G u e it | i
P. Pardo et al. / Secure and Optimal Base Contraction in Graded Lukasiewicz Logic
274 > Pardo ;

i is a function, applying v to both sets

' - = Con(T, (¢, r")). Since visa ‘) ;
e Ctiz(igt;ntiﬁt(y(p:l:zzl)ﬂly applgzir;g M to each side of the corresponding equation preserve
preserves . Finally, ying [
i i =Te (‘P T)
identity too, so 1' ©5 (i, 1) e5 - N -
(Complet s)Let & : Fm — P(Fm) be an operator (for T satisfying (G17) — (G4°). We

ompleteness :

define a function

A Con(T, (g, 7)) = {X € Con(T, (@, 7)) : X 2T & (p,1)}

SEATBTIES —c-selection
We have to show that for ~y for T', ~ is: (1) well-defined (for ﬁﬁ—sentc;ceess).((j):) selec
ave to s ’ i) — 7).
function for 7, and (3) that for all (g,) € Fm, we have T'© (fi;) — Con(T, ~e(¢',1")). By
(1) 7 is well-defined (for —.-sentences). Let fcozg’g?(i’) = T & (v, v"). From this and
§ . e i @0, =) i
in [8], since O satisfies (G4°), we infer o b T ~(p,1)) =
:Ii:milr]llifiig]'iSEH]“PtiO" %€ Gbaif, sig crabovs de?mu??)n()tfg; tg?t &gfof(-sente(nies). Let
; _ B : ;
= (& ")), (2) v is a ﬁ[—selecnﬁonr unc . - L Ve . we oblaid
BontTs o) 50 nomempy. Sine, by (GI°Y, T (i oo % Con(T,).
f'o Lf”mj“a,lj that T & (p,r) € X € Con(T, elipyr), for & this set is not empty.(3) We
];letlhe above definition of =, this implies X € (7', (¢, Tzf)"g: (¢,7). Hence, (¢, s) in T,
heck the T 05 (r) © T (pr) st Let (919) € T 5 (¢, T
(1-\10w assume lge contrary of what we want to prow;: (qe/),(;‘?)) T%U {ﬁe(Z, 3} consistent wHi
cis T/ with T O (p,r) C T C T. Then we have | r) C T (which holds
tl']'m;"lSUT{“WE:P) e(ii’(uw'i)} is inconsistent. We have that (1) plus T' 9V$W=;lo—hilc(“£ii) implil
g;’) (G2%)) ji)int’ly ;mply T o (pr) C)(i,') E) EO%Té;:C(;P;)% Teei,‘(tp,ﬁ") we have 008
)} is inconsistent, so (¢, 8 . 5 cting the i
); : ;{r(ﬁégff(gz’iw(’;)i)l))- But then (1), 5) ¢ ﬂv(COEJQf(Ta)ﬁé(?é)();, :111)11; z‘:ftl;‘:‘;tfg‘ﬁm‘znm
) el . e, (1h, s i) ‘
] FESTAGH ,8) € T&S (4, 7). In consequence, Con(T, —(i2,1))).
tial asgum[)) lgﬂ’;’[)es)(‘P) C?Jnﬁider: (1, s) € T & (p,r). Then, let X € WECEE%T _‘EEz T%;),&
G, (Lgé 1"C To (tp-)r) e B (1,s) € X. In consequence (1,5) € (7 ' .
Since X C T ’ I
so that (1, 5) € T &5 (@, 7). 1
3.5. Within a given L(C) logic, for any conservative selection function y for a theory T,
Theorem 3.5. % o
the operator O, satisfies (G1¥) — (G4¥).

