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Cortical neuronal networks are known to exhibit regimes of dynamical activity characterized by
periods of elevated firing (up states) separated by silent phases (down states). Here, we show
that up/down dynamics may emerge spontaneously in scale-free neuronal networks, provided
an optimal amount of noise acts upon all network nodes. Our conclusions are drawn from
numerical simulations of networks of subthreshold integrate-and-fire neurons, connected to each
other according to a scale-free topology. We study the structure of the up/down regime both in
time and in terms of the node degree. We also examine whether localized random perturbations
applied to specific network nodes are able to generate up/down dynamics, showing that this
regime arises when noisy inputs are applied to low-degree (nonhub) network nodes, but not

when they act upon network hubs.
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1. Introduction

Even though associated with a state of brain quies-
cence, slow-wave sleep is characterized by rich firing
patterns at the level of single neurons. These fir-
ing patterns give rise to the low-frequency rhythms
in brain activity (on the order of Hz) that define
this sleep stage [Steriade et al., 2001]. This activity
takes the form of alternating phases of sustained
firing (up states) and hyperpolarization leading
to the complete absence of spikes (down states).
The time scale of the switchings between the two
states is of the order of tenths of seconds to sec-
onds, much larger than the time between spikes in
the up phase [Steriade & Timofeev, 2003]. Similar

alternance between depolarized and hyperpolar-
ized regimes has been observed beyond slow-wave
sleep, specifically in the visual cortex of anesthe-
sized cats [Lampl et al., 1999], in the somatosen-
sory cortex of resting (but awake) rats and mice
[Petersen et al., 2003], and in cortical slice prepara-
tions [Sanchez-Vives & McCormick, 2000; Cossart
et al., 2003; Cunningham et al., 2006; Johnson &
Buonomano, 2007]. Much effort has been devoted
in recent years to understand the mechanisms lead-
ing to such striking dynamical behavior in corti-
cal networks. For instance, spontaneous up/down
dynamics has been reported in neuronal network
models including either nonstandard currents in the
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dynamics of individual neurons [Bazhenov et al.,
2002; Kang et al., 2004; Parga & Abbott, 2007] or
multilayered connectivity architectures [Destexhe,
2009], or both [Compte et al., 2003; Hill & Tononi,
2005]. Those models make distinct assumptions on
both the local neuronal dynamics and the connec-
tivity architecture necessary to generate up/down
activity. Therefore, it is still unclear what are the
minimal mechanisms leading to that behavior. To
address this issue, here we consider a very simple
model consisting of a network of standard integrate-
and-fire neurons. We show, on the basis of numerical
simulations, that when the neurons operate below
threshold, an optimal amount of noise is sufficient to
generate alternating phases of up and down activ-
ity that qualitatively mimic the slow oscillations
observed in cortical networks.

Following multiple lines of experimental evi-
dence gathered in recent years [Sporns et al., 2004],
we assume our neuronal network to have a non-
trivial coupling architecture (i.e. neurons are not
simply connected to their spatial neighbors) [Boc-
caletti et al., 2006]. From the functional point of
view, different experimental studies have revealed
that the connectivity of brain networks displays
both small-world [Buldu et al., 2011; Castellanos
et al., 2011] and scale-free [Eguiluz et al., 2005;
van den Heuvel et al., 2008; Chialvo, 2010] prop-
erties. In the latter scenario, the distribution of
degrees (number of connections) of the network
nodes follows a power law, in such a way that a rel-
atively small (but non-negligible) number of highly
connected functional nodes coexists with a larger
number of less connected brain regions. At the
anatomical level, experimental evidence reveals the
existence of structural hubs in the brain [Zamora-
Lopez et al., 2009; Gong et al., 2009; Modha &
Singh, 2010; Guye et al., 2010]. Also, studies of
the robustness of brain networks to localized lesions
give results that are consistent with an inhomo-
geneous distribution of degrees, in the sense that
cortical networks are more sensitive to lesions in
certain nodes more than in others [Kaiser et al.,
2007]. On the other hand, physical constraints
reduce the probability of existence of highly con-
nected nodes, leading instead to truncated power-
law degree distributions [Bullmore & Sporns, 2009].
The situation is complicated by the strong multi-
scale character of the brain’s spatial organization
[Zalesky et al., 2010]. Accordingly, several studies
have challenged the view that anatomical networks

