Research on Optical Core Networks in the e-Photon/ONe Network of Excellence

Abstract—This paper reports the advances in Optical Core networks research coordinated in the framework of the e-Photon/ONe and e-Photon/ONe+ networks of excellence.

I. INTRODUCTION

e-Photon/ONe (E1) is a network of excellence funded by the EU in 2004 and 2005, with the goal to promote the integration of the several research activities ongoing in Europe on optical networking. The funding period has been recently extended for two more years in the e-Photon/ONe+ (E1+) network, stemming from the previous experience. One of the instruments implemented in E1 and E1+ are the Virtual Departments (VDs), working groups that gather researchers around big topics to exchange results, promote joint research and identify new topics. VD 1 (VD-C in E1+) is devoted to core optical networks and this paper reports an overview of the results achieved, with particular focus on the joint research activities.

It was decided to organize the broad topic of optical core networks in thematic areas, according to a cross-reference approach, based on two perspectives: switching paradigms and related technologies, and high-level network functions. This was motivated by the consideration that different networking technologies will very likely co-exist and co-operate, following the same architectural principle of the Internet.

II. OPTICAL CIRCUIT SWITCHING

In optical circuit switching traffic is aggregated to create lightpaths, very high capacity optical circuits that require careful optimization of network resources and an efficient fault management. These issues have been extensively studied in the literature. In the following are outlined the main streamlines of research and some related results.

A. Shared path protection in multi-class optical networks

Protection in multi-class optical networks has been investigated assuming high-class traffic exploits shared path protection and low-class traffic resorts to best effort dynamic restoration. The impact on the network performance of the selective reutilization (either before or after failure occurrence) of the idle capacity allocated for high-class traffic protection has been analyzed, proposing and evaluating two Idle capacity Reuse (IR) schemes. In the Provisioning-phase Idle Reuse (P-IR) scheme, the capacity allocated for high-class traffic protection is utilized under normal (i.e., failure free) working conditions to carry low-class traffic. In the Restoration-phase Idle Reuse (R-IR) scheme, enforced after a link failure occurrence, the protection capacity unutilized in the specific failure phase is counterbalanced by a worse performance upon failure occurrence, because part of the low-class traffic is preempted to recover the high-class traffic, as shown in Figure 1.

B. Availability-Constrained Optical Circuits in the Presence of Optical Node Failures

The impact of optical node failures was investigated considering a WDM network scenario where circuit redundancy was...
achieved by means of Shared Path Protection (SPP) switching, in combination with Differentiated Reliability (DiR) in multiple failure scenario. Optical Cross-connect (OXC) equipment reliability was estimated using proven component level reliability models. A selection of representative OXC architectures and optical switching technologies was examined to assess the influence of the node equipment choice on the overall network performance. The results show that in many cases assumption of negligible not failures is not acceptable, suggesting that the OXC architecture has to be driven by reliability requirements, in addition to other conventional metrics, e.g., cost, scalability, etc.

C. Routing issues in transparent optical networks

Research is ongoing about the design of a control plane to encompass physical impairments either assuming a centralized or distributed scenario. GMPLS extensions were proposed for the dynamic estimation of the optical signal quality and connection reliability during lightpath set up. The most relevant physical impairments that need to be considered for Routing and Wavelength Assignment (RWA) in transparent WDM networks have been defined. On-line, non-intrusive monitoring strategies for providing physical-layer information to the GMPLS (Generalized Multiprotocol Label Switching) control plane were designed and evaluated experimentally. This topic is considered of significant importance to be taken into account in transparent network domains and is subject of a joint research activity, stemming from a thematic workshop organized at KTH in Sweden.

D. On Temporary Inconsistency of the Link State Database

A fundamental issue in service guaranteed WDM networks is the network state information update. Connection admission decisions based on outdated or inconsistent network state information may lead to severe performance degradation. Most frequently, interior gateway routing protocols are in charge of network state information dissemination, therefore their efficiency determines network performance, as well. A theoretical model was developed to study the probability that wrong decisions are made when the network state is continuously changing due to parallel connection admission and teardown actions and equipment or cable failures. The study focused on the performance of OSPF (Open Shortest Path First).

E. Flow Based Traffic Engineering

Traffic engineering (TE) for WDM was investigated by defining a flow based traffic model to represent the changes in traffic demands over time. The average hourly traffic demand between each node pair was calculated based on the time zone difference between the nodes. A specific traffic engineering strategy, called Dynamic Cost TE, was defined that is based on routing the LSPs along the shortest paths when the network is lightly loaded and using the paths with most available capacity when the traffic load increases. The Dynamic Cost TE strategy was compared with Best Paths TE. In the Best Paths TE strategy, the path for each LSP is fixed during each hourly period, and the paths are updated for all node pairs at the beginning of each hour. The best paths are calculated using an heuristic based on tabu search. In Figure 2, the bandwidth blocking probability for these two TE strategies and the shortest path routing are compared for different values of the relative traffic uncertainty, defined as the ratio of the variance of the Gaussian distributed traffic uncertainty and the average offered traffic.