i g i Cns{T:@%ﬁ
i : i is th —(g,) we have that (v,7) ¢ "
; “Y Since T ©F (¢,) is consistent witl) we. el
I(jm?;) (SGlice), '7112 conservvative, {T &5 (e, r)}onwls a E-Chali?. Slgc:, ‘;g ﬁ&ta?)r i
irﬁ%ﬂy that (p,7) ¢ Cns(U.oo TO5 (g, 7). (G2*) By Co;_(‘) dr?/e. Ew T),,t Th,is impﬁe;w’g :
“e(ip, 7)) NT, which is a subset of T". (GS“’]z Let ({)’q’)t,hszeeis X—E W(YCOH,(T D s
By c > 0, so that for each € > ere . A o
T ®y (g,), forany € > 0, Sl ol
= t T @y e ‘P;T)g —elP,)38 : ;
o X(- wi)?ar‘;{;;!aWeth; - ((cp r) € T or not, maximality of X ;(mpl{les Ehe :ﬂa)ttfa} se
1 e k) . € ? N N) . U - , ' .
gngifoUiE‘i[s cleﬁr that X C T, that X U{—(y, r)u} is COnSlStﬁ;ll; ae::i }:hﬁa 5 the,.ctxists o
is luot C(;]lSiStCnl, by definition of Con(T),}-})_. (G4) lg[?fl;gl?lou e i n e
k 4 s ’ ! .
forall T/ C T, T" U {—c(g@,r)}is consi il -)7 -y
S‘fCh ﬂ::l ?;th for each ¢ > 0 there is § > 0 with IC;oP(F,w(tp,r))) E%ﬁm@(o
:1:::,: \‘;v';lth 'y(C,on{T, —e(p, 7))): fyl(l(}'tofn(T, ;Z(::?;J)RD I;;,te(%, i(CUH(T’ :E(% o
T &~ = (s, r)NT), so that for some ¢ > 0, (¢, B i
l(glb’fh)eeasLsJI;r;{;J(tion,‘ihere is & > 0 with (¢, 5) ,E rﬂ 'y(Con(T,d. agfm, ; i:)g)g)imjjar. y, (1 :
Uy T ®- (0", 7") so that (1, 8) € T & (¢',7"). The other dire ;
60 ¥ '

=

Artificial Intelligence Research and Development 275
S. Sandri et al. (Eds.)
10S Press, 2009

© 2009 The authors and 10S Press. All rights reserved.
doi:10.3233/978-1-60750-06]1-2-275

A Cryptographic Solution for Private
Distributed Simple Meeting Scheduling

Tavier Herranz ®, Stan Matwin ™', Pedro Meseguer ®2 and Jordi Nin ©

* Dept. Applied Mathematics IV , UPC, Spain
b]I[A, CSIC, Spain
“LAAS, CNRS, France

Abstract. Meeting Scheduling is a suitable application for distributed computation,
motivated by its privacy requirements, Previous work on this problem have consid-
ered some cryptographic techniques as well as new search strategies.
we provide a cryptographic and conceptually clear approach to solve
of Meeting Scheduling, even achieving complete privacy,

In this paper,
a simple case

Keywords. meeling scheduling, privacy, homomorphic public key encryption

1. Introduction

The Meeting Scheduling problem
calendar (where previous
them, and a set of location
ings could occur [9]. This
knows his own personal p
personal calendars during
their private information t

(MS) consists of a set of agents, each having a personal
private appointments may appear), a set of meetings among
s. The aim of MS is to determine when and where these meet-
problem is naturally distributed because (¢) each agent only
ersonal calendar and (i4) agents desire to keep private their
MS resolution. In a centralized approach, all agents must give
0 a central server, which solves the problem and returns a soly-
lion. The presence of a trusted authority is not possible in most of cases. This motivates
its reformulation in terms of distributed computation,

MS can be formulated as Distributed Constraint Satisfaction (DisCSP) with privacy
Tequirements. To enforce privacy in DisCSP, two main approaches have been used. One
considers the use of some cryptographic techniques (SMC-based solutions [13], with se-
tious problems to scale up). Alternatively, other authors try to enforce privacy by differ-
€Nt search strategies [9,8]. In some cases [3,9.81, solving causes revealing some private
ﬁl‘fﬂl'l"nﬂtion, which could not be acceptable for some of the MS participants.
~ Here we consider a simple case of MS, when all agents are involved in one meeting
in one or several possible locations. We provide two cryptographic solutions for this sim-
‘P;l.e tase: one offers complete privacy, while the other —computationally more efficient—
ﬂ'@ﬁers high privacy. Althou gh we do not consider the general case of multiple meetings in
Multiple locations, we believe that the proposed approach addresses a realistic situation

nd contaipg technical elements to be of interest for the Al community.

i -
:@__n sabbatical from University of Otlawa, Canada.