in the brain are fully scale-free [Sporns & Zwi, 2004],
usually in favor of less node-heterogeneous (but still
complex) connectivity architectures such as that
of small-world networks [Humphries et al., 2006].
Thus, it seems reasonable to assume that neuronal
networks exhibit a combination of small-world prop-
erties [Strogatz, 2001] and an inhomogeneous con-
nectivity profile, in which certain neurons are more
connected than others.

In this paper, we focus, similarly to other
numerical studies in the literature [Wang et al.,
2009b; Gong et al., 2010], on a scale-free neuronal
network, in order to take into account the existence
of network nodes with different connectivity. Part
of the results presented below, specifically the emer-
gence of up/down dynamics induced by global noise,
also arise in small-world and random networks, as
we also show. However, the results related to the
influence of local noise, presented in the last part
of the paper, are specific to the case of a scale-free
coupling architecture.

Noise is known to have an important and
nontrivial influence in excitable systems [Lindner
et al., 2004], and in particular, in neuronal net-
works [McDonnell & Ward, 2011]. A large body of
literature exists on phenomena such as stochastic
resonance and stochastic coherence (usually called
coherence resonance) in neuronal lattices, both with
nearest-neighbor coupling [Jung & Mayer-Kress,
1995; Zhou et al., 2001; Busch & Kaiser, 2003; Perc,
2005; Balenzuela & Garcia-Ojalvo, 2005] and with
complex coupling architectures, including small-
world [Hao et al., 2011; Wu et al., 2011], scale-free
[Wang et al., 2009a; Chun-Biao et al., 2010], and
arbitrary [Gosak et al., 2010] connectivity profiles.
In most of those works, noise was seen to opti-
mize the temporal regularity of the dynamics of
the network, in terms of an increase in the coher-
ence of periodicity of neuronal firing, either intrin-
sic to the neurons (stochastic coherence) or coming
from an external driving of the network (stochastic
resonance). In this work, on the other hand, noise
enhances the up/down character of the network’s
dynamical behavior without leading to an increase
in its periodicity, neither at the single-neuron nor
at the population level.

The paper is organized as follows. Section 2
describes the dynamical neuronal model and
describes the topological properties of the network.
Section 3 presents the effect of increasing network-
wide noise on the dynamics of the system, and
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quantifies this effect. The structure, both in time
and in node space, of the up/down dynamics
observed for the optimal noise level is studied in
Sec. 4. Finally, Sec. 5 examines the response of the
network to local noisy perturbations depending on
the degree of the input node. The paper ends with
a discussion in Sec. 6.

2. Neuronal Network Model

We assume that the nodes in our neuronal net-
work are described by a standard integrate-and-
fire model [Gerstner & Kistler, 2002]. According to
this model, the dynamics of the membrane potential
Vi(t) is given by a simple RC circuit equation

dv; Vi

dt T

+ Iext,i + Isyn,i + sz(t), <1>

provided V;(t) is below a threshold value V4y,, with
1 denoting a given neuron in the network. The
parameter T, represents the time constant of the
membrane, I ; is the external current per unit
capacitance acting upon the neuron, I, ; is the
synaptic current (also per unit capacitance) com-
ing from other neurons in the network, and &;(t)
is a Gaussian white noise with zero mean and
correlation (& (t)&;(t')) = 20;;0(t — t'), with D
representing the noise intensity. In the presence of
external and synaptic current, the membrane poten-
tial grows in a more or less monotonic manner,
balanced by the relaxation term and driven by the
random fluctuations. When the potential reaches
the threshold, it is reset to 0, and kept there during
a refractory time 7yef.

The synaptic current acting upon neuron 7 is
given by

Lni() =9 D Ayf(t —tires),  (2)

j#i spikes
Table 1. Parameter values.

