations. Band-geom
reduces most the number of iterative steps in least time for Rpc =7 mm.
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TABLE 1
TIMES AND NUMBER OF ITERATIVE STEPS TO REACH CONVERGENCE FOR THE
MODERATELY SMALL COMPOSITE ARRAYS WITH 1 OR 2 LAYERS AND
COARSE DISCRETIZATION

TABLE 1II
TIMES AND NUMBER OF ITERATIVE STEPS TO REACH CONVERGENCE FOR
THE MODERATELY LARGE COMPOSITE ARRAYS WITH 1 OR 2 LAYERS
AND COARSE OR FINE DISCRETIZATION

mesh Coarse SRR 18x16
Layers 1 2 Strips 15
Geom SRR 6Xx6 8x8 6x6 8x8 Geom Mesh Coarse Fine
strips 7 9 7 9 Layers 1 2 1 2
Ne 3932 6808 7708 13616 Ne 21120 47424 104928 209856
Band 2.2 4.9 6.2 20.5 Band 32.1 131.8 986.2 3514.4
Tm Block 1.6 3.2 3.6 8.6 Tm Block 2.1 49.1 106.6 386.2
T Band 0.7 1.3 3.5 14.2 Band 3.9 402 1082 Merrfl]ory
P Block 2.3 3.1 4.6 5.4 Tp overtlow
v T T e STEw) Block 15.8 38.9 140.2 377.6
Ttotal |_Block 7.6 33.6 39.4 202.6 Band | 3389 | 29105 1 148251 X
Noprec | 1672.1 | 16037.2 | 28827.5 | 203257.3 Ttotal [ Block | 333.7 | 23377 | 11307.6 | 92091.9
Band 15 35 32 61 No prec Extremely slow convergence
steps |_Block 12 29 27 50 Band 68 163 106 X
No prec 418 725 835 1359 Steps | Block 66 137 84 208
No prec Extremely slow convergence
TABLE II

TIMES AND NUMBER OF ITERATIVE STEPS TO REACH CONVERGENCE FOR THE
MODERATELY SMALL COMPOSITE ARRAYS WITH 1 OR 2 LAYERS AND

FINE DISCRETIZATION
mesh Fine
Layers 1 2
Geom SRR 6x6 8x8 6x6 8x8
strips 7 9 7 9
Ne 15848 24856 31696 49712
Band 40.3 85.9 141.8 720.2
Tm Block 15.4 242 31.5 76.0
Band 18.3 21.8 245.7 640.2
Tp Block 15.1 21.3 23.7 39.2
Band 148.5 473.8 2607.0 9073.8
Ttotal Block 104.3 400.4 1634.3 6418.2
No prec | 44188.9 Extremely slow convergence
Band 19 32 35 67
Steps Block 16 31 25 55
No prec 910 Extremely slow convergence

The best-performing drop-tolerances for band-geom and block-geom
turn out to be, respectively, of 4e-5 and 1e-5. Since the resonance of the
whole geometry is based on the resonance of each SRR separately [15],
it is reasonable that the best-performing preconditioning configurations
prevail as the electrical dimensions of the arrays increase. Note that the
optimum radius of preconditioning (7 mm) is very close to the spatial
periodicities of the arrays (see Fig. 2), which are very small compared
with the dimensions of the whole geometry. This is very advantageous
because we can spare many memory resources in the construction of the
matrix 3 . Indeed, in the MoM-MLFMA analysis of these moderately
large composite arrays, instead of constructing M/ with the whole near-
field MLFMA matrix, as suggested in [6] [7] for a wide variety of large
problems, it is sufficient to establish regions with dimensions restricted
to roughly M\/4.

In Tables I, II and III, we display the performance of the optimum
configurations of band-geom and block-geom for all the composite ar-
rays, [/ layer, 6 X 6 SRR, 7 thin-strips], [2 layer, 6 X 6 SRR, 9 thin-
strips], [1 layer, 8 X 8 SRR, 9 thin-strips], [2 layer, 8 X 8 SRR, 9 thin-
strips], [1 layer, 18 X 16 SRR, 15 thin-strips] and [2 layer, 18 X 16 SRR,

15 thin-strips]. In Tables I and II, we show the results for the mod-
erately small arrays, whereas in Table III we show the results for the
moderately large arrays. T'm and T’p denote the times required to com-
pute M and P and T'total denotes the total time, including Tp, Tm,
and the GMRES-search time to reach convergence. In view of these
tables, block-geom excels as best-performing for each composite array
because it reaches convergence in less steps and less total computa-
tional time than band-geom. We display also the speed of convergence
of the GMRES-search without preconditioning, which becomes for all
the cases, as expected, much slower than with any of our two precondi-
tioners. We have stopped the GMRES-search when the number of steps
to reach a relative residual norm below 1% is above 1000, which stands
for an “extremely slow” speed of convergence.