~PMesponding Author: TIIA CSIC, Campus UAB, 08193 Bellaterra, Spain; email: pedro@iiia.csic.cs.

276 J. Herranz et al. / A Cryptographic Solution for Private Distributed Simple Meeting Scheduling

This paper is organized as follows. In section 2, we present a formal deﬁnjtion. of
MS, and the basics for cyptographic techniques used in the paper. In section 3, we pro\lflde
the two cryptographic solutions. In section 4, we discuss performance issues of possible
implementations. Finally, we conclude in section 5.

2. Preliminaries
2.1. Meeting Scheduling Problem

The MS problem [9] involves the following sets,

e A={a,as,..,a,}isasel of n agents,

e M = {my,ma,...,mp} is a set of p meetings,

e S ={sy,8s9,..,8 }isasetof rslots in any agent’s calend'c.lr,

® P = {pi,ps,..n,} is a set of ¢ locations where these meetings can occur.

Initially, agents may have several slots reserved for already filled planning in their calen-
dars. A solution must assign a time and a location to each meeting, such that the f‘?llow-
ing constraints are satisfied (7) all meeling attendees must agree where and when it will
occur; (44) m; and 1y cannot be held at same time if they have one common attendge;
(4i1) each attendee a; of meeting m; must have enough time to travel fI'OI]‘_-l the location
where he/she is before the meeting to the location where the meeting m,; will be (human
agents need enough time to travel to the place where their next meeting will olccur). .

MS is a truly distributed benchmark. Each altendee desires to keep private t!:e[r
already planned meetings, while he/she wants to achieve a g]obfﬂly consnlstent squtlfm.
This problem is very suitable to be treated by distributed techniques, trying to provide
more autonomy to each agent while enforcing privacy.

To assess solving difficulty, we analyze four cases (from simple to general):

1. 1 meeting, 1 location,
2. | meeting, ¢ locations,
3. p meetings, 1 location,
4. pmeetings, ¢ locations (general case).

In the centralized setting (when all information is combined into a single server), the
three first cases can be solved in polynomial time (for simplicity, we assume that ev-
ery meeting lasts one slot). In case 1, each agent a; has a v'ect(?r o'f r slots deﬁﬂcd: aﬁ
v, [k] = 1if slot k is available for the meeting at the locathll indicated, 0 9therW1§§.z
The conjunction of these vectors, res(k] = A/, vq,[k], indicates the solution: those
slots k with res[k] = 1 are good for every agent to hold the meeting. A similar appro;
solves case 2, where each agent has ¢ of these vectors (one per location), the COH_]I‘JIIG
has to be done for each location p;, producing res™ [k]. Those slots k and locations pj
such that res™ [k] = 1 are solutions. For case 3, each agent has p of the'se: vectm‘fsJi f .
per meeting), the conjunction has to be done for each meeting m;, oblaining 7‘:‘33
The number of 1s in the disjunction \/*_, v, [k] indicates the number of meetings
can be scheduled. Case 4 involves the evaluation of a number of combmatlon.s W
could be exponential in the worst case (a similar situation happens when meetings
last more than one slot in case 3).

J. Herranz et al. / A Cryprographic Solution Jor Private Distributed Simple Meeting Scheduling 277

Moving into the distributed realm, cases 1 and 2 can be extended without difficulty,
keeping their temporal complexities polynomial. For case 3, this is more involved. When
every agent is involved in every meeting, extension is not difficult and this case is cov-
ered by our approach. Otherwise, there are some issues with the proposed cryptographic
techniques, so we do not consider this case here. We define the Simple Meeting Schedul-
ing as the MS when there is one meeting only in one or q possible locations when every
agent is involved in that meeting. The distributed version occurs when the information is
distributed among agents, as done in [3.4].