Symbol Meaning Value
Vin Threshold potential 10mV
Tm Membrane time constant 5 msec
Text External current 1.7nA/nF

D Noise intensity variable
Tref Refractory time 5 msec

Td Post-synaptic current decay time 3 msec

Tr Post-synaptic current rise time 0.1 msec

g Synaptic strength 0.894 nA /nF

Table 2. Network characteristics.
Number of neurons 300
Number of edges 596
Average degree (in-degree + out-degree) 3.973
Clustering coefficient 0.34
Characteristic path length 5.63
In-degree distribution exponent 1.691
Out-degree distribution exponent 1.682

where the first sum runs over all other neurons in
the network, with A;; representing the adjacency
matrix that defines the connectivity of the network.
The second sum runs over all spikes fired by these
pre-synaptic neurons. The post-synaptic current is
represented by the a-function f(t):

ro=eo(2)-en(Z). @

where 74 is the decay time of the post-synaptic
current and 7, is the corresponding rise time. The
strength of the synaptic coupling is measured by
the parameter g.

The values of the model parameters used in
this study are given in Table 1. For these param-
eter values and in the absence of synaptic input,
the critical current for spike generation is Ioyy =
2.0nA/nF. Thus, for the value of I chosen, the
neuron is operating at 85% of its firing threshold
in the absence of synaptic input. In the opposite
scenario, i.e. in the absence of external current,
the critical synaptic strength g.i; needed to reach
the firing threshold with a single input spike is
gerit = 7.45nA/nF. The value of g chosen in our
simulation is well below that critical level, and was
chosen such that in the presence of both external
and synaptic inputs, noise was necessary (and suffi-
cient) to excite a spike in the post-synaptic neuron
in response to a pre-synaptic spike. The model was
integrated using the Heun method [Garcia-Ojalvo &
Sancho, 1999] with a time step dt = 0.1 msec.

The neuronal network was created with
the NetworkX package (http://networkx.lanl.gov),
modified to make the links directed. The topologi-
cal characteristics of the network used in this study
are given in Table 2.

3. Up/Down Activity Induced by
Network-Wide Noise

We first examine the behavior of the network
described above (see Table 2) for increasing levels of
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Fig. 1. Dynamics of the scale-free network of leaky integrate-and-fire neurons for increasing noise intensity D. For each value
of D, a raster plot showing the state of activity of all neurons with time (top panel) and a histogram of the number of neurons
active as time progresses (bottom panel) are shown. Noise intensity values are (a) D = 0.07, (b) D = 0.09, and (c) D = 0.14.

Other parameters are given in Table 1.

noise. The dynamics is depicted in Fig. 1 for three
different values of the noise intensity D. For each
noise level, a raster plot shows the state of activity
of each of the 300 neurons in the network (with each
black dot denoting a spike) as a function of time.
A histogram of firings across the population (slid-
ing bins with 1 msec time step and 25 msec size),
corresponding to the multiple-unit activity (MUA)
of the neuronal population, is shown in the bot-
tom panel. For low noise intensity [Fig. 1(a)] spikes
occur very sparsely, induced by noise in individual
neurons. Usually these spikes cannot lead to firing
in the downstream neurons (since the noise is weak),
except in rare occasions in which the activity is able
to propagate once throughout most of the network,
before dying away.

As noise increases [Fig. 1(b)], however, it
becomes more probable for spikes to activate the
entire neuronal population, and even to reverber-
ate in the network [Rué et al., 2010] leading to
self-sustained activity, in which a given neuron
might fire multiple times. These phases of activity,
that qualitatively resemble the up states described
above, end when the perturbation finds no way
to continue propagating because none of the post-
synaptic neurons reaches threshold.

Finally, for a large enough noise level [Fig. 1(c)]
the up state does not self-terminate, since random
fluctuations are high enough to always induce fir-
ing in any of the post-synaptic neurons receiving an
input spike at any given time. In that situation, the
network is always active. Therefore, we can see that
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Statistics of the up/down dynamics as a function of noise intensity. (a) Average duration of the up states and

(b) number of down-to-up transitions in a fixed time window for increasing D.

an intermediate level of noise is able to generate a
regime of up/down dynamics that is sustained as
long as the random fluctuations and the (constant)
external current persist.