F. Exploiting the knowledge of lightpaths duration

In some cases the holding time of connection requests can be known in advance based on SLAs or contracts with customers. In this case the knowledge of the holding-time can be used to improve backup resource sharing, for instance with shared-path protection (SPP). We propose to minimize both the additional capacity and the cost of additional wavelengths multiplied by the estimated time it has been provisioned. In our approach K minimal-cost paths are computed and then, for each of these K paths, the backup is determined by exploiting a holding-time aware link-cost-assignment. A figure of merit for comparing backup resource efficiency is the resource overbuild (RO): the lower RO the better backup sharing. Our results presented in Figure 3 show the benefit of such approach in terms of level of RO, compared to the traditional one ($K = 1$).

![Fig. 1. Low-class survivability in a multi-service wavelength-routed optical network.](image1)

![Fig. 2. Bandwidth Blocking Ratio as a function of the Relative Traffic Uncertainty for three routing strategies applied on a 10-node topology.](image2)
III. OPTICAL BURST SWITCHING

OBS is the topics to which the participants to VD1 devoted most effort. A specific task force, the OBS task force, was set up with the aim to put together already available results, create a common reference basis and start joint research activities. The research topics addressed cover several aspect of the engineering and design of an OBS network.

A. The Burst Length Differentiation technique for QoS provisioning

In OBS architectures, it can be observed that shorter bursts have much more chances to access wavelengths and to fill gaps between bursts already scheduled than longer bursts. Taking into account these arguments it may be advantageous to assign different burst lengths to different classes in order to give better performance to some of them. In particular, shorter burst units could carry high priority (HP) loss/delay-sensitive traffic, while low priority (LP) traffic would be aggregated into longer bursts. Such idea brings us to the proposal of the Burst Length Differentiation (BLD) technique. It assumes that each traffic class uses mixed time/burst-length assembly algorithm to build bursts in edge nodes; HP bursts are aggregated with lower timer and maximum burst length thresholds than LP bursts.

The BLD technique was used combined with other selected relative QoS mechanisms in order to boost the performance characteristics of HP traffic. An example of the burst loss probability is plotted in Figure 4, where both burst inter-arrival times and mean burst length (MBL) are Gaussian distributed. When BLD is applied, we assume that $\text{MBL}_{LP} = 5$ kB while MBL_{HP} is either 5 or 10 kB. The figure shows that a very good differentiation can be achieved between HP and LP, with a significant improvement when adding BLD.

B. Edge node design

The delay experience by data in a generic edge node is mainly composed by the burst assembly delay and the burst queueing/scheduling delay. While the assembly delay can be bounded by a timer in the time-based burst assembly scheme, the queueing delay in the transmission buffer needs to be carefully inspected.

C. Performance of TCP over OBS

The probability distribution of the delay experienced by the individual IP packets of a test IP flow was studied, applying FIFO scheduling and estimating the total delay as the time interval between an IP packet arrival at an assembly queue and the time the burst containing this packet is delivered to the optical channel. It was found that the burst queueing delay is about one magnitude smaller than the total delay, therefore the queueing delay is actually minor in comparison to the assembly delay, even at high system loads.

D. OBS Signaling

Within the framework of VD1, the EBRP protocol was developed. It is a two-way scheme, but, unlike typical Tell-and-Wait schemes, reserves resources only for a given duration.
where
k
 of a generalized reservation function
delayed reservations are “relaxed”, by the introduction
(delayed reservation) similarly to the one-way schemes. How-
h
filling (JET-VF) for bursts traversing through
Fig. 6. Burst loss probability of EBRP versus Just-Enough-Time with void
Fig. 5. TCP send rate as a function of the offered load per wavelength,
traversing through
enough-time protocol with void filling (JET-VF), for bursts
compares the performance of the EBRP scheme with the just-
against other typical one-way and two way schemes. Figure 6
vation function was found to equalize blocking for all bursts,
h
burst and
is the number of the remaining hops across the net-
h
data is the duration of the
T
data
m
and
n
are positive reals,
T
data
k
m
n
where
k
m
n
h
n
is the number of wavelengths per link as a parameter,
w/c = 64
(49x310)
E. OBS routing
In OBS networks, a shortest path approach is usually
 adopts, and the network state is not considered at all.
Therefore, it is proposed and analyzed a routing strategy that
includes load estimation. Specifically, the MRDV (Multipath
Routing with dynamic variance), originally designed for IP
networks, was proposed to be used in an OBS network. The
aim of the strategy is to balance the load of the network,
moving traffic from the most loaded links to the spare ones.
Hence, it is expected that the overall blocking probability
will be reduced. To decide the amount of traffic to be moved,
two metrics, load and blocking probability, were studied. It
was found that using a blocking probability policy leads to
an excessive aggressive behavior and has more difficulties to
reach to a stable state. Hence, the load policy shows a better
behavior.