2.2. Homomorphic Encryption

A public key encryption scheme PKE = (KG, €, D) consists of three probabilistic and
polynomial time algorithms. The key generation algorithm kG takes as input a security
parameter (for example, the desired length for the secret key) and outputs a pair (sk, pk)
of secret and public keys. The encryption algorithm £ takes as input a plaintext m and
a public key pk, along with some randomness, and outputs a ciphertext ¢ = &y (m).
Finally, the decryption algorithm D takes as input a ciphertext and a secret key, and gives
a plaintext m = ’D.g.a:(c) as oufput,

Such a scheme has an homomorphic property if there exist two operations, defined
on the set of ciphertexts and plaintexts, such that the result of operating two ciphertexts
is an encryption of the result of operating the two corresponding plaintexts. For exam-
ple, a public key cryptosystem is additively homomorphic if there exists an operation @
defined on the set of ciphertexts, such that the message encrypted in ¢ & cp 18 My + Mo,
where mn; is the message encrypted in ¢;, for i = 1, 2. Formally, this property is written
as D (Sp;‘.‘ (m1) & Epp ('f']’],g)) = my + mg. Homomorphic cryptosystems have a lot
of applications, including electronic auctions and electronic voting. An additively homo-
morphic encryption scheme allows re-randomization: if ¢ — Epk(m) is an encryption of
m, then ¢’ = c¢@® &, (0) is a new and random encryption of . We will need a cryptosys-
tem that also supports secure (t,)-threshold decryption: the key generation algorithm
does not output sk but a share sk; for each member of some set P — {F1; Pt of it
users; the encryption algorithm is the same, and the decryption algorithm must be jointly
performed by all the ¢ users in 7.

Paillier’s cryptosystem [10] satisfies all the properties that we want: it is additively
homomorphic and it supports (t, t)-threshold decryption, as shown in [7].

23. (n,n)-Threshold Secret Sharing

Secret sharing is a cryptographic primitive that was independently introduced in [2,12]
and that has been proved very useful in distributed scenarios, to distribute among a set of
Users the power of performing some secret operation (like decryption, signatures, etc.).
In the case of (n, n)-threshold secret sharing, a secret value s is distributed in shares
'-{3i}i:1,...,-r.. in such a way that all the n. shares are necessary to recover the original secret
8. An easy way to implement this primitive, for secrets s € K in some finite field, is as
‘fﬁﬂows: take sy, 83, ...,5,_1 € K at random, and define s,, = s — ($14... 48, 1)1t

"
I Casy to see that the secret can be recovered as the sum of all the shares, but that n — 1

(0r less) shares do not provide any information about the secret at all,
N One interesting feature of this primitive is that it also provides homomorphic prop-
estif {s1,...,5,} is an (n,n)-threshold sharing of a secret s, and {150 o o8) T8

2718 J Herranz et al. / A Cryptographic Solution for Private Distributed Simple Meeting Scheduling

an (7, n)-threshold sharing of a secret ¢, then we have that {sy + t1,...,8, + t} is
an (n, n)-threshold sharing of the secret s + ¢. Therefore, each user can locally add his
shares of different secrets to obtain a valid share of the sum of the secrets.

Considering n agents, this primitive can be used when an agent a; can ma.sk a secret
input (") among the set of agents: he can compute an (n,n)-threshold sharing of this
,mff) }, and then broadcast all the shares but his own
share 2{?, that he keeps private. If users mask their secret inputs in this way, each user

T, 2 .
can then locally add his shares to obtain a share of the sum of all the secret inputs, for
example.

value, resulting in shares {m?)w .-

3. Cryptographic Solutions For Distributed Simple Meeting Scheduling

Recall that A = {ay,az,...,a,} is a set of n agents (or users) who want to solve the
distributed meeting scheduling problem stated in Section 2.1.

