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Abstract—The Geostationary Synthetic Thinned Array Ra-
diometer represents a promising new approach to microwave
atmospheric sounding from geostationary orbit based on passive
interferometry. Distortion due to mechanical or thermal con-
straints produces a displacement of the ideal antenna positions in
the array that causes sampling errors. In this paper, the impact
of array distortion on radiometric error is analyzed in detail so as
to identify the dominant sources of error. A preliminary analysis
showing that array distortion can be well corrected by means of
an external phase reference is also presented.
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I. INTRODUCTION

G EOSTATIONARY microwave sounders have not yet been
feasible due to the large aperture required to achieve

sufficient spatial resolution. In this sense, Geostationary Syn-
thetic Thinned Array Radiometer (GeoSTAR) represents a
promising new approach to microwave atmospheric sounding
from a geostationary orbit based on passive interferometry
[1]. Microwave aperture synthesis was first suggested in the
1980s as an alternative to real aperture radiometry for Earth
observation with high spatial resolution [2]. The first instrument
to use this concept was the Electronically Scanned Thinned
Array Radiometer, which is an airborne L-band radiometer
using real aperture for along-track direction and interferometric
aperture synthesis for cross track [3]. A radiometer using aper-
ture synthesis in both directions, i.e., the Microwave Imaging
Radiometer by Aperture Synthesis, was proposed in [4] and
[5] to provide soil moisture and ocean surface salinity global
coverage measurements from space.
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GeoSTAR was proposed as a solution to Geostationary Op-
erational Environmental Satellite Systems microwave sounders
in response to the 2002 NASA Research Announcement calling
for proposals to develop new technologies. This instrument may
complement future infrared sounders and enable all weather
temperature and humidity soundings and rain mapping. While
low-Earth orbit (LEO) satellites provide coverage in relative
narrow swaths and with a revisit time of 12–24 h, a geo-
stationary Earth orbit satellite (GEO) can provide continuous
hemispheric or regional coverage, which makes it possible
to monitor highly dynamic phenomena such as hurricanes.
Sponsored by the NASA Instrument Incubator Program, the
Jet Propulsion Laboratory is currently developing a proof-of-
concept ground-based demonstrator, which has already pro-
duced very encouraging results [6].

One of the major concerns about the feasibility of a geosyn-
chronous microwave interferometric radiometer is the impact of
array distortion due to mechanical and thermal constraints. This
produces spatial domain sampling errors associated with the
displacement of the antenna phase centers from their nominal
position in the array. This paper is devoted to assessing the
impact of such array distortion and evaluating the feasibility
of a correction procedure.

If array distortion is present, the measured signals, which
are called visibilities, are not given in a uniform grid, and
Fourier techniques cannot be directly applied to simulate them.
Instead, this direct case simulation (from brightness tempera-
ture to visibility) must be performed by means of the so-called
G-matrix [7]. The G-matrix, which is the discrete version of
the interferometric integral, allows us to estimate the measured
visibilities when array distortion is present. Once these cor-
rupted visibilities are known, the inverse case (from visibility
to brightness temperature) is performed by means of an inverse
Fourier transform [8]. That is, the corrupted visibilities are as-
signed to the nominal uniform grid to retrieve a corrupted image
and assess the impact of array distortion on the radiometric
error. This procedure allows the evaluation of the impact of
three different types of array distortion: 1) systematic array arm
misalignment; 2) array arm stretching; and 3) random antenna
position errors.

II. BASICS OF GEOSTAR

A space version of GeoSTAR would consist of a thinned
array of about 300 receiving elements deployed in a “Y”
configuration. Since the distance between single elements is
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Fig. 1. (a) Test image AMSU-A channel number 3 as seen from GEO. (b) Estimated image in the hexagonal cell given by GeoSTAR UFoV Sky alias corrected
only inside the Earth circle. (c) Error image due to discretization and truncation errors. The circle r < 0.1 used to compute rms error is also shown. (d) Error
image for a 0.025◦ out-of-plane arm #1 misalignment. (e) Retrieved image showing sun alias when the sun is at ξsun = 0.17, ηsun = 0. The Earth contribution
is eliminated by differential imaging, and the sun alias corresponds to the alias image centered at (ξc0, ηc0) = (−0.132, 0), as computed in the example given in
Section II. (f) Amplitude spectrum of sun normalized visibilities as a function of distance to u–v plane center (Tsys = 600 K). The relevance of images (e) and
(f) is given in Section VII.