In order to quantify this behavior, we now com-
pute the average duration of the up states, defined
in terms of the time that the MUA signal sur-
passes a certain threshold (here taken equal to 40
neurons). This quantity is shown in Fig. 2(a) for
increasing noise levels, which reveals a monotonic
increase with noise, which is very mild for interme-
diate noise levels, corresponding to a well-defined
up/down regime such as the one shown in Fig. 1(b),
followed by a sharp increase for large noise levels,
for which it becomes very difficult for the activated
phases to self-terminate, as mentioned above. We
also quantify the amount of switchings between up
and down state, by plotting in Fig. 2(b) the number

of up activations (for a fixed time window of 15 sec),
again as the noise increases. The figure shows a
nonmonotonic dependence on the noise intensity in
this case, with a maximum number of up-state acti-
vations for an intermediate range of noise, as we
already anticipated from Fig. 1.

4. Structure of the Noise-Induced
Up/Down Oscillations

We now concentrate specifically on the noise-
induced up/down regime depicted in Fig. 1(b). First
we examine its temporal structure by computing
the distribution of up-state and down-state dura-
tions, presented in Fig. 3. The two distributions
agree with an exponential decrease, as confirmed
in the inset plots, with approximately the same
decay constant. These exponential distributions of
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Fig. 3. Distribution of (a) up-state and (b) down-state durations for D = 0.095nA /nF, which corresponds to the maximum

in Fig. 2(b). The decay rates for the two exponentials are —5.6 4= 0.3 sec™ ! and —5.4 & 0.2sec” ", respectively.
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Fig. 4. Number of spikes fired by every neuron in the network, in a fixed time window, as a function of the (a) first-order
and (b) second-order in-degree of the node. Each neuron is represented by a black circle.

durations are consistent with a Poissonian statis-
tics for the up-to-down and down-to-up transitions,
which would indicate that the probability for an up
state to initiate while the network is in the down
state, and for the up state to terminate, would be
constant in time.

Besides the obvious temporal structure of the
up/down regime, the raster plot shown in Fig. 1(b)
also reveals inhomogeneities in the firing response
of the different neurons in the network, with certain
neurons (for instance, those around the index 200)
firing in the up phases much less than others. It is
reasonable to think that such inhomogeneities in the
firing rate should be associated with the topological
differences between the nodes, typical of a scale-free
network. To check this, we plot in Fig. 4 the rela-
tionship between the total number of spikes fired
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Fig. 5.

by each neuron in a fixed time window (of width
15msec) and the number of incoming connections
that the neurons have, both direct [Fig. 4(a)] and
in second order [Fig. 4(b)]. The two figures show
a clear correlation between the firing rate and the
(first- and second-order) in-degree, with the neurons
with more incoming connections exhibiting a larger
firing rate overall, and those with a very small num-
ber of connections exhibiting a firing rate almost
negligible. Thus, the topology of the scale-free net-
work determines the firing-rate pattern of the dif-
ferent neurons in the network.

The emergence of up/down dynamics induced
by network-wide noise is not exclusive to scale-free
networks. Figure 5 shows the activity of a ring lat-
tice of neurons for increasing rewiring probability
p, ranging from a purely regular lattice for p = 0

Neuron number
—
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O i?. ; L » v . I ‘ ‘.‘Z? ) II::‘ v" o : [ )i\f\
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(b)