3.1. Basic Cryptographic Sub-Protocols

The cryptographic skeleton of our solution basically makes use of thref? protocols:
Mask, Comb, Unmask. Through protocol Mask, anyone can hide a secret 1npu‘€ x; the
masked version of 2 is a ciphertext ¢ = Mask(z). Through protocol Comb, dlffereqt
ciphertexts {c\/) = Mask(z\))},—; _, are combined in such a fvay that the(;&;gulF-
ing ciphertext ¢ = Comb(c™, ..., ¢(™) is a masked version of a,(R R ™, Fi-
nally, in protocol Unmask, all the n users must cooperate tc'> obtain, from a ciphertext
¢ = Mask(z), the corresponding hidden secret z. We will write x = Unmask(c).
These three basic protocols can be implemented by using either an'homomorphlc_
encryption scheme with threshold decryption (such as Paillier, see Section 2.2), or an
(n, n)-threshold secret sharing scheme (see Section 2.3).' P
Specifically, when using an homomorphic encryption sche{ne (KG,E,TD) w1t_h_
threshold decryption, one first runs the key generation part, in s-;uch a way tl}atg
public key pk is published, and the corresponding secret key sk is shared in pieces
{ski}i=1, . n, one for each of the n users. To mask a va?ue z, everyQHe can compu.tf_‘g
and publish ¢ = Mask(z) = &,(z). Since the encryption scheme is [};())momorpl(lg,,
many ciphertexts can be combined by applying Comb(c"), ..., ™) = M @.. .G]
Finally, since the decryption phase 7D of the cryptosystem mgst be performed by
all users, we can define Unmask to be precisely this decryption: Unmask(c) =
TD(e,{ski}it,....n)- _ A
When using an (n, n)-threshold secret sharing scheme, a user a; in the group ol
users can mask a secret input 2 by computing a sharing {x1, 2, ..., 2, } of z, keepllf{g‘
secret his own share x; and sending (publicly) to each other user a; the sh.are. Zjs Tll&
protocol Comb, with inputs ¢\/) = Mask(z)) for j = 1,...,n, can be run 1nf11v1fluaﬂ§ﬁ'
by each user ay, by adding locally a:gl) +...+ .'Eén) his shares of the Vfdlllt‘.s m(.?). Fmaﬁg}
the protocol Unmask consists in all the users publishing at the same time their shares
the secret, and then adding all these shares to obtain the corresponding secret.
With both solutions, we have that no information about a secret z is leaked from
an execution of ¢ = Mask(z). Furthermore, since both solutions work for secret values:

J. Hervanz et al. / A Crypiographic Solution for Private Distributed Simple Meeting Scheduling 279

which are in a finite field K, a masked version ¢ — Mask(z) of a value z € K can be
randomized by combining it with a masked version ¢’ = Ma sk(0) of the secret 0.

Besides these three basic protocols, our cryptographic solutions to the problem of

distributed meeting scheduling also invoke two other cryptographic sub-protocols, that
we summarize right now,

3.1.1. Shuffling Masked Values

The input of this sub-protocol is a list {¢y, ... ,cr} of k masked values, where ity =
Mask(z;). The output of this protocol is a different list {c1,...,¢},} of masked values,
which mask exactly the same set of secrets {z1,..., 24} but in a completely random
order, unknown to any of the users. In other words, there exists a random and unknown
permutation 7 : {1,2,...,k} — {1,2,...,k} such that Unmask(c;) = Zn(;, for all
4 =150 .,k

This sub-protocol can be easily implemented by an iterative process: each of the
agents in A takes the previous list, applies to it a randomization of all the masked values
(by combining them with masked versions of 0) and also a random permutation, and

sends the resulting list to the following agent. The list resultin g from the last agent is the
output of the protocol.

We denote an execution of this protocol as {c}, ..., ¢} } «— Shuffle({e,...,ex}).
3.1.2. Comparing Two Masked Values

The input of this sub-protocol consists of two masked values c1 = Mask(z) and ¢5 =
Mask(zz). The outputis 1 if z; < zo, and is 0 if Z1 = 9. Nothing about the values
and 7 is revealed in an execution of this protocol, besides which value is greater.

This problem is known as the millionaires problem: two millionaires want to know
who is richer without revealing the amount of their fortunes. It can be solved for the two
scenarios: see [5,11] for the scenario based on homomorphic encryption with threshold
decryption, and see [6] for the scenario based on (n, n)-threshold secret sharing.

The known solutions to this problem are quite inefficient, since they involve a lot
interaction and computation by the agents: they have to compute masked versions of all
the bits of z; and x4, they have to jointly unmask some intermediate values, etc, Still,
the computation and communication cost of this algorithm is polynomial on the number
n of agents and the number of bits of x1 and 5. We will denote an execution of such a
protocol as b «— Compare(es, cz), where b is a bit, b € {0,1}.