about d = 2.3 cm (3.825λ at 50.3 GHz), the length of each arm
of the “Y” would be about 2.3 m. The complex cross correlation
between the signals collected by any pair of antennas gives one
sample of the so-called visibility function, which is the measure
of a particular spatial harmonic. The “Y”-shaped distribution
of the antennas gives the visibility samples over a hexagonal
grid, which minimizes the number of elements required to cover
the spatial frequency domain u–v (antenna separation measured
in wavelengths). The equation that relates the sample of the
visibility function (in units of kelvin), which are measured
between antennas k and j at a single polarization, to the
brightness temperature is given by [2], [9]

Vkj(ukj , vkj) =
1√
ΩkΩj

∫∫
ξ2+η2

TB(ξ, η)− Trec√
1− ξ2 − η2

· Fnk(ξ, η)F ∗
nj(ξ, η)r̃kj

(
−ukjξ + vkjη

f0

)
· exp (−j2π(ukjξ + vkjη)) dξdη (1)

where TB is the brightness temperature, Trec is the receiver’s
physical temperature (assumed equal in all elements), Fnk

and Fnj are the normalized antenna copolar voltage patterns,
Ωk,j is the antenna’s solid angle, r̃kj is the fringe-washing
function (r̃kj ∼= 1 for GeoSTAR [6]), f0 = c/λ is the center
frequency, ξ = sin θ cosφ and η = sin θ sinφ are the direction
cosines, and ukj and vkj are the antenna separation measured in
wavelengths (baseline). The contribution of Trec to the visibility

samples is negligible in the GeoSTAR prototype due to the low
antenna coupling and the large antenna separation [9]. In the
case of equal antenna patterns, the so-called modified bright-
ness temperature is defined as

TM (ξ, η) =
TB(ξ, η)√
1− ξ2 − η2

|Fn(ξ, η)|2
Ω2

. (2)

Now, following the procedure described in [7], the visibility
equation can be rewritten in its discrete form as

Vkj = ∆s ·
N∑

m=1

N∑
n=1

TM (ξmn, ηmn)

· e−j2π
(
ukjξmn+vkjηmn+wkj

√
1−ξ2mn−η2

mn

)
(3)

where ∆s is the pixel area in the (ξ, η) domain. The sampling
points (spatial frequencies) are computed as

ukj =
xk − xj

λ
vkj =

yk − yj
λ

wkj =
zk − zj

λ
(4)

where the spatial coordinates (xk, yk, zk) and (xj , yj , zj) are
antenna k and j phase centers. Note that an out-of-plane sam-
pling coordinate wkj [10] has also been included in the discrete
form of (1) to account for out-of-plane errors in the following
sections. In a simplified form, (3) can be written as

V = G · TM (5)
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where G is the so-called G-matrix [7]. In the ideal case, the
interferometric integral (1) becomes a Fourier transform, and it
can be computed in its discrete form as a fast Fourier transform
(FFT) [8].

The image selected to estimate the impact of array distortion
is obtained from the Advanced Microwave Sounding Unit
(AMSU-A) channel number 3 (50.3 GHz) remapped from LEO
observations to a GEO view [Fig. 1(a)], in which the sky has
been set to 2.7 K. The image is given in a 1000 × 1000 grid in
the direction cosine domain, which gives a spatial resolution at
boresight of 72 km. To make G-matrix simulations compatible
with Fourier analysis, the image has been interpolated to a
hexagonal grid in the (ξ, η) domain that is the reciprocal basis
of the sampling domain (u, v) [8]. In this case, the pixel area
is ∆s = d2

√
3/2, where d is the nominal antenna separation

within one arm (Fig. 2, top). The modified brightness tem-
perature TM (ξmn, ηmn) is computed by taking into account
the theoretical antenna patterns of the Potter antennas used
in the ground demonstrator [6]. To minimize the number of
antennas required for a given spatial resolution, the u–v domain
is undersampled: the real image is recovered at the center of the
(ξ, η) plane, but six aliases of the image appear around it, which
are centered at [9]

