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ABSTRACT

One of the main purposes of Powder-Forming is to make parts with a
density distribution as uniform as possible. However, the most usual
compacting technique, involving close-die compression, leads to
nonuniform densification. Subsequent sintering does not modify
significantly this result. Consequently, compacts present
heterogeneous local deformation, what brings about residual stresses,
which may cause fracture of the porous preform at ejection,
nonuniform stress distribution in dies and nonhomogeneous mechanical

properties of the porous compact and finished part.

In this work, a Cam Clay modified model of Plasticity has been
employed to characterize the mechanical response of an iron powder.
A Finite-Element formulation of ABAQUS, has provided the distribution
of density, and also those of strain and stress in a cylindrical
compact obtained by simple o double compression. We have also studied
the influence of friction and geometry. Results of simulation are

compared with those obtained on experimental procedures.
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1. INTRODUCTION *

Powder Metallurgy uses metal powder as its raw material and benefits
from two characteristic features of granular materials: a) the
possibility of transforming, by means of cold compression, a mass of
powder into a porous aggregate with imposed shape and dimensions
having a certain level of cohesion; b) the phenomenon of sintering
among solid particles, which allows compacts to be consolidated by
heating below melting temperature and giving place to a coherent

metallurgical structure.

The research effort of powder metallurgical industries has been
mainly centered on the sintering stage of production. But, current
techniques of powder pressing, by means of closed dies, usually
produce heterogenéous densification which is ﬁggﬂii'changed during
the posterior sintering. Thus, compacts show unhomogeneous local
deformation, giving place to residual stresses which can cause their
fracture during part ejection, non-uniform stress distribution on the
dies and, also, heterogeneous properties of both the porous aggregate
and finished part. So, the knowledge of the mechanismﬁ“acting during
the compaction stage becomes of primary importance in order to obtain

uniform density distribution in finished parts.

It has been known for long time that granular materials and, among
them, metal powders, show several different densification mechanisms
during compression [Shapiro, 1947]. Firstly, for low pressures,
occurs particle sliding. Under this mechanism, particles rearrange
in a way that has been compared with the compact packing of
crystalline structures [Artz, 1982]. At higher pressures, takes place
the plastic deformation of particles through their contact areas. At
even higher pressures, the flow resistance of the material increases

more rapidly due to the strain and geometrical hardenings (the latter
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one is caused by the progressive increment of the contact® areas
between particles). For relative densities of the compact close to
the bulk (R=1), its compressibility decreases drastically due to the
already mentioned effects and also to the air and lubricant entrapped

inside the pores.

The aim of this work has been to find a model able to represent all
these stages of compaction, but making special emphasis on the two
first of them, as they are the only ones usually acting during an

industrial compression.
2. CONSTITUTIVE MODEL

Most of the frictionals materials undergo, from very low pressures,
inelastic deformation, even for hydrostatic states of stress.
Furthermore, during subsequent flow, the material hardens, in a way
that, when the tension point moves beyond the actual yield locus, a
new locus is established. This behaviour has been represented by
Roscoe et al. [Roscoe, 1952] by means of a series of yield surfaces
(caps) previous to reaching the critical state which separates the
zones of consolidation and failure [Desai, 1984]. Fzgure 1 shows, in
the "hydrostatic pressure-deviator stress" space, the CAM model,
which incorporates the idea of critical state [Drucker-Prager, 1952]
by means of a fixed yield surface and the continuous flow of the
material with a series of additional yield surfaces. One of the
characteristics of this combination of surfaces is that, in their
intersection, representing the point of critical state, the tangent
to the cap is horizontal. Hence, the plastic flow at the critical
state is at constant volume meaning that the rule of associated flow
is fulfilled. The stress-strain behaviour can be studied using the
space "mean pressure logarithm-void ratio", by measuring the total

change in the void ratio during a cycle of loading-unloading. The
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result, shown in figure 2, comprises two straight lines, one ABC &f
slope A, corresponding to the plastic modulus of the material:; and
another, BD, of elastic recovery which slope is the logarithmic
modulus, k. The expression for the components of volumetric
deformation can be deduced from the equations of those straight

lines:

e T (1)

de®, =- - (2)

dep=de“‘__l—k[@+ dn) (3)

where 1 is the ratio between the shear and hydrostatic components,
¥ is the slope of the yield curve on any point (p, q), and, in
agreement with the normality condition:

dg _de®,

‘l’z'd—p m e (4)

because the vector of incremental plastic strain is normal to the

yield surface on any point. In this model:

de®, /de?,=2n/(M?*-9?) (5)