Raster plot showing the activity of a network with small world connectivity for increasing rewiring probability p and

an intermediate level of noise, D = 0.095nA /nF. (a) p = 0.0 (regular 1-d lattice), (b) p = 0.2, (c) p = 0.6, (d) p = 1.0 (random
network). Here ¢ = 1 nA /nF, corresponding to 90% of the critical value geyis-
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[Fig. 5(a)] to a random network for p = 1 [Fig. 5(c)],
while an intermediate p leads to small-world con-
nectivity [Fig. 5(c)]. The intensity of the network-
wide noise is fixed to have an intermediate value,
and the coupling strength is also chosen constant,
slightly below the critical value beyond which firing
is triggered by a single incoming spike. The results
of Fig. 5 show that both small-world (c) and ran-
dom networks (d) exhibit noise-induced up/down
dynamics for the chosen parameters, which indi-
cates that clustering is able to lead to this dynami-
cal behavior (as shown by the small-world network
case), but that neither clustering nor degree hetero-
geneity are necessary in that respect (as shown by
the random-network case).

5. Effect of Local Noisy Perturbations

We now go back to the case of scale-free networks,
and turn our attention to the situation in which a
given neuron in the network receives a local random
perturbation, in the form of a Poisson spike train
with rate X\. The network-wide noise presented by
&(t) in Eq. (1) is kept at a low level, for which it
does not generate a self-sustained up/down dynam-
ics. We are interested in establishing whether a local
synaptic noise, which could represent a localized
(e.g. sensory) input in a certain area of a corti-
cal network, would be enough to produce a regime
of slow oscillations such as the one that has been
described earlier in this paper. At this point, we
have to take into account the intrinsic heterogeneity
in connectivity topology characteristic of a scale-
free network, and thus we will study the effect of
synaptically perturbing two types of nodes: a hub
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(Continued)

and a node with low connectivity. In the study pre-
sented in what follows, we consider a noise intensity
D = 0.03 nA/nF, and a synaptic coupling strength
g = 1 nA/nF, corresponding to 90% of the critical
value gt described in Sec. 2. In this case, we also
assume that the neuron that is being controlled is
not affected by synaptic inputs coming from other
neurons in the network, so that it exhibits a pure
Poissonian firing rate.

We begin by analyzing the effect of local synap-
tic noise acting upon neuron #0 (according to the
indexing used in the y axis of Fig. 1), whose out-
degree is 22 and in-degree is 25, and thus it corre-
sponds to a network hub. The effect of varying the
rate A of the Poisson spike train acting upon this
neuron is shown in Fig. 6, for three different values
of A\. At first glance, the behavior of the network
with respect to A follows the same trend shown by
the network-wide noise controlled by D in Fig. 1:
for small Poisson rate A\ the spiking events are rare
[Fig. 6(a)], while they become more frequent as A
increases [Fig. 6(b)], until for very large rates the
whole network exhibits a regime of sustained activ-
ity [Fig. 6(c)] mimicking the behavior for large D
shown in Fig. 1(c). In spite of this seeming over-
all similarity between the effects of local synaptic
noise and network-wide membrane-potential noise,
a closer analysis reveals substantial differences aris-
ing from the fact that we are acting upon a network
hub. Indeed, all network activation events displayed
for low and intermediate values of A\ are directly
triggered by the input spike train (shown in the
panel above each raster plot), and therefore there
are no regimes of self-sustained up states even for
intermediate noise levels [Fig. 6(b)].

1250175-7



J. Grau-Moya et al.

[ + ++ +  + + + +
300 ——— — ;
_250 t :
2 ?
£ 200 | -
=] i ;
= 150 | -
e
S 100 | ]
<
50 ¢ : { 1
0 RR N I
0 1000 2000 3000 4000 5000
t (msec)
(a)
[ M B e A e e A
300 —
. 250 1
)
'E 200 t :
g
= 150 ¢ 1
g
2 100 | 1
Z
50 ¢ LN
0 i oie 1 : P55 ¥ =k ;‘ ik E
0 1000 2000 3000 4000 5000
t (msec)
(b)
[ O R A
300
. 250
[P}
'€ 200
=
2150
=
2 100
Z
50 =
O it b # = s & .'1! i i ¥
0 1000 2000 3000 4000 5000
t (msec)
(c)
Fig. 6. Effect of local synaptic noise, in terms of a random