(ξcn, ηcn) =
2

d
√
3

[
cos

(
n
π

3

)
, sin

(
n
π

3

)]
,

n = 0, 1, 2, . . . , 5. (6)

The smallest spacing in the sampling grid is set to d = 3.825λ
to give GeoSTAR unambiguous field of view (UFoV) as the
hexagonal cell shown in Fig. 1(b). The same hexagonal image is
repeatedly attached to each of the six hexagon sides in Fig. 1(b).
For instance, if we take into account the alias image given by
n = 0, this alias is centered at (ξc0, ηc0) = (0.302, 0). Since
the Earth as seen from GEO is constrained to |ξ| < 0.15, the
antenna separation d has been set so that the UFoV matches the
Earth disk [Fig. 1(b)]. However, the actual image is constrained
to the unit circle [Fig. 1(a)], and the sky from each of the six
alias images is superposed on the main image. This effect can
be removed provided that the brightness temperature of the sky
is known.

To sum up, the direct case (from brightness temperature to
visibility) is performed by means of the G-matrix when position
errors are present and by FFT in the ideal case. The inverse
procedure (from visibility to brightness temperature) is always
performed by means of the inverse FFT. A routine to remove
the effect of the sky is used in all the simulations in this paper.

III. RADIOMETRIC ERROR DUE TO ARM MISALIGNMENT

An example of the nominal Y-shaped array for Nel = 8
elements per arm is shown in Fig. 2 (middle). The elements
are arranged in such a way that the three arm axes meet
in an equilateral triangle. This is the so-called “staggered-Y”
configuration, which is used to simplify the mechanical and
electrical designs by eliminating the one odd center receiver [6].

As a first-order approach, arm distortion is modeled by
means of an in-plane (β) and an out-of-plane (α) phase offset
in relation to its nominal position (Fig. 2, top). Arm distortion
will likely be more complex. However, this approximation will

Fig. 2. (Top) Model of antenna distribution for an arm placed along x-axis
with out-of-plane (α) and in-plane (β) misalignment errors. (Middle) Example
of antenna distribution for the nominal Y-shaped array (Nel = 8): arm #1 (♦),
#2 (∗), and #3 (◦). The plus sign (+) shows an example of arm misalignment:
arm #1, 5◦; #2, −2◦; and #3, −10◦. (Bottom) Sampling grid in the u–v domain
for the distorted array: (x) measured (u, v) and (◦) symmetric (−u,−v)
baselines.

give us a good insight into the amount of distortion that can
be tolerated to keep radiometric error within specifications. If
we take into account an arm placed approximately along the
x-direction, the coordinates of the nth antenna from the array
center can be computed according to the parametric equation of
the straight line as

xn = an · r + bx
yn = an · s+ by
zn = an · t+ bz

}
. (7)

If the origin of coordinates is placed at the center of the
array, and the staggered configuration of GeoSTAR is taken into
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account [6], the line coefficients are

an =
(
n− 1

2

)
d

bx = bz = 0
by = −d

2 tan(30◦)

 (8)

where d is the antenna separation expressed in wavelengths.
The parameters r, s, and t can be expressed as a function of
the in-plane (β) and out-of-plane (α) phase misalignment as

r = sin
(
π
2 − α

)
cosβ

s = sin
(
π
2 − α

)
sinβ

t = cos
(
π
2 − α

)
 . (9)

Now, each one of the three arms that comprise the Y-shaped
array must be rotated an angle φRi from its initial position on
the x-axis (φR1 = 270◦, φR2 = 150◦, and φR3 = 30◦). After
the rotation, spatial coordinates for a specific antenna n placed
along a particular arm i (i = 1, 2, 3) can be rewritten as

xin = an · ri cosφRi − (an · si + by) sinφRi

yin = (an · si + by) cosφRi + an · ri sinφRi

zin = an · ti

 . (10)

