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We study the problem of pattern and velocity selection of
morphologically stable two-dimensional fronts propagating in
a spatially modulated medium. The generic system is gov-
erned by a local equation and evolves towards a non-trivial
steady state with a spatial structure which arises from non-
local competition effects and does not necessarily mimic the
local structure externally fixed by the modulation. The dy-
namical process leading to this steady state is studied both
analytically and numerically.

PACS numbers: 47.54.4r, 03.40.Kf, 47.20.Ky

Velocity and shape selection in pattern forming inter-
faces has been an issue of broad interest in recent years, in
a variety of contexts including viscous fingering, dendritic
growth, directional solidification, flame propagation, etc
[1]. In many of these systems the selection of a steady
state velocity is closely related to the selection of a spe-
cific spatial pattern. The degeneracy of the steady state
velocity and shape, however, may only be apparent, due
to the neglect of surface tension, which acts as a singular
perturbation. It has been shown that when surface ten-
sion effects are properly taken into account, the spatial
scale and velocity become uniquely fixed. A more gen-
uine problem of velocity selection arises when the front
of a stable state invades an unstable state. In this case a
continuous degeneracy of solutions may exist and the se-
lection of the steady state solution becomes a dynamical
problem [2-6]. This situation has received a great deal of
attention in recent years and has been explained satisfac-
torily [4-6]. In the context of these references, however,
a planar front in a two-dimensional configuration is mor-
phologically stable and the velocity selection is thus not
related to the emergence of any spatial structure.

In this letter we address an intermediate situation in
which an otherwise stable front, develops a spatial struc-
ture as a consequence of the spatial modulation of an ex-
ternal control parameter. Our study has been motivated
by some experimental studies of chemical waves prop-
agating into modulated excitable media [7,8]. In these

references stationary patterns were generated by spatial
modulations of the chemical excitability, either from vari-
ations in the illumination conditions of a photosensitive
reaction [7], or from a smooth concentration profile radi-
ally maintained in an annular reactor [8]. Here we will fo-
cus on two aspects of the generic case. First, we address
the determination of the stationary shape and velocity
of the two-dimensional front for a given generic spatial
modulation of an external control parameter. Second,
we study the dynamic process of competition of local
structures leading to the final configuration. The prob-
lem exhibits some interesting similarities but also some
qualitative differences from the case of pattern selection
of morphologically unstable interfaces. For instance, cur-
vature effects in the present case act also as a singular
perturbation and are crucial in determining the steady
state shape but are rather unimportant to set the ac-
tual steady state velocity. An important difference of
the present case of front propagation with respect to the
above examples of unstable interface dynamicsis the fact
that the front dynamics is basically local. Surface ten-
sion effects however are also crucial in the slow process
of competition dynamics leading to the non-trivial steady
state solution.

In order to set the problem let us consider the evo-
lution of a linear interface y(x,t) that is moving in the
y-direction. In a broad class of systems the normal ve-
locity of the interface is given locally by the planar inter-
face velocity plus a correction coming from the curvature
[9,10]. This result can be extended to the case in which a
sufficiently smooth modulation of an external parameter
is considered. Then, in terms of the local velocity u(z)
corresponding to the planar front solution, we have

vp(x, 1) = u(z) + k(z,t) (1)

where vy, (z,t) is the local normal velocity and K(z,t) is
the curvature.

The generic situation can be summarized as follows. If
the modulating function u(z) has n local maxima, the
front will adapt, after a short transient, to a shape with



the same amount of local maxima (which we will call fin-
gers by analogy with similar pattern forming interfaces).
In Fig.1 it is shown the temporal evolution of the inter-
face for a u(x) with n = 8 local maxima. Starting with a
planar front, a configuration with n = 8 fingers 1s formed.
At early times, the shape and velocity of each of these
fingers are strongly dominated by the neighborhood of
the corresponding local maxima of u(z). However, since
the fingers advance, in general, with different velocities,
a slow process of competition among them sets in. As a
result, some slow fingers (three) will be eliminated and
some of them (five} will survive. One of the questions
we address in this paper is the determination of the ac-
tual number m < n of surviving fingers in the steady
state. The nature of this competition process is more
clearly shown in Fig.2, where the local velocity in the
y-direction (%%) is plotted for a particular case of n = 2
and m = 1.

Our analysis starts from Eq. (1). Without loss of gen-
erality we assume that the modulation of the system is
periodic with period L, which we will take as the sys-
tem size. We assume that this modulation is sufficiently
smooth, so we can take % as a small parameter. In order
to construct a perturbative scheme, it is useful to write

(1) in terms of the angle of the front (tanf = see
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and 7 = t/L which gives
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For the fingers emerging from a planar interface, the
value of the expression in parenthesis in the right hand
side of Eq. (2) adopts a different constant value, which
from Eq. (1) is equal to the velocity of the finger. In
this way the time derivative in Eq. (2) is very small in
each finger and its shape is practically unchanged. From
this situation all the interesting dynamics occurs in the
contact points between fingers, where the value of the
spatial derivative in Eq. (2) is nonzero (see Fig.2).