From the observation of the values of Tp and T'm, we see that
when the size of the nonzero entries in the matrix M is high (the com-
posite array is either finely meshed or electrically big), the choice of
block-geom is critical respect to band-geom. In these cases, the growth
of T'm in band-geom is more abrupt because a specific search of the
wanted interactions for each element over the whole geometry needs
to be carried out. Also, the growth of T'p in block-geom is more mod-
erate because the ILU decomposition is applied separately to each of
the blocks in M.

Finally, band-geom fails in solving [2 layer, 18 x 16 SRR, 15 thin-
strips] and fine meshing (see Table III) because so many unknowns
(Ne=209 856) need to be handled that the computation of P cannot be
completed. Recently, Heldring [16] have introduced a preconditioning
scheme that carries out the band-geom scheme by blocks. This scheme
has allowed to solve a reflector antenna (with over half a million un-
knowns) on a Desktop PC. This preconditioner makes a systematic
geometric rearrangement of the basis functions according to a preset
number of blocks (nb). Strictly speaking it is not a pure block-diagonal
scheme because off-diagonal blocks still remain in M and overload the
ILU decomposition of M. However, this burden in the memory-man-
agement for the computation of P can be partially kept under con-
trol by means of another drop-tolerance (drop — tol,). In the anal-
ysis of the demanding case [2 layer, 18 X 16 SRR, 15 thin-strips] with
fine meshing, a very good configuration of this preconditioner (nb =
40; drop—tol = drop—tol, = le—5; Rpc = 7 mm) leads to 165 603
sec of total computational time and 303 iterative steps. As shown in
Table 111, block-geom offers a 44.4% reduction of the total time.
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V. CONCLUSION

The preconditioning scheme adopting the interactions between ele-
ments inside a cell of the array —SSRs or thin-strips— as blocks excels
as a suitable tool to analyze systematically and most efficiently finite
composite structures in metamaterials. It has been compared with tra-
ditionally successful tools in the MoM-EFIE analysis such as the ILU
preconditioner relying on a geometrically based selection of a banded-
diagonal portion of Z, for the cases where the required resources are
available in our PC, and a blockwise memory-efficient modification for
the case of problems with very large number of unknowns. In all the
cases tested, the geometric block-diagonal preconditioner reaches con-
vergence in less number of iterations and total computational time.
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Physical Insight Into the “Growing” Evanescent Fields of
Double-Negative Metamaterial Lenses Using
Their Circuit Equivalence

Andrea Alu and Nader Engheta

Abstract—Pendry in his paper, “Negative refraction makes a perfect
lens” (Phys. Rev. Lett., vol. 85, no. 18, pp. 3966-3969, 2000) put forward an
idea for a lens made of a lossless metamaterial slab with n = —1, that
may provide focusing with resolution beyond the conventional limit. In his
analysis, the evanescent wave inside such a lossless double-negative (DNG)
slab is “growing,” and thus it “compensates” the decaying exponential
outside of it, providing the subwavelength lensing properties of this system.
Here, we examine this debated issue of ‘“growing exponential” from an
equivalent circuit viewpoint by analyzing a set of distributed-circuit
elements representing evanescent wave interaction with a lossless slab
of DNG medium. Our analysis shows that, under certain conditions, the
current in series elements and the voltage at the element nodes may attain
the dominant increasing due to the suitable resonance of the lossless circuit,
providing an alternative physical explanation for “growing exponential”
in Pendry’s lens and similar subwavelength imaging systems.

Index Terms—Double-negative (DNG) metamaterials, left-handed (LH)
metamaterials, subwavelength resolution.

I. INTRODUCTION

The idea of left-handed (LH) media, which dates back to 1967 when
Veselago [1], theoretically studied plane wave propagation in materials
in which he assumed both permittivity and permeability simultaneously
having negative real parts, has attracted a great deal of attention in re-
cent years. Various problems and ideas involving such media have been
proposed and studied by many research groups. One such idea, namely
a lens with possibility of perfect focusing, was theoretically suggested
by Pendry in [2]. In his analysis, Pendry shows how evanescent waves,
which are effectively responsible for subwavelength resolution, im-
pinging on a suitably designed slab of double-negative (DNG) [3] ma-
terial, may grow exponentially inside such a slab, and how this ef-
fect may “compensate” the decaying exponential taking place outside
the slab [2]. This issue of “growing exponential” and subwavelength
imaging has become the subject of interest for several research groups
working in metamaterial research (see, e.g., [4]-[7]). Analogous sub-
wavelength focusing and growing evanescent distributions have been
demonstrated in two-dimensional negative-refractive-index transmis-
sion line structures [8], [9].

In one of our previous works, we have shown how a similar phenom-
enon of “growing exponential” may occur in pairs of “conjugate” meta-
material slabs, i.e., pairs of DNG and double-positive (DPS) slabs or
pairs of single-negative (SNG) layers such as epsilon-negative (ENG)
and p-negative (MNG) layers [10]. In these cases, we have shown how
wave tunneling, transparency, and virtual image subwavelength dis-
placement may be achieved under a proper choice of combinations
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