Fig. 2 (middle) shows an example of antenna in-plane mis-
alignment (Nel = 8), and Fig. 2 (bottom) shows its associated
sampling grid in the u–v domain. Combining (4) and (10), all
sampling coordinates (ukj , vkj , wkj) can be readily computed.
Visibility samples are then calculated by means of the G-matrix
[7]. If there is no arm misalignment (α = 0, β = 0), V can
be computed by means of a rectangular FFT [8]. In any case,
once the visibility samples are calculated, an estimation of the
brightness temperature map can be retrieved by means of an
inverse FFT [8]. An error function ∆T (ξmn, ηmn) is defined
as the difference between the original and the retrieved image.
The mean and the standard deviation of ∆T (ξmn, ηmn) are
computed inside a circle r < 0.1, which corresponds to the 45◦

incidence angle from GEO. In Fig. 1(a), for Nel = 50 antennas
per arm, if the ideal case is taken into account, truncation and
finite coverage yield a radiometric error σ∆T = 0.19 K and
negligible bias [Fig. 1(c)].

Fig. 3 shows the radiometric error increase in relation to
the ideal case for in-plane (top) and out-of-plane (bottom)
misalignment errors in arm #1. The sensitivity to these errors
is readily computed from the slope of the plots, which yields
SσT
α = 15.8 K/deg for out-of-plane misalignment and SσT

β =
0.9 K/deg for in-plane misalignment errors. For instance,
Fig. 1(d) shows ∆T (ξmn, ηmn) for an out-of-plane error α =
0.025◦ in arm #1, which yields σ∆T = 0.4 K. Simulations
taking into account arms #2 and #3 yield similar results, while
radiometric errors due to simultaneous misalignment in multi-
ple arms have been found to add in an approximate quadratic
sense (uncorrelated errors).

IV. RADIOMETRIC ERROR DUE TO RANDOM

ANTENNA POSITION ERROR

Random position errors of antenna phase centers can be
simulated with a procedure similar to the one used in the

Fig. 3. Radiometric error due to in-plane (top) and out-of-plane (bottom) arm
#1 misalignment. The radiometric error is computed as the increase in relation
to the ideal case [Fig. 1(c)].

previous section. Misalignment is not taken into account in (7)
by setting r = 1 and s = t = 0. Then, a zero mean random
error in wavelengths is added to each antenna coordinate as

xn = an + bx +∆xm
yn = ∆ym
zn = ∆zm

 (11)

where ∆xm and ∆ym are in-plane along and normal arm po-
sitions errors, respectively. Both have equal standard deviation
σx = σy . ∆zm represents an out-of-plane position error with
standard deviation σz . The impact of each error value (σx = σy
or σz) is obtained out of 25 simulations. Position errors in
antennas close to the center of the array have been found to
produce a larger impact on radiometric performance. To better
evaluate this feature, two types of error distribution along the
arms are performed.

1) Uniform error: In this case, the statistics of antenna
position errors among the 25 simulations is equal for all
antennas within an arm.

2) Weighted error: In this case, the standard deviation of the
position errors is weighted with the distance to the center
of the array so as to give almost zero error for the first
antenna and 2σx = 2σy (or 2σz) for the antennas at the
edge of each arm.

Fig. 4 shows the results for the four different cases. Since the
vertical scale is the same for all plots, the horizontal scale indi-
cates the relative sensitivity of these four different errors. Due
to the large contribution of the shortest baselines, out-of-plane
position errors with uniform distribution (top right) produce the
largest radiometric error. The following sections will show that
an out-of-plane error produces an almost constant phase error
in the signal collected by each antenna. Since σφ ∼= 2πσz/λ,
the equivalent sensitivity to out-of-plane position errors can be
computed as (Appendix)

S∆T
σz

∼= 2πS∆T
σφ

[K/rad] = 444.6K/λ. (12)

Note that position errors σz are given in wavelengths. For
comparison, Fig. 4 (top, right) also shows the radiometric error
computed according to this formula (diamonds). Note that both
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Fig. 4. Radiometric error due to in-plane and out-of-plane random u–v
position errors for uniformly and linearly weighted error distribution along the
arms (circles). Nel = 50. The test image is shown in Fig. 1(a). The diamonds
represent the impact of an equivalent out-of-plane path delay phase (Appendix).

results match quite well in spite of the fact that the procedure to
perform the simulations has been completely different.

• To take into account the direction dependency of the
error in the computation of visibility samples, out-of-
plane position errors have been modeled by means of the
G-matrix.