‘.
From all these expressions, the equation representing the yield locus

for the CAM model can be derived; namely:

f=M*p*-M’p p+q*=0 (6)
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corresponding to the equation of an ellipse on the plane "p-d". From
the normality condition for plastic deformations, which can be

expressed as:

de®,,=1.dg/d0,, (7)

and the associated flow ruv'e (g=f), the following constitutive

equation can be deduced:

dai) = [ cl.jlu - (cl 1x1A)(1'BnnClnu ) / ( 'Blmc-nrl‘k- T (aF/a e nv ) Au ) ]ds rs ( 8 )

where C,,, represents the elastic matrix; Ay, is dg9/d0,,, and By, is

df/d0,,.
3. MODEL PARAMETERS DETERMINATION

In order to be able to implement the model explained, the material
parameters A, k, M and p,, need to be known. It will be now shown how

this can be done, in a relatively simple way for an iron powder.

The material used in this work has been an iron poéaer elaborated by
Hbégands (ASC 100.29), of spherical shape and high compressibility.
The "compressibility curve", relating the applied axial pressure and
the relative density, has been determined by pressing the material

in a cylindrical die and is shown in Fig. 3.

The radial component of stress during compression can be deduced from
the axial pressure by means of the expression derived by Pleney and

Meyer [Pleney and Meyer, 1978]:

0.=(v,/(1+v,))(0,~Y,) (2)
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where the plastic Poisson’s coefficient v, and the elastic limit for
the porous preform depend on the porosity in a way given by Pleney

and Meyer [Pleney and Meyer, 1978]:

vp=0.5[1-1.6n) (10)

Y,=Y,(1-3n) (11)

here, n is the porosity of the preform and Y, is the elastic limit of
bulk metal (taken as 140 MPa for plain iron). Due to the axial
symmetry of the system, the circumferential component of stress
coincides with the radial one. The curve "hydrostatic pressure Vs.
shear stress" can now be represented and is shown in Fig. 4. It can
be assumed that the initial condition of the metal powder inside the
die, before any pressure is applied, corresponds to a "gritical
state": during subsequent compaction, the material consolidates and
folows a path in the p-q space which crosses the hardening caps and
is more and more separated from the line of "critical states".
Therefore, the straight 1line tangent at the origin to the p-q
compaction path should coincide with the line of critical states
separating the regions of consolidation and that of failure (material

swelling) and its slope M is one of the parameters of this model.

Oonce M is known it is now possible to determine the ellipses
corresponding to each of the consolidated states reached by the

powder during the compression path.

.In equation (6), the only unknown parameter is now p., which can be
found for eacﬁ of the points in the compression path and,
consequently, the succesives hardening caps. These have been
represented in Fig. 5. The determination of a,, intersection between

the caps and the line of critical state is now inmediate.
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Finally, the "stress-strainn behaviour has been ché}acterized
representing the values of 8 as a function of the void ratio, e.
Fig. 6 shows the relation "1n a,-e" for the iron powder under study
and it can be seen the existance of two straight lines, corresponding
to each of the two different mechanisms which are acting during
compaction. The slope of each 1line gives the parameter 3
corresponding to each of the stages of compaction. From this curve,
the densities which define the extension of the compression path
dominated by one of the consolidation mechanisms, can be

determinated.

The elastic component of volume deformation has been introduced in
this model by supossing that it is proportional to the logaritm of

the applied pressure in the following way:

k =J*1_
Tre 1L (P*P.) / (p+p,) 1=0°-1 (12)

To implement the elastic part of the model, the parameter k, the
logarithmic modulus, and p,, uniaxial tensil elastic limit, should be
known. The value of k is easily determined by means of unloadings
during the compression path (Fig. 2), while pP. is taken equal to zero
because effective tensile resistance is considered to be reached only

by posterior sintering.

Density distributions in compacted specimens has been experimentally
determined using a method based on the existance of a correlation
between hardness and density in a porous material. Therefore, Vickers
hardness distributions (1 Kg) were found on compacted samples (H/D=1)
which previously underwent a thermal annealing (1100 ¢, 20 min)to
eliminate the plastic hardening contribution. By means of a
calibration curve it is now possible to draw the density

distributions as it is shown in Fig. 7 for a sample with a relative
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density of R=0.825.
4. FINITE ELEMENTS SIMULATION

The elastic and plastic models have been implemented in the Finite
Element Program ABAQUS, version 4.8, by using the POROUS ELASTIC and

CLAY PLASTICITY options, respectively [ABAQUS, 1989].