3.2. A Perfectly Private Solution

In this section we describe a solution that provides perfect privacy: if an attacker corrupts
7. — 1 agents, the only information that he obtains from an execution of the protocol is
exactly what can be inferred from the private inputs of the corrupted agents and the final
(public) output of the protocol. For example, if the output is that a unique meeting will
lake place in time sg, then the attacker does not know if the non-corrupted agent is free
in the rest of times or not. The different steps of the protocol are described below.

L. Setup phase: recall that the goal is to schedule a set M = {m; } of one meeting
(attended by the n agents) inside a set § = {s1,82,..., 5.} of r slots of time in
the calendar. We will use index 7 = 1,...,7 for the slots of time s;. These sets

280 J. Herranz et al. / A Cryptographic Solution for Private Distributed Simple Meeting Scheduling

M and S are public. Note that the granularity of the values s; is not important:
for example, slot g9 can be ‘Monday, May 11, from 12.00 to 13.00°, slot s4 can
be ‘Saturday, May 9, afternoon’, etc.

2. The public cryptographic parameters are generated. In the case that (n,n)-
threshold secret sharing is used, the finite field K must be published. In the case
that Paillier’s homomorphic public key encryption scheme is used, the public key
pk is made public, and each agent a; receives as private input a share sk; of the
secret key.

3. For each time slot s;, each agent a; masks the value my; = 0 if this option is
NOT valid for him, and the value m;; = 1 if this option is valid for him. The
resulting ciphertext is c;; = Mask(m,;;). Agent a; broadcasts the pairs (i, ¢; ;),
fore=1,...,7.

4. Once all the agents have done this, the ciphertexts of each option 7 are combined
to result in a masked version of the sum of all the m; ;, for all users 7 (if all the
users agree in some option ¢, the resulting masked value will be 7). The output
of this phase are pairs (i,¢;), fori = 1,...,r, where ¢; = Comb(c14,...,¢n,)
is the combination of all the c; ;.

5. One of the users masks the indices 4 for all the pairs. The output of this phase are
pairs 8; = (Mask(2),¢;), fori =1,...,r.

6. Allthe users cooperate to shuffie these pairs: {31, . . .,0;.} <~ Shuffle({d,...,4,}).

7. By making calls to the protocol b « Compare(c;,,¢;,), the r pairs 8! are de-
creasingly ordered, according to the values masked in ¢;. The output is an ordered
list of pairs d; = (Mask(i),c;).

8. Recall that the goal was to schedule 1 meeting. The first pair §;, = (Mask(i1),¢;,)
is taken, and all the agents cooperate to synchronously unmask ¢;,, oblaining
m;, = Unmask(¢;,). If my, < n, the output of the protocol is ‘no solution’,
Otherwise, if m;, = n, the corresponding index Mask (%) is unmasked, and the
resulting index is the output of the protocol.

Steps 3, 6, 7, 8 require the cooperation of all the agents. Step 5 is executed by
one of the agents (randomly chosen). Finally, regarding Step 4, it depends on whether
homomorphic threshold encryption or (n,n)-threshold secret sharing is being used. In
the first case, a single agent (randomly chosen, as well) can perform the Comb routine,
which is public in this case. In the case of (n,n)-threshold secret sharing, each agent
must execute individually his part of the Comb routine, adding his private shares of the
considered masked values.

3.3. A More Efficient, Non-Perfectly Private, Alternative

The protocol proposed in the previous section offers perfect privacy, but it is quite inc__f_-f
ficient, especially because of Step 7, where the expensive sub-protocol Compare must
be executed many times (r log(r) times in the worst case). Therefore, if efficiency is the
main concern, one can consider an alternative protocol which avoids Step 7:

e Steps | - 6 are identical.)
® Step 7. Agents take at random a pair 8§, = (Mask(i)’, ¢}) and jointly unm?lSF i
obtaining m; = Unmask(¢c}). If m! < n, this pair is discarded. If m; = n,_pmﬂ.!ﬁ
unmask the associated Mask(7)’, and associate the meeting (o this slot of time.