• Out-of-plane position errors have been approximated by
means of a constant phase error in each antenna, which
allowed us the use of FFT to perform the simulations
(Appendix).

The in-plane position errors in Fig. 4 (top, left) are given as
a function of the radius of uncertainty circle computed as

σr =
√
σ2
x + σ2

y =
√
2σx. (13)

As shown in Fig. 4 (bottom, diamonds), if the position errors
are distributed with linearly increasing error toward the edge
of the arms, their impact is much lower than in the uniform
distribution case. This demonstrates, as expected, that distortion
is dominated by position errors in the antennas close to the
center of the array. The linearly weighted error case does not
have a direct physical meaning. However, in the case that some
redundant antennas are used in the array (see Appendix), the
error distribution along the arm approximates the weighted
distribution. In this case, the sensitivity to out-of-plane position
errors when redundancy is available can be computed from the
sensitivity to phase errors as (Appendix)

S∆T
σz

∼= 2πS∆T
σφ

[K/rad] = 106.9K/λ. (14)

For comparison, Fig. 4 (bottom, right) shows the radiometric
error computed according to the formula above (circles), which
is close to the linearly weighted case (diamonds).

TABLE I
SUMMARY OF DISTORTION MODES

V. IMPACT OF STRETCHING ERRORS

Stretching errors occur because of thermal changes and
gradients within the arms, which yield variations from the
nominal antenna separation d. In a first approach, the actual
antenna separation ds can be computed by taking into account
a uniform temperature increase along one arm that gives a
uniform antenna separation change

ds = d

(
1 +

st

106
∆Tph

)
. (15)

Mechanical and thermal analysis predicts that the arm stretch-
ing coefficient is st = 28 ppm/◦C and that the physical tem-
perature can be well constrained to ±5 ◦C (a quite conservative
goal). In this case, if we take into account a worst case situation,
e.g., +5◦ in arm #1 and −5◦ in arm #3, simulations yield a
σ∆T = 0.011 K error in comparison to the ideal case. This
effect can be considered negligible relative to the 1 K goal
for the global error budget [11] and does not deserve further
analysis at this point.

VI. SUMMARY OF DISTORTION MODES

Table I gives a summary of the radiometric error sensitivity
to the different distortion modes. Since the error budget estab-
lishes an overall 1-K radiometric error, the table also gives the
magnitude of each distortion mode to give 0.25-K contribution
to the error budget. This error is equal for all cases just for
comparison reasons. It is found that in-plane distortion can be
well constrained by mechanical design and thermal control.
However, radiometric error presents a high sensitivity to out-
of-plane distortion, which would place quite tough design re-
quirements. The next section is devoted to show that an external
source allows to practically eliminate the impact of out-of-plane
distortion (Fig. 5). The interested reader can find an alternative
method to analyze array imperfections in [12].

VII. CORRECTION OF ARRAY DISTORTION

As shown in Table I, radiometric error due to array distortion
presents a high sensitivity to out-of-plane position errors, and
some kind of correction will significantly ease array design.
This section is devoted to analyzing the capability of a point
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Fig. 5. Radiometric error due to out-of-plane arm misalignment after phase
correction by means of a point source placed at boresight (top). Effect of the
point source position for an out-of-plane misalignment α = 0.1◦ (bottom).

source to reduce the impact of out-of-plane errors. We assume
that a point source with apparent modified brightness tempera-
ture Tps placed at pixel (ξps, ηps) is given by

TM (ξmn, ηmn) = Tpsδ(ξmn − ξps, ηmn − ηps) (16)

where δ is the 2-D Dirac delta. The point source visibility
measured between antennas k and j is given by introducing (16)
into (1) as

V ps
kj =

√
3
2
d2Tpse

−j2π(ukjξps+vkjηps)e−j2π(wkj

√
1−ξ2ps−η2

ps)

(17)

where only the out-of-plane errors wkj have been taken into
account (∆ukj ,∆vkj ≈ 0). The point source image can be
corrected from out-of-plane distortion by subtracting the phase
error term from each visibility sample as

φpse
kj = −2π

(
wkj

√
1− ξ2

ps − η2
ps

)
. (18)