The general case used to validate the constitutive model, has been
the die compaction of a cylinder in which the ratio between high and
diameter after compaction is 1 (H/D=1). Then, the FE model is
axisymmetric and includes only the top half of the specimen, since
the middle plane of the cylinder is a plane of symmetry. The FE mesh
is composed by 144 elements of type CAX with a total of 169 nodes.
The die and punch are assumed rigids and they are modelled with
1nterface elements of type IRS to the outer surface of the cylinder.

Boundary conditions are used in order to impose to the nodes of the
rigid surface corresponding to the punch a downwards displacement,
of given value and constant velocity, representing the axial
compression. All the specimen top surface nodes, unlggs those of the
upper corner, have the same boundary conditions of those of the

punch, because they must remain always in contact.

The study of the process has been carried out as a static analysis,
non-linear, with convergence control to ensure that non-linear
equilibrium is satisfied. As numerical solving technique, the Newton
standard method has been used.

The compaction simulation has been applied from an initial relative
density of R= 0.4000 up to a final one of R= 0.8752, subdivided in

two individual programs for each stage of compaction.
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Friction between the iron powder and the walls of the die and punch
is modelled in the ABAQUS program by using the Coulomb law. A
friction coefficient of 0.3 has been taken for the general case, and
of 0.1 and 0.5 to study the influence of friction on the density

distribution.

The effect of geometry has been considered by changing the relation
between height and diameter of the cylinder from 1 (general case) to

0.5.

The effect of the type compaction process has been studied by
modelling double compression. In this case, the compression due to

the motion of a lower punch has been added.

5. RESULTS AND DISCUSSION

Fig. 8 shows the density distribution for the general case (H/D=1:;
#=0.3 and single compression). The greatest density values are
obtained on the right upper corner, where the powder is directly in
contact with die and punch. Moving away from this region, there is
a gradual decrease of density with a minimum value off the left lower
corner, where the trasmitted pressure and powder motion reach a lower
value. Inside the compact, there is a clear tendency to a
stratification in layers of decreasing density. It must be also
pointed out that the gradient of relative density during the first
stage of compaction (0.04) is smaller than the one of the second
stage (0.09), due to the different mechanisms of deformation and

densification.

The effect of geometry is mainly characterized by a progressive
increment of the relative density gradient when the shape ratio, H/D,

increases. It is patent from the results presented in Fig. 9, and in
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the Table I, how the effect of friction is enhanced when thé shape

ratio increases.

The effect of friction is reflected in Table II and in Figs. 10 and
11, which corresponds to the compression of a compact with H/D=1 and

different friction coefficients.

The results for the process of double compression, for H/D=1 and
u=0.3, are shown in Fig. 12. The relative density gradient is now
smaller, and there is also the ocurrence of a "neutral zone" of
minimum density at the equatorial plane of the specimen with

symmetric density distribution at each side of it.
6. CONCLUSIONS

The model applied and the results obtained permit to conclude that
the mechanisms envolved in each stage do not exclude each other,
although one of them predominates. It is even possible to find
regions where particles are mainly deforming plastically when in a
nearby region they are still at the sliding stage.
o

The results of these work permit also to conclude that CAM plasticity
model reproduces accurately the existance of the different mechanisms
acting during the compaction of metal powders. Furthermore,
experimental results are in good agreement with those predicted by

the model.
Finally, the Finite Elements method applied to the resolution of the

CAM model is a useful and reliable tool for the determination of the

density distributions of porous compacts.
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H/D R i R ain
0.5 0.882 0.866
1 0.930 0.849 o
Table I.- Effect of geometry.
”’ Etnak R-lh
0.1 0.900 0.860
0.3 , 0.930 0.849
045 0.960 0.840

Table II.- Effect of friction.
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2: +8.30
3: +8.25
4: +8.20
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6: +7.90

Fig. 7.- Experimental density
distributions.
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Fig. 8.- Density distribution
H/D=1; p=0.3; single
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i}
L1

N

K
1
‘
3
1

—

—

+8.64
+8.66
+8.68
+8.70
+8.72
+8.74
+8.76

: +8.78

E-01
E-01
E-01
E-01
E-01
E-01
E-01
E-01
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Fig. 12.- Density distributions H/D=1; u=0.3;

1: +9.05

double compression.
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