Pluviometric Regionalization of Catalunya: a Compositional Data Methodology

J. GIBERGANS-BAGUENA¹, M.I. ORTEGO¹ and R. TOLOSANA-DELGADO²

¹Matemática Aplicada III - Universitat Politècnica de Catalunya (UPC), Spain, jose.gibergans@upc.edu
²Laboratori d’Enginyeria Marítima - Universitat Politècnica de Catalunya (UPC), Spain

Abstract

The aim of this paper is to introduce a methodology for defining groups from regionalized compositional data, through a hierarchical clustering algorithm aware of both the spatial dependence and the compositional character of the data set. This method is used to define a regionalization of Catalunya (NE Spain) with respect to its precipitation patterns in the Winter season. This region is characterized by a highly contrasted topography, which plays a dominant role in the spatial distribution of precipitation. Each rain gauge station is characterized by the relative frequencies of occurrence of six intervals of daily precipitation amount (classes ranging from “no rain” for precipitation below 3 mm, to “heavy storm” above 50 mm). Recognizing that frequencies are compositional data, the spatial dependence of this data set has been characterized by variograms of the set of all pair-wise log-ratios, in the fashion of the variation matrix. Then, a Mahalanobis distance between stations has been defined using these variograms to ensure that gauges with high spatial correlation get smaller distances. This spatially-dependent distance criterion has been used in a Ward hierarchical cluster method to define the regions. Results reveal 5 quite homogeneous groups of stations, which can be mostly ascribed a physical meaning. Finally, possible links to regional circulation patterns are discussed.

1 Introduction

Many disciplines, like hydrology, climatology, forest management or agriculture, among others, use spatial information of the climatological variables as a basis for the knowledge of the processes they study. Precipitation is one of the main climatic variables used, which distribution is highly variable in time and space. The study of precipitation characteristics in a region is very important for water resources management, drainage of urban and agricultural lands, floods, etc. Thus, an accurate regionalization of precipitation patterns is useful for the optimum design and management of water related activities.

Objective regionalizations of different climatic variables (usually temperature and rainfall) and using different techniques (multivariate analysis, neural networks, etc.), have been performed for many regions of the world: for instance Bonell and Summer (1992), Bonell (1992), White and Richman (1991), Gong and Richman (1995), Fovell and Fovell (1993), Romero et al. (1999), Unal et al. (2003), to mention a few. For the case study of Catalunya, different regionalizations using rainfall as variable have been performed, for instance by Martín-Vide, (1995; Doswell et al., 1996; Romero et al., 1997; Rigo and Llasat, 2007).

In general, methods used in most of these regionalizations have only considered the values of variables at different times and places, but do not take into account their geographical situation, and therefore, explicitly the spatial variability of the phenomenon. In particular, for the reference data set, the precipitation regime of Catalunya is highly irregular. The reasons are the complexity of the general atmospheric circulation and the rich orography (Llasat and Puigcerver, 1992; Martin-Vide, 1995; Doswell et al., 1996; Romero et al., 1997; Rigo and Llasat, 2007). Beyond spatial variability issues, data may also suffer of other sources of inaccuracy, most commonly due to rounded data, censored values and missing data. Censored data is an important problem, as rain gauges typically fail under extreme precipitation conditions.

In order to overcome these problems, daily precipitation has been split in six intervals of daily precipitation intensity, and then frequencies have been computed for each of the intervals. Frequencies may be then considered compositions, and be suitably treated with the log-ratio approach. A Ward hierarchical cluster analysis of the dataset has been carried out, based on a Mahalanobis-Aitchison distance between individual stations. In order to take into account the spatial variability, a generalized Mahalanobis distance is defined using compositional variograms and cross-variograms. All calculations in this contributions have been carried out using the functions of the package compositions (van den Boogaart et al., 2010; van den Boogaart and Tolosana-Delgado, 2008) of R.
A detailed description of the used dataset is provided in section 2. Cluster analysis for pluvio-
metric regionalization is discussed in section 3. A methodology for compositional geostatistics is
briefly presented in section 4. Section 5 presents the regionalization obtained for the winter season.