In the case of an extended source of radiation such as the
Earth, this correction cannot be performed because the term
φpse
kj is different for each pixel. However, taking into account

that GeoSTAR UFoV is quite narrow and constrained to the
Earth contour

ξ2
mn + η2

mn < r2
Earth (19)

(rEarth = 0.15), the phase correction factor changes less than
1.1% within the field of view. Therefore, the estimated visibility
when imaging the Earth V e

kj can be partially corrected from out-
of-plane errors as

V c
kj = V e

kje
−jφpse

kj (20)

where the phase correction term is estimated from the phase of
the point source measured visibilities as

φpse
kj = arg

{
V ps
kj

}
+ 2π(ukjξps + vkjηps). (21)

Note that, if the point source is placed close to the center of
the UFoV (ξps, ηps ≈ 0), the correction factor is not affected by

in-plane position errors (∆ukjξps +∆vkjηps
∼= 0), which in

any case are a second-order effect (Fig. 4, top, left).

A. Receiver Phase Calibration by Means of a Point Source

This section presents a quantitative assessment of the phase
calibration by means of a point source. It must be pointed
out that this correction is very robust since it is capable of
also dealing with instrumental phase errors [13]. In this more
general case, the phase of the point source visibility can be
written as

φpse
kj = −2π

(
wkj

√
1− ξ2

ps − η2
ps

)
+ φk − φj + φkj + φn

(22)

where φk and φj are the phase terms related to each receiver,
φkj is the phase of the fringe washing function, which depends
on the discrepancies in filter frequency responses between
different receivers (this term has been found negligible for
the GeoSTAR demonstrator [6]), and finally φn is a random
phase related to thermal noise. This last term can also be
considered negligible since the point source can yield large
values of correlation (large signal-to-noise ratio) and the in-
tegration time can be extended as necessary. Therefore, point
source correction removes both path delay phases due to out-
of-plane misalignment and instrumental phase errors (assumed
constant).

Fig. 5 (top) shows the radiometric error after calibration
by means of a point source at boresight as a function of
misalignment error. If the point source is moved away from
the boresight, the radiometric error increases slightly since the
phase correction term is less accurate for some areas within the
UFoV (Fig. 5, bottom). However, even for point sources placed
well beyond the Earth–sky border (r > 0.15), the correction
error is below 0.05 K. This suggests that the sun may also be
used as a reference for phase calibration of the instrument.

B. Sun as a Reference for Phase Calibration

This section analyzes the suitability of the sun as a reference
for phase calibration of the instrument. In a first approach, the
phase of the visibility samples from the sun image depends
exclusively on the position of the sun center as given by

φsun
kj = −2π(uξsun − vηsun). (23)

However, the sun is not a point source, and the magnitude
of the visibility samples is not constant. Fig. 1(f) shows the
amplitude spectrum of the sun visibilities as a function of
distance to the center of the u–v plane

ruv =
√
u2 + v2. (24)

The noise in the normalized correlations due to finite integration
time is given by σr,i = 0.5/

√
Bτeff , where τeff = τ/2.46 at a

sampling rate twice the signal bandwidth. Since thermal noise
is independent of the magnitude of the visibility sample, the
signal-to-noise ratio of measured samples decreases due to the
decay of the visibility function. As a conclusion, since most
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of the measured visibilities present a very low signal-to-noise
ratio, the sun cannot be used as it was proposed for the point
source. The next subsection presents a quantitative analysis of
the phase calibration procedure by means of the sun.

C. Alternative Calibration by Means of the Sun

This section is devoted to develop an alternative phase cali-
bration by means of the sun that overcomes the fact that it is not
a point radio source. The Appendix shows that the radiometric
error sensitivity to phase errors in relation to the image given
in Fig. 1(a) is S∆T

σφ
= 1.23 K/deg for uniform phase error

distribution along the arms and S∆T
σφ

= 0.3 K/deg in the case
of a linearly weighted distribution (array with redundancy).
Taking into account an overall radiometric error of 1 K, if
0.25 K is assigned to phase errors, it must be constrained to
σφ = 0.2 deg in the uniform case and σφ = 0.8 deg in the
linearly weighted case.