J. Herranz et al. / A Cryptographic Solution for Private Distributed Simple Meeting Scheduling 281

This second solution is of course much more efficient than the first one, but it can
potentially reveal more information, as well. For example, imagine a toy example with
n = 4 agents, r = 3 time options and g = 1 meeting to be scheduled. Suppose that
the only option that is valid for the 4 users is the first one, s;. Suppose that the values
corresponding to the masked pairs (Mask(i),c;) are, for example: (1,4) for the time
option s1, (2,0) for the time option s,, and (3,1) for the last time oplion, s3. With this
alternative protocol, the agents maybe unmask all the values ¢;, and they obtain a 1,
then a O and finally a 4. Therefore, each of them can know something more about the
availability of the others. For instance, if the first user voted NO for the option s, but yes
for the two other options, as the count is 4, he immediately knows that everybody voted
for the first (winning) option sy, but nobody else voted for any of the two other options
(option s3 has count | and he voted for it, option s, has count 0 and nobody voted for
it). In other words, none of the remaining agents could (or wanted) to meet in the slots
of time s9, 83.

In practical situations where the number n of agents and the number r of time slots
are quite large, this kind of situation is very unlikely to happen, and so this alternative
(and much more efficient) protocol provides a high level of privacy at a reasonable cost

(previous approach, although offers complete privacy, requires a high cost with could be
prohibitive for many applications).

3.4. Extension To p Meetings

Trying to extend the proposed solutions to case (444) of section 2, when there are p meet-
ings to be scheduled in one location, we differentiate between two cases: (a) when every
agent is involved in every meeting, and (b) when not every agent is involved in every
meeting. In case (a), the proposed approaches (either with perfect privacy or the alterna-
tive solution) can be easily extended to include this case. Basically, you keep decoding
pairs (Mask(é), ¢;) in the decreasing order of the list (in the perfect private solution) or
randomly (in the alternative solution). When you have p slots with unmasked ciphertexts
equal to 1, you have a complete solution. If the p meetings cannot be scheduled, perhaps
it is of interest to schedule as many meetings as possible, instead of stopping with the
‘no solution” output. In the perfect privacy solution, agents should take the first element
in the ordered list, unmask Ciy» test if it is equal to n and if so, place a meeting in the
associated slot of time i;, and move to the following element. This process would stop
when some value masked at some ¢i, is less than n. Alternatively, you have to scan the
list of pairs until p meetings have been scheduled or the whole list has been exhausted.
In case (b), the proposed solutions do not work: each pair contains the number of

agents free for that slot, but not the names of those agents. To guarantee privacy, a dif-
ferent approach should be taken.

4. Algorithmic Performance

Solving methods for the distributing simple meeting scheduling are polynomial, and the
Iyptographic formulation is also polynomial. So the proposed solution remains polyno-
mial. However, the addition of cryptography includes some overhead which could not be
Neglected from the practical point of view. In this section we want to address the practical
efficiency of hypothetical implementations of this approach.

282 [Herranz et al. /A Cryptographic Solution for Private Distributed Simple Meeting Scheduling

As we have explained before, the most costly part of the cryptographic algorithms
presented in this paper is the comparison of two masked values. The second non-perfectly
private algorithm is designed to remove this operation from the algorithm, of course, at
cost of compromise the privacy of the agents.

Another important issue to be considered in the algorithms is the complexity added
by the cryptosystem. In general, cryptographical operations of public key systems have
both a large message expansion and a large CPU computational cost, causing a signif-
icant increment in communication cost and in computation effort. However, apart from
the comparison operation, all the operations presented here have a polynomial time cost,
making the proposed algorithms suitable for real scenarios. Moreover, in [1] some im-
provements were proposed in order to reduce the message expansion of the Paillier from
O(N?) to O(N) where N is the product of two prime numbers p and ¢ needed in the gen-
eration key algorithm. These prime numbers are large because the security of the Paillier
method is proportional to the length of those prime numbers (typically, the size of prime
numbers used in cryptography range from 128 bits, offering low security, to 1024 bits,
offering high security). So the suggested reduction allows us to use the cryposystem with
large keys without adding communication complexity quadratic in the message size.

5. Conclusions

In this paper we have presented a new algorithm for solving the private distributed meet-
ing scheduling problem for the case where there is only one possible location for doing
the meetings and all the agents participate in all the scheduled meetings. We have showed
that a perfectly private solution is this scenario is possible but inefficient, For this reason,
we have also presented another non-completely private solution but very efficient.