2 Case study

Catalunya is located on the NE corner of the Iberian Peninsula (Fig. 1) and has an area of 35000
km². Its coastline runs along the NE–SW direction and its main orographic features are a complex
coastal mountain system (Serralada Litoral, Serralada Pre-Litoral and Serralada Transversal),
with some peaks exceeding 1000 m, and the Pyrenees, roughly lying along the E-W direction on
the northern border of Spain. The main rivers are the Ebro with its tributaries, and the so-
called inner basins (Llobregat, Besós, Fluvia, etc.) where most floods occur. The proximity to
the Mediterranean Sea in combination with its specific orography have a determinant role in the
pluviometric regime variability. The Pyrenees shelter the southern basins against Atlantic and
northerly advection, but at the same time their relief enhance the development of storms in the
temperate and hot months of the year affecting the northern face of the Pyrenees. The coastal chain
system enhance the pluviometric effects of Mediterranean cyclogenesis along the coast, forming for
moderate easterly advection a pluviometric screen between the coast and the rest of the country.
The Ebro basin pluviometric regime is strongly conditioned by the precipitation deficit due to these
mountain chains and the relative remoteness of the Atlantic Ocean.

The original dataset consists of daily precipitation amounts recorded at 46 rain gauges (Fig.
1, Table 1) from 1970 to 1990, provided by the Instituto Nacional de Meteorología (Spanish Met
Office).

Due to its inaccuracies, the presence of censored data and its many missing values, the original
precipitation data have been applied a series of thresholds to convert them into a categorical
variable. The selected thresholds appear naturally taking into account the characteristics of its
height is in meters above sea level.

3 Cluster analysis for spatially dependent data

In order to detect changes in the precipitation frequency distribution patterns, a cluster analysis will be performed. Cluster analysis (Everitt, 1993) is a multivariate technique used for grouping objects into homogeneous subgroups according to similarities. Euclidean and Mahalanobis distances are frequently used to measure the similarity between objects or individuals. Let \(x_n = (x_{n1}, x_{n2}, \ldots, x_{np}) \), \(n = 1, 2, \ldots, N \), be the vector of \(p \) characteristics observed for the \(n \)-th sample in a dataset with \(N \) individuals. The squared Euclidean distance is defined as

\[
d^2_{E}(n, m) = (x_n - x_m)' (x_n - x_m),
\]

where the prime indicates transpose vector. The Mahalanobis distance is defined as

\[
d^2_{M}(n, m) = (x_n - x_m)' C^{-1} (x_n - x_m),
\]

where \(C \) is the estimated covariance matrix defined as:

\[
C = \frac{1}{N} \sum_{i=1}^{N} (x_n - \bar{x})' (x_n - \bar{x}),
\]

and \(\bar{x} \) is the estimated vector of means. Unlike the Euclidean distance, the Mahalanobis distance takes into account any possible dependence between variables. However, this distance ignores the
spatial structure, which may affect the relationship between samples. The Mahalanobis distance (Eq. 1) can be then generalized replacing the covariance matrix, C by any positive definite matrix. In particular, one can choose a suitable matrix that takes into account spatial dependence, following Pawlowsky-Glahn et al. (1997); Jiménez-González et al. (1998).

Geostatistical techniques model spatial data as the realizations of random functions (Matheron, 1965; Olea, 1999; Pawlowsky-Glahn and Olea, 2004). Important tools for measuring the spatial dependence among samples are the (semi)variogram and cross-(semi)variogram. Let $S = x(s_1), x(s_2), \ldots, x(s_N)$ be a regionalized data set of size N, where s_i are the spatial coordinates of the i-th sample, and $x(s_i) := x_i$ is a column vector of p observations at that location. Assuming some sort of stationarity of the considered variables, the (semi)variogram of the i-th variable is defined as

$$\gamma_i(h) = \frac{1}{2} E [(x_i(s) - x_i(s + h))^2].$$

Alternatively, the auto-covariance function of variable i may be defined as

$$C_i(h) = Cov [x_i(s), x_i(s + h)].$$

These two functions are symmetric on h and satisfy that $\gamma_i(h) = C_i(0) - C_i(h)$. The definition of variogram can be extended to the bivariate case. The cross-variogram reflects the covariance of the increments of two variables between two locations placed a vector h apart,