IV. OPTICAL PACKET SWITCHING
Most of the activities on node design for OPS networks
were part of a different project workpackage. The activities on OPS
in VD1 are focused on the crucial issue of congestion resolu-
tion, that is more a matter of smart and efficient scheduling in
optics where queuing can not be implemented. Both the space
(deflection routing), the wavelength (wavelength conversion)
and the time (delay buffering) domains can be exploited to
reduce congestion and to manage QoS.

A. Congestion Resolution Preserving Packet Sequence
Congestion resolution in the wavelength and time domain
was addressed by analyzing the so called Wavelength and
Delay Selection (WDS) scheduling problem, i.e. using si-
multaneously both the time domain (with delay buffers) and
the wavelength domain (with load balancing on the output
wavelengths), assuming full wavelength conversion. A specific
joint activity had the aim to design scheduling algorithms that
can preserve the packet flows in an MPLS connection oriented
scenario. The scheduling algorithm still exploits the time and
the wavelength domain, but safeguard the time relationship
between packets belonging to the same flow.
The results provided show that the packet sequence can be
maintain at the price of a limited degradation of the packet
loss probability (PLP). For instance in
4 × 4
 switch with 16
wavelengths per fiber, where each input wavelength carries
3 different LSPs for a total of 192 incoming LSPs, a WDS
preserving the packet sequence results in a PLP of about
10
−4
while the best performing WDS algorithm results in a PLP of
about
10
−5
with 5% of out of sequence packets. This work
has placed the basis for a better understanding of the influence
of an OPS core on the performance of higher layer protocols
such as TCP.

B. QoS Differentiation by Wavelength Partitioning
Resource partitioning when applying the WDS scheduling
algorithm can be exploited to support QoS management. In
Figure 7 an example of application of partitioning of the access
to the wavelengths in a fiber is presented. The focus is on
QoS differentiation, in terms of packet loss probability, that
can be achieved over a wide range by changing the number
of wavelength reserved for HP traffic.
C. 1+1 Path Protection Combined with Shared Packet Redundancy

Reliability in OPS networks was analyzed in combination with performance in an OPS network employing 1+1 path protection and shared packet redundancy (SPR). In 1+1 path protection, packets are duplicated on two node and link disjoint paths, thus enabling protection against both node and link failure on either paths. With SPR, a number of redundancy packets are added to a set of data packets, which enables a possible reconstruction of data packets lost due to contention.

Several scenarios have been considered, in a simple case with two nodes and link disjoint paths between an ingress and egress node in the OPS network, depending on whether SPR is used or not, and whether one of the paths have failed or not. When SPR is used, redundancy packets are added to data packets for each path separately. Quantitative evaluation of these scenarios is currently ongoing.

V. EXPERIMENTAL TEST-BED

A high speed core network testbed was implemented in Rome by Fondazione U. Bordoni in cooperation with ISCOM. The goal of the test-bed is to investigate QoS management issue in a multiservice multi-access IP network where QoS is managed by means of DiffServ over MPLS. The tests reported here refer to the interworking between domain and layers (different accesses and core routers) with relevance to the correlation between objective (network) and subjective (perceptiveness) measurements, also with lambda switching approach. The network test bed is based on 3 core routers, one Ethernet traffic generator-analyzer and one multimedia server. The routers are connected to an optical ring-like structure, based on the fibers contained inside a deployed cable between Rome and Pomezia (25 Km). The PCs were connected to the Routers by means of UTP copper cables. The traffic generator-analyzer, with two GbE optical interfaces and eight FastEthernet interfaces, has been used to overload the optical link under test. To obtain a correlation between the perceived quality (from the Human point of view) and the measurement of the network performance, it is necessary to carry out a subjective assessment test, that in our case was implemented according to the ITU-R recommendation BT 500-11.

Movie test sequences were shown to the viewers, by using the three different DiffServ labeling, i.e.: Expedited Forwarding (EF), Assured Forwarding (AF) and Best Effort (BE). To simulate a condition of network overload the traffic generator-analyzer transmits 800 Mbps BE traffic, 80 Mbps of AF traffic, 32 Mbps of EF traffic. As an example of QoS tests we report the QoS perceptiveness values for a video test (tennis match 30 second long), after an averaged made on the 16 viewers, versus the corresponding network performance in terms of throughput. As shown by figure 8, EF always provided very good network performance and the corresponding perceptiveness was excellent. Conversely in the case of AF the network performance were worse, with a reduction of the throughput (and a small increase of the jitter not reported in the figure) and a consequent QoS degradation.

VI. CONCLUSION

In this document the main activities on optical core networks developed in the framework of the network of excellence e-Photon/ONe have been summarized. The amount of work and the variety of topics considered lead to the conclusion that research in this field is still very open and lively.

ACKNOWLEDGMENT

This work was funded by the Commission of the European Union, contract no. FP6-001933 e-Photon/ONe and FP6-IST-027497 e-Photon/ONe+. Thanks to all participants to Virtual Department 1.

REFERENCES