An estimation of the phase error term, which includes both
instrumental and path delay error phases, can be written as

φ̂kj ∼= φsun
kj − 2π(uξsun + vηsun) = φk − φj (25)

where the thermal noise φn and the fringe-washing φkj terms
have been neglected. Considering an instrument composed of
Nr receivers, the following set of equations can be established:

φ̂12

φ̂13

. . .
φ̂1Nr

φ̂23

. . .
φ̂(Nr−1)Nr


=



1 −1 0 0 0 . . . 0
1 0 −1 0 0 . . . 0
. . . . . . . . . . . . . . . . . . 0
1 0 0 . . . . . . . . . −1
0 1 −1 0 . . . . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . . . . 0 1 −1



×



φ1

φ2

φ3

. . .

. . .
φNr−1

φNr


. (26)

This can be written in a simplified form as

φ̂kj = P · φk. (27)

The number of visibility samples in the case that all possible
correlation pairs between antennas are measured is given by
Nv = Nr(Nr − 1)/2 (this includes the redundant antenna pairs
within each single arm). Then, the size of the matrix P is
Nv ×Nr. Although there are Nr phases to retrieve, the rank of
the matrix P is always (Nr − 1) because the system is formed
by phase differences. This implies that we can set one of the
channels as a reference and assign a zero phase to it (which
is equivalent to subtracting its phase from the phase of all
other channels). The reference phase must be eliminated from

Fig. 6. (Top) Constant phase error term assigned to each antenna (Nel = 50),
which includes out-of-plane path delay phase. (Bottom) Residual error in the
retrieved phase using the sun as reference. The visibility samples are corrupted
by thermal noise (1-s integration time), and only the samples where ruv <
10d are used. Calibration error is reduced to a negligible value by averaging
consecutive 1-s sun calibrations.

the column vector φk, and its related column from the system
matrix P must also be eliminated. Now the size of the new
matrix P is Nv × (Nr − 1), and its rank remains Nr − 1.
This allows the retrieval of Nr − 1 unknown phases from
Nv visibility samples. However, this procedure would yield
large errors in the estimation of phases because the phase φ̂kj
from measured visibilities presents a large error in most of
the visibility samples due to very poor signal-to-noise ratio.
Fortunately, the system can be solved in a least-squares sense
even in the case that only the equations related to visibility
samples with large signal-to-noise ratio are used.

As an example, we can take into account the sun placed
at (ξ, η) = (0.1700, 0) in Fig. 1(a), which gives an image of
the sun alias placed in (ξ, η) = (−0.1320, 0) in Fig. 1(e). For
a system with Nel = 50 elements per arm, the number of
receivers is Nr = 150, and the number of visibility samples is
Nv = 11.175. To perform the simulation, the following steps
are performed.

• The maximum phase drift due to sun movement for any
visibility sample with ruv < 10d is limited to 1.5◦. This
sets the integration time to 1 s.

• A thermal noise with standard deviation σr,i = 8 · 10−5

is added to the real and imaginary parts of the normal-
ized correlation. This corresponds to an integration time
of t = 1 s.

• We have selected the visibility samples that satisfy the
condition ruv < 10d. In this case, the magnitude of the re-
maining visibility samples is larger than |µ| = 2, 6 · 10−3

[Fig. 1(f)], which gives a signal-to-noise ratio larger than
20 and a random phase φn with a standard variation lower
than σφn

= 1.7◦.
• Now, all rows in P where ruv > 10d are removed. To

simulate a constant phase error in each antenna, a random
phase is assigned to each one (Fig. 6, top). The phase of the
measured visibility samples is then computed by adding
the phase term φk − φj to the ideal sun visibilities Vkj .
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The unknown phases φk are now retrieved by solving the
thinned system of equations in a least-squares sense. Fig. 6
(bottom) shows the residual phase error after retrieving the
phase terms by means of the procedure presented so far. Since
the mean error in the estimated phases is 0.29◦ and σφ = 0.69◦,
the retrieval procedure has proved to be quite robust. Now, the
residual phase error in the retrieved phases can be reduced to a
negligible value by averaging consecutive 1-s sun calibrations.
Once the individual phases related to each antenna are retrieved,
all visibility samples measured when imaging the Earth V e

kj can
be corrected as

V c
kj = V e

kje
−j(φk−φj). (28)

As a conclusion, using the sun as a phase reference has proved
to be a quite robust procedure to phase calibrate the instrument
as long as only the visibility samples with higher signal-to-
noise ratio are used. As a drawback, the sun does not provide
a continuous phase calibration of the instrument since it can
only be performed close to eclipse. That is, to eliminate the
contribution of the Earth, this technique requires two images:
one when the sun is seen in the sky close to eclipse; and a
second one when the sun is hidden behind the Earth disk. It
must be pointed out that an artificial point source placed on an
appropriate location on the Earth, which could be switched on
and off as required, would provide a very good alternative to
the sun.