$$\gamma_{ij}(h) = Cov [x_i(z) - x_i(z + h), x_j(z) - x_j(z + h)].$$

Cross-covariances are also easy to define as functions $C_{ij}(h)$ giving the covariance between $x_i(z)$ and $x_j(z + h)$. Note that in general $C_{ij}(h) \neq C_{ji}(h)$; instead, it is always true that $C_{ij}(h) = C_{ji}(-h)$. Moreover

$$2\Gamma(h) = 2C(0) - (C(h) + C'(h))$$

where $\Gamma(h)$ (and $C(h)$) is a matrix-valued function with variograms (autocovariances) in the main diagonal and cross-variograms (cross-covariances) in the off-diagonal elements. For $h \neq 0$, $C(h)$ describes the spatial dependence among the considered variables, whereas at $h = 0$ it reflects the classical covariance between them. Under second-order stationarity hypothesis, it is verified that $\lim_{h \to \infty} \Gamma(h) = C(0)$ and $\lim_{h \to \infty} C(h) = 0$.

From Jiménez-González et al. (1998), the following generalization of the Mahalanobis distance for data with spatial dependence is defined:

$$d(n, m) = (x(z_n) - x(z_m))^t [2C(0) - \Gamma(h)]^{-1} (x(z_n) - x(z_m)).$$

This distance has the effect of reducing the Mahalanobis distance for spatially dependent samples. This can be seen by considering two extreme cases:

![Daily rainfall histogram](image-url)
taking \(h \) “large enough”, samples may be thought to be spatially independent; the metric matrix becomes then \([2C(0) - \Gamma(h)]^{-1} \rightarrow C(0)^{-1} \) and the proposed Mahalanobis distance converges to the classical one;

- taking \(h = 0 \), the variogram \(\Gamma(0) = 0 \) and the metric matrix is then \([2C(0)]^{-1} = 1/2C(0)^{-1} \), and the resulting Mahalanobis distance is half of the classical one.

The cluster technique used in this work is Ward’s method (Ward, 1963). This method produces a hierarchical clustering, i.e. initially each object is assumed to form a separate group, and then objects or groups close to one another are successively merged. Hierarchical methods usually produce a graphical output known as a dendrogram that shows this hierarchy and indicates at which level of similarity any two clusters were merged. The choice of a suitable number of clusters is a subjective task.

4 Variograms for compositional data

Spatial dependence has been already introduced into the cluster methodology through the introduction of spatial dependence in the Mahalanobis distance (Eq. 2). In order to introduce the compositional characteristics of our input data, the Mahalanobis distance is computed using the ilr coordinates of the vectors of frequencies \(z(s_n) = z_n = (z_{n1}, z_{n2}, \ldots, z_{nD}), \) i.e. by means of a matrix of contrasts \(V \),

\[
x_n = V^t \cdot \log(z_n) = \text{ilr}(z_n).
\]

As usual, \(V \) columns sum up to zero (hence they are contrast) and these columns form a system of \(D - 1 \) orthonormal vectors, thus \(V^t \cdot V = I \) and \(z_n = C \exp(V \cdot x_n) = \text{ilr}^{-1}(x_n) \).

Pawlowsky-Glahn and Olea (2004) present different specifications of the covariance/variogram structure of a regionalized composition. We nevertheless follow Tolosana-Delgado et al. (2011) idea of using the intrinsic variation matrix (also known as ilr-variograms or variation-variograms, \(\Psi = (\psi_{ij}) \)), a generalization of the concept of variation matrix. The variation-variograms are defined as the matrix of direct variograms of all pairwise log-ratios of any two variables \((i,j)\), and can be estimated from a regionalized compositional data set by

\[
\tilde{\gamma}_{ij}(h) = \frac{1}{2N(h)} \sum_{n,m \in N(h)} \left(\log \frac{z_{ni}}{z_{mj}} - \log \frac{z_{ni}}{z_{mj}} \right)^2.
\]