train of incoming spikes, acting upon a network hub (neuron
#0, following the indexing used in Fig. 1), for three different
values of the Poisson rate: (a) A = 0.002, (b) A = 0.01, (c)
A = 0.2. Other parameters are given in Table 1 and in the
text. On top of each raster plot, the sequence of input spikes
acting on neuron #0 is shown.
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Fig. 7. Effect of local synaptic noise, in terms of a random
train of incoming spikes, acting upon a nonhub neuron (neu-
ron #184, following the indexing used in Fig. 1), for three dif-
ferent values of the Poisson rate: (a) A = 0.002, (b) A = 0.01,
(c) A = 0.2. Other parameters are given in Table 1 and in the
text. On top of each raster plot, the sequence of input spikes
acting on neuron #184 is shown.
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The situation is different when the local noise
acts upon a nonhub neuron with low out-degree.
The response of the network to this perturbation
for three values of A is shown in Fig. 7. In this
case the perturbed neuron is #184, its out-degree
is 2 and it has no incoming connection. In con-
trast with the case in which a hub is perturbed,
some of the spikes acting on the neuron are able
to elicit up-like states, even for small A [Fig. 7(a)].
For larger Poisson rate [Fig. 7(b)] the dynamics
resembles the up/down switching exhibited by the
population under optimal neuron-wide membrane
potential noise [Fig. 1(b)]. Finally, for large enough
A the network exhibits, as usual, a regime of sus-
tained global firing. Therefore, an optimal amount
of local noise (in the form of a Poissonian spike
train) acting upon a nonhub neuron is able to gen-
erate up/down dynamics, similarly to the case of
membrane-potential noise. On the other hand, we
have seen above that when the local random per-
turbations are applied to a hub neuron no up/down
dynamics emerges. These results contrast with pre-
viously reported results on stochastic resonance on
a scale-free network of bistable elements, where a
local perturbation (in that case, a periodic driving)
was more effective in the presence of global noise
(in terms of the collective network response) when
applied to a hub than to a low-degree node [Perc,
2008].

6. Discussion

Recent evidence indicates that up/down dynamics
arises from the interaction between network-based
and neuron-mediated mechanisms [Cunningham
et al., 2006]. Here we have shown that relatively
simple requirements need to be fulfilled at both
these levels for this type of dynamics to exist.
Specifically, a network architecture involving a non-
trivial connectivity profile, plus a subthreshold neu-
ral dynamics, are sufficient to lead to an irregular
pattern of up/down switchings.

The nontrivial coupling architecture of the net-
work considered here allows that a sufficiently large
amount of noise initiates an avalanche-like wave of
activity [Levina et al., 2007; Petermann et al., 2009],
which spontaneously terminates when the excita-
tion can no longer propagate across the network,
either because it reaches a terminal node or due
to its inability to excite any of the postsynaptic

neurons at any given time. The resulting firing
pattern has a nontrivial structure both in time, with
an exponential distribution of up-state durations,
and in node-space, with the in-degree of the differ-
ent nodes determining the firing rate of each neuron
in the up state. While these structural properties of
the up/down dynamics are characteristic of scale-
free networks, our study shows that this regime also
arises in networks with homogeneous degree distri-
butions, such as small-world networks and random
networks.

Another specific characteristic of noise-induced
up/down dynamics in scale-free networks arises
when the behavior is caused by local random per-
turbations. In that case the response of the net-
work depends on the degree of the node that is
subject to local noise: when a hub is perturbed no
up/down regime is produced; only noisy perturba-
tions acting upon low-degree nodes generate this
regime. This behavior suggests that the out-degree
of different neurons in neuronal populations might
be limited. In the case of small-world and random
networks this dichotomy does not exist: local noise
is able to induce up/down dynamics in all nodes,
provided their degree is sufficiently smaller than
the number of nodes in the network (in which case
the local input would completely saturate the net-
work) but not too small (in which case the local
excitation would not be able to leave the local
neighborhood of the input node). Taken together,
the results presented here show that a combina-
tion of noise, subthreshold dynamics and coupling is
enough to generate rich firing patterns, with physi-
ological implications, in neuronal networks.
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