III MTN WORKSHOP
MUSCLE INJURIES
AND REPAIR:
CURRENT TRENDS
IN RESEARCH

September, 27th-28th, 2011
Assessment and follow-up of muscle injuries by segmental bioimpedance

Xavier Yanguas Leyes *
Lexa Nescolarde Selva **
* Medical Department, Futbol Club Barcelona
** Electronic Engineering Department, Universitat Politècnica de Catalunya

3rd MuscleTech Network Workshop
Barcelona, 28th September 2011
What is Whole-Body and Segmental Bioimpedance?

Mono-frequency measurement at 50 kHz.

BIVA

Z/H = (R/H, Xc/H)

R/H (resistance): provides information of the hydration state.
Xc/H (reactance): information of the structure of soft tissues.

RXc-GRAPH

BIA-101 analyzer (AKERN-RJL, Italy).

R = edema, extra-cellular fluid.
Xc = cell membrane damage.
F.C. Barcelona, 2nd football team (n=20)

Right Quadriceps

Right hamstrings

Right calf

Left Quadriceps

Left hamstrings

Left calf

ORGANIZERS:
Segmental bioimpedance vector in right calf injury

1st degree right calf injury

3rd degree right calf injury
1) Athletes develop a well adaptation to the training loads without a modification in the components of bioimpedance vector (R/H and Xc/H).
2) In elite well trained athletes their muscle groups are symmetrical (right and left sides), thus each athlete is its own reference for future comparisons.
3) We expect a change in the two components of bioimpedance vector (R/H and Xc/H) in front of a muscle injury (2nd and 3rd muscle strain) and only a change in R/H in front of a 1st degree muscle injury.
4) Not all the sports have the same pattern of bioimpedance vector by muscle group.