This matrix contains the same information as ilr variograms, but to estimate them we only use two parts at a time. This reduces the influence of a bad frequency estimation of all parts, a sensible issue given the small number of large precipitation storms observed. The fitting of the variogram model may be performed using variation-variograms with respect to a relative scale, so that the behavior at the origin is better captured. That implies choosing a parametric correlogram model \(\rho(h, \theta) \) depending on a parameter \(\theta \), and optimizing a logarithmic measure of discrepancy between the empirical variograms \(\tilde{\Psi}(h) \) and the model

\[
\Psi(h|\theta, A, B) = A \delta(h \neq 0) + B (1 - \rho(h, \theta))
\]

under the restriction that both matrices \(A \) (nugget effect) and \(B \) (variogram sill) are negative semi-definite. According to (Tolosana-Delgado et al., 2011), this is necessary in order to ensure that the model \(\Psi(h|\theta, \ldots) \) is compatible with a covariance function model for the ilr-transformed compositions. This ilr-model can be obtained simply as

\[
C(h|\theta, \ldots) = -\frac{1}{2} V \cdot A \cdot V^t \delta(h \neq 0) + V \cdot B \cdot V^t (1 - \rho(h, \theta))
\]

This will be the model used to compute spatially-dependent Mahalanobis distances with Eq. (2).

5 Results

The winter season (December-January-February) is used for illustration. After summer, winter is the season with the lowest precipitation, though these are very important in the water cycle, providing a valuable storage for dry periods of spring and summer. Catalunya climate is characterized by the high irregularity of precipitation, in both spatial and temporal scale. In particular, winter is the most irregular season of the year (Martín-Vide and López-Bustins, 2006).
To characterize the compositional variography, all pair-wise log-ratio variograms have been estimated with standard methods. These have been then fitted an exponential variogram model, forcing the corresponding sill matrix to be negative semi-definite (as necessary). This was automatically done using geostatistical functionalities of the package “compositions”. Results of the estimation and fitting can be seen in Fig. 3.

Then, a hierarchical clustering has been performed following section 3. We can see in Fig. 4 the stations cluster into five groups. The geographical representation of this clustering is shown in Fig. 5, where colors indicate different groups:

- **green**: stations on W Catalunya. The southward retreat of the subtropical high pressure zones facilitates the arrival to Catalunya of unstable Atlantic air masses that cause these precipitations. However, having crossed the whole Iberian Peninsula and its mountain ranges, they arrive too weak and produce light precipitation.

- **orange**: Winter, after summer, is the season with less amount of rain in the coastal zone. This low precipitation is mainly due to the presence of a low pressure area on the Iberian Peninsula which favors circulation from the E over the Catalan coast. Since during this season the sea temperature is not high, there is no important contribution of water vapor and, consequently, there are no heavy rainfalls from convective origin (as happens in autumn).

- **blue**: stations placed in the central basins, these are affected by situations of E and mostly SW winds, where the mass of air is channelled through the valley of the Llobregat river. Precipitation occurs due to the rise of these air masses over the mountains of the Serralada Pre-litoral.

- **magenta**: similar to the previous case, but now the stations are located at the NE basins of Catalunya. These basins are affected by E storms. Air masses enter through the valleys
Figure 4: Winter Dendogram

Figure 5: Winter regionalization
of rivers like Ter and Fluvià, producing rainfall by ascension of the water masses over the mountains of the Serralada Transversal.

- cyan: Corresponds to the stations located in the north face of the Pyrenees. These are open to the NW and rather sheltered from S and SW, facilitating the passage of frontal systems and low pressure areas from the Atlantic ocean that follow the general West-East circulation of these latitudes. This causes an Atlantic climate in contrast to the typical Mediterranean climate of Catalunya.

Acknowledgements

This research has been partially funded by the Spanish Ministry of Education and Science under project ‘CODA-RSS’ Ref. MTM2009-13272; and by the Agència de Gestió d’Ajuts Universitaris i de Recerca of the Generalitat de Catalunya under the project Ref: 2009SGR424. The third author acknowledges also funding within the "Juan de la Cierva" program of the Spanish Ministry of Education and Science (ref. JCI-2008-1835).

References