VIII. CONCLUSION

GeoSTAR array distortion has been analyzed, and the out-
of-plane antenna position errors have been found to be the
dominant source of radiometric error. Since the major contri-
bution to the error budget comes from the errors in the shorter
baselines (low spatial harmonics), the inclusion of a small set
of additional antennas in the center of the array significantly
reduces the impact of such errors. These additional antennas
are used to measure the so-called redundant visibilities (the
same baseline is measured by different antenna pairs), which
are required to mitigate the effect of antenna failure [14], [15]
and to improve system performance by averaging the error in
the shorter baselines. Since GeoSTAR UFoV is very narrow,
the out-of-plane antenna position errors are well approximated
by a constant phase error term assigned to each antenna, which
can be corrected by means of a point source. The calibration
procedure presents a quite low sensitivity to the position of the
point source, and some preliminary results have also shown that
the sun, under certain constraints, can be used as a reference for
phase calibration.

APPENDIX

IMPACT OF CONSTANT PHASE ERRORS IN THE ANTENNAS

This Appendix is devoted to assessing the radiometric error
given by a constant phase error in each antenna. To perform the
simulations, a constant phase error is assigned to each single
receiver with a zero mean normal distribution within the set of

Fig. 7. GeoSTAR redundant topology for Nel = 8 and three redundant
antennas per arm: arms #1 (♦), #2 (∗), and #3 (◦). Antennas with the same
symbol are assigned to the same arm so as to form antenna pairs and compute
correlations [6].

Nr receivers. The estimated visibility measured by receivers k
and j when θk and θj phase errors are present can be written as

V̂kj = Vkje
j(θk−θj) (29)

where Vkj is the ideal visibility sample, which is computed by
means of the FFT [8]. The reference scene used to compute Vkj
is given in Fig. 1(a). An estimation of the original brightness
temperature image is then retrieved by applying an inverse FFT
to the corrupted visibility samples V̂kj . Now, an error function
∆T (ξ, η) can be defined as the temperature difference between
the original and retrieved images. Radiometric error is then
calculated as the standard deviation of ∆T (ξ, η) within the
circle

√
ξ2 + η2 < 0.1 (incidence angle lower than 45◦). The

radiometric error σ∆T related to each phase error distribution
with standard deviation σφ is computed by performing 100 sets
of simulations. That is, σ∆T is computed as the average value
of the standard deviation of ∆T (ξ, η) for 100 different sets of
phase error distributions with the same standard deviation σφ
along the arms.

The radiometric error due to phase errors is computed as
the error increase (in a quadratic sense) in relation to the zero
phase error case. It should be pointed out that even in the case
that phase errors are not present, there is a small radiometric
error σ∆T = 0.19 K due to discretization and truncation of
the visibility function (instrument with Nel = 50 elements per
arm). The sensitivity to phase errors has been found to be
S∆T
σφ

= 1.23 K/deg. However, it is known that the radiometric
error is mainly contributed by phase errors in the shorter
baselines due to the fact that it contains a larger amount of
signal energy [15]. This suggests that its impact can be reduced
by including additional antennas close to the center of the array
(Fig. 7). These give the so-called redundant visibilities (same
antenna spacing formed by different antenna pairs), which are
required to improve instrument robustness [14]. In this case, the
error distribution along the arms is not uniform since the shorter
baselines are redundant and the error averages. Fig. 7 shows an
example of a redundant topology. Now, proceeding in a similar
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way as done before, the radiometric error sensitivity to phase
errors, when redundancy is available, is S∆T

σφ
= 0.3 K/deg

(20 redundant elements per arm), which gives a value about
four times lower than the nonredundant case.
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