The spirit of the scaling of variables in Eq. (2) is to ex-
tract explicitly the part of the solution that scales with
the system size L. This scaling information is basically
contained in the lowest order solution of Eq. (2). In this
equation the small parameter appears multiplying the
highest order derivative, which makes the perturbative
scheme singular. That means that the solution obtained
from this equation as an expansion in 1/L (the so-called
outer solution) will necessarily break down in regions
where the highest order derivative take large values. In
these regions, called boundary layers, a different expan-
sion has to be done (defining the so-called inner solution).
In our problem, the derivatives of 6 are related with the
curvature of the interface, so boundary layers correspond
to regions where the shape of the interface does not scale
with the system size. Inner and outer solutions have to

be asymptotically matched order by order to get explicit
approximations. However, here we will not be concerned
with the actual construction of explicit perturbative so-
lutions, but rather we will extract some simple rules for
the competition dynamics and for the selection of fingers
from the lowest orders of this scheme.

After the initial transient, for each local maximum ¢
of u{x) there is a roughly stationary finger propagating
with a velocity v* given by the value of the parenthesis in
Eq.(2). Substituting the expansions v’ = v+ L™ v} + ...
and #° = 85+ L7160 +... in Eq.(2), we get at lowest order
u
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where u!, is the maximum of u(z) in the finger i, and ulli
its second derivative at the same maximum. We see that
the curvature correction for the velocity of the finger is
given by a length, which is nothing but the length scale
of the spatial variation of the modulating function u at
its local maximum.

The dynamics of finger competition can be found at the
lowest order from the solution inside the boundary layers
between them. The corresponding equation is obtained
from Eq. (1) by making u constant. In terms of the
original variables x, t it reads
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which has to be solved with the appropriate boundary
conditions to match the outer solution. For a boundary
layer placed between two fingers moving at velocities v_
and vy, the boundary conditions at the lowest order will
be

lim 6"(z) =0y ; cosby = — (6)
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Eq. (5) has a stationary solution that can be seen as

a one-dimensional front moving laterally at velocity c,

which represents the invasion of the slower finger by the

faster one. By taking 0(x,t) = 6(x — ct) into Eq. (5) and

imposing the boundary conditions Eq. (6), the velocity
of the lateral front turns out to be
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In view of the solutions found for the shape and veloc-
ity of each finger, it becomes clear that np to the lowest
orders in the inverse system size, the behavior of each fin-
ger during the competition process is dominated by the
local properties of the medium in which it moves, and dif-
ferent fingers are roughly independent from each other.



The invasion of a slow finger by a faster one is basically a
kinematic process, in which the boundary moves as dic-
tated by the velocities of each finger. A similar competi-
tion process appears in the deterministic KPZ equation
but evolving to a different steady state [11].

The next point to address is the final stationary state.
From the lowest order approximation, it can be shown
that for large enough L, only the fastest finger given by
the absolute maximun wups of the modulating function
will survive. In that case the velocity of the whole front
is given by
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where the derivative refers to the original 2 variable. The
shape of the whole front is now given by the same solution
as Eq. (3) but applied to the values up and )y, of the
absolute maximum of u(z). A rather counterintuitive
feature of the solution is that only one tip (maximum
of the front) remains, even if there exist several local
maxima of the modulating function. This statement, true
for large L, 1s valid as longer as the velocity selected by
the front and given by Eq. (8), remains greater than the
value of the other local maxima of the u function. If it is
not the case, Eq. (1) would give negative curvatures for
the secondary maxima and then they will be also local
maxima for the shape of the front.

In that way, the solution of the front shape for a not
very large L may differ qualitatively from the scaling so-
lution, with the existence of additional fingers, and the
perturbative scheme as described above may fail. How-
ever, the number of surviving fingers (i.e. number of
maxima of the stationary front shape) are given by a
simple comparison between the actual selected velocity
v and the local maxima of u(x). The front shape will
develop fingers at those maxima of u(z) larger than v. A
good estimate of the selected velocity v can be obtained
in turn from the perturbative analysis and corresponds
to the largest of the different values taken by v' when
evaluated at the different local maxima of u(z). In any
case, for a given modulating function u(z), there always
exists a system size L above which the scaling solution,
always with a single finger, gives the correct shape, and
the whole perturbative analysis works. Fig.3 shows the
steady state reached by systems with different values of
L but the same two-maxima modulating function. It can
be seen that for small L, two distinct fingers survive, but
for larger values of L the solution approaches the scaling
solution with a single finger.

In summary we have seen that the steady state front
velocity and the number of surviving fingers follow very
simple rules found from a local analysis at the different
maxima of the modulation u(x).
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FIG. 1. Temporal evolution of an initially flat interface. At
the bottom it is shown the modulating function wu(z).

FIG. 2. Competition process between two fingers. (a) Dif-
ferent stages in time of the front shape. The fronts are plotted
in a frame moving at the steady velocity v. (b) Vertical com-
ponent of the local velocity of the front shown for the same
evolution. The effective transversal velocity ¢ (see Eq. (7) in
the text) is also indicated.

FIG. 3. Scaled stationary front shapes reached by systems
of different sizes L (cf. figure legend). The inset shows the
two-maxima modulating function w(x/L) common to all sys-
tems.
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