If one wants ’perfect privacy’ (that is, the only information that is leaked is what
leaks from the final and public output of the protocol), then the first one is the option of
choice. If one does not care about extremal cases (like the one in the example, because
the protocol involves many many users and so such situations are unlikely to happen),
the second solution is preferred.

We have also showed that designing a perfectly private solution for more general
cases, with more than one location or where not all the agents must attend all the meet-
ings, is left as an interesting (although apparently hard) open problem.

Acknowledgements

Javier Herranz enjoys a Ramon y Cajal grant from the Spanish Ministerio de Ciencid
e Innovacién. Stan Matwin is on sabbatical from University of Ottawa, Canada. He is.
also affiliated with the Institute of Computer Science, Polish Academy of Sciences. HlS
work is partially supported by the Natural Sciences and Engineering Research Council
of Canada and the Ontario Centres of Excellence. Pedro Meseguer’s work i8 partia]l_j?'
supported by the project TIN2006-15387-C03-01. Jordi Nin’ work is partially supported
by the European Community through the 7th Framework Programme Marie Curie Intr

European fellowship, contract No 235226, and also by the Spanish MEC (projects ARES
— CONSOLIDER INGENIO 2010 CSD2007-00004 — and eAEGIS — TSI12007-65406-
C03-02). {

J. Herranz et al. / A Cryptographic Solution for Private Distributed Simple Meeting Scheduling 283

References

[1] D. Catalano, R. Gennaro, N. Howgrave-Graham and P.Q. Nguyen, Paillier’s Cryptosystem Revisited
Proc. of the 8th ACM Conf: on Computer and Conmmunications Security, 206-214, 2001. ,
[2] GR. Blakley. Safeguarding cryptographic keys. Proceedings of the National Computer Conference
American Federation of Information, Processing Socielies Proceedings 48, 313-317, 1979, ,
[3] L Brito and P. Meseguer. Distributed Meeting Scheduling. Proc. CCIA-07, 2007.
[4] L Brito and P. Meseguer. Privacy in Distributed Meeting Scheduling. Proc. CCIA-08, 2008.
[5] R Cramer, 1. Damgérd and J.B. Nielsen, Multiparty computation from threshold homomorphic encryp-
ton. Proceedings of Eurocrypt’01, LNCS 2045, Springer-Verlag, 280-299, 2001.
[6] 1. Damgdrd, M. Fitzi, E. Kiltz, J.B. Nielsen and T. Tofl. Unconditionally secure constant-rounds multi-
party computation for equality, comparison, bits and exponentiation. Proceedings of TCC'06, LNCS
3876, Springer-Verlag, 285-304, 2006.
[71 P.A. Fouque, G. Poupard and J. Stern. Sharing decryption in the context of voting or lotteries, Proceed-
ings of Financial Cryptography’00, LNCS 1962, Springer-Verlag, 90-104, 2001.
[8] M.S.Franzin, F. Rossi, E. C. Freuder and R. Wallace. Multi-Agent Constraint Systems with Preferences:
Efficiency, Solution Quality, and Privacy Loss. Computational Intelligence, 20, 264-286, 2004,
[9] E.C.Freuder, M. Minca and R.J, Wallace, Privacy/efficiency trade-offs in distributed meeting scheduling
by constraint-based agents. Proc. of DCR Workshop at LICAI-01, 63-71, USA, 2001.
[10] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes, Proceedings of
Eurocrypt’99, LNCS 1592, Springer-Verlag, 223-238 1999, l
[11] B. Schoenmakers and P, Tuyls. Efficient binary conversion for Paillier encrypted values. Proceedings of
Euroerypt’06, LNCS 4004, Springer-Verlag, 522-537, 2006.
[12] A. Shamir. How to share a secrel. Communications of the ACM, vol. 22, 612613, 1979.
[131 M. C. Silaghi. Meeting Scheduling Guarantecing n/2-Privacy and Resistant (o Statistical Analysis (Ap-
plicable (o any DisCSP). Proc. of the 3th Conference on Web Intelligence, 711-715, 2004.

