
1

Dealing with Non-Functional Requirements in Model-Driven Development

David Ameller, Xavier Franch
Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain
{dameller, franch}@essi.upc.edu

Jordi Cabot
INRIA-École des Mines de Nantes

Nantes, France
jordi.cabot@inria.fr

Abstract— The impact of non-functional requirements (NFRs)

over software systems has been widely documented.

Consequently, cost-effective software production method shall

provide means to integrate this type of requirements into the

development process. In this vision paper we analyze this

assumption over a particular type of software production

paradigm: model-driven development (MDD). We report first

the current state of MDD approaches with respect to NFRs and

remark that, in general, NFRs are not addressed in MDD

methods and processes, and we discuss the effects of this

situation. Next, we outline a general framework that integrates

NFRs into the core of the MDD process and provide a detailed

comparison among all the MDD approaches considered. Last,

we identify some research issues related to this framework.

Keywords-non-functional requirements; model-driven development.

I. INTRODUCTION

Non-functional requirements (NFRs) are one of the main
targets of research in the Requirements Engineering
community [1] and their impact on practice has been
documented in seminal papers [2], individual case studies [3]
and types of industrial projects [4]. Given this reported
impact of NFRs, we may say that any reliable and efficient
software production process shall adequately handle them.

A software production paradigm that is gaining
acceptance in the last years is Model-Driven Development
(MDD) [5]. According to [6], “Model-driven development is
simply the notion that we can construct a model of a system
that we can then transform into the real thing”. In other
words, MDD uses models as the primary artifact of the
software production process, and development steps consist
of the (semi-)automated application of transformation steps
over these models. Due to its promised benefits, MDD is
being one of the main issues of communities and research
groups like OMG, and is also mentioned as a driver in parti-
cular types of systems (e.g., [7] for self-adaptive systems).

According to the statement above, we may wonder
whether current MDD approaches integrate NFRs in the
production process. We will show in the paper that most
current MDD approaches only focus on system functional
requirements when generating system models, not
integrating NFRs into the MDD process. Disregarding NFRs
will usually provoke that the generated system does not
completely satisfy some (if not all) of the stakeholders’
expectations represented by NFRs. We believe that this is a
strong argument against current MDD approaches that limit
their success and applicability, and hampers their adoption
by the industry.

In this vision paper, we are interested in identifying the
challenges to overcome in order to effectively integrate
NFRs into the MDD production process. To do so, we first
provide more details about the current state of the art of
MDD with respect to NFRs, understanding the limitations of
the MDD methods that are not able to deal with NFRs, and
analysing the approaches that apply some kind of treatment
to NFRs. Next, we visualize a MDD general framework that
smoothly integrates NFRs into the MDD process and discuss
some variations. Last, we formulate some challenges and
research lines stemming from this framework. To exemplify
and motivate our findings, we use an academic exemplar
about the development of a web portal for a travel agency.

II. BACKGROUND: MODEL-DRIVEN DEVELOPMENT

MDD is a development paradigm where models (and
their transformation) play a fundamental role [5][6]. In
MDD, models are used to specify, simulate, verify, test and
generate the system to be built.

The most popular MDD method is the Model Driven
Architecture approach, an OMG standard [8], that has been
used as the basis for many other later MDD methods.

MDA distinguishes several types of models. Platform
Independent Models (PIM) specify the software system in an
independent way from the technology platform chosen to
implement it. Platform Specific Models (PSM) refine the
PIM to specificities of the implementation platform. That is,
two different implementations of the same system would
share the same PIM but have two different PSMs, each one
adapted to the technological capabilities of each platform. A
third type of model, Computation Independent Models (CIM,
a kind of business model), exists, but in this paper, we will
focus on the transformation from PIM to PSM.

Model-to-Model (M2M) transformations evolve a PIM
into a PSM. Last, Model-to-Text (M2T) transformations are
used to generate the executable system from the PSM. This
step includes generating several code artifacts glued
together: Java business classes, Oracle DB schemas, etc.

Fig. 1 summarizes the models and transformations
considered in this paper.

Figure 1. The MDA approach: models and transformations

2

III. MOTIVATION: THE TRAVEL AGENCY WEB PORTAL CASE
In this section we present an academic exemplar that we

will use in the rest of the paper for illustration purposes.
The ACME travel agency offers transportation and

accommodation services. The management has decided to
deploy a web portal in order to offer some online
functionalities to its customers, e.g: user management,
payment facilities and searches (hotels, flights, etc.).

Together with these functionalities, many NFRs appear
during the requirements elicitation process. E.g. since the
portal is providing e-commerce transactions, security requi-
rements like R1 = “The system shall detect and report un-
authorised data accesses” are a must. The effect of this NFR
can be manifold, for instance in a Web-based environment,
firewalls are an architectural solution that supports this goal.

Other NFRs depend on the specific characteristics of the
travel agency and the planned portal usage. For illustration
purposes, let’s consider two scenarios:

• Scenario 1. ACME is a specialized travel agency
that offers luxury vacation packages to exotic desti-
nations in 5-star hotels. It has a reduced portfolio of
clients that plan their vacations using the system.

• Scenario 2. ACME is a world-wide leader travel
agency. The company offers hundreds of packages
that are assembled by combining data imported from
other transportation and accommodation sites.

These scenarios impose some particular NFRs that
capture their most essential characteristics. Thus, in Scenario
1, the number of expected visits is not too high and therefore
scalability is not an issue. On the contrary, scalability and
availability are key concerns to ensure the success of the por-
tal in Scenario 2. Clearly, a good production process should
be sensible to these differences and should result in different
systems for each scenario. To make this statement more
evident, let’s consider one particular system dimension, the
deployment architectural view as defined by Krutchen [9].

The deployment architectural view refers to the physical
distribution of the software system components. Since the
system we are considering as exemplar is a Web application,
we may identify the following types of components [10]: the
Web Server (WS), the Application Server (AS) and the Data
Base Management System (DBMS). All these components
can be deployed on the same node (Single Server Confi-
guration, SSC), or using one of the several possible separa-
tions of components (e.g., separation of the DBMS). Also in
the design of the deployment architecture it is possible to
consider any type of component replication. Each deploy-
ment strategy affects some software quality attributes [11].
For instance, component replication (e.g. WS and AS)
supports scalability, because more simultaneous connections
may be established; replication also may improve efficiency
especially if a load balancing component coordinates the in-
coming traffic. Table I sums up the effect of these strategies
on some common architectural properties, according to [10].

At this point, the software architect has the duty of
choosing the most adequate deployment strategy for the
given set of NFRs, by comparing them with the effect of
each strategy on the quality attributes. For the two scenarios
described above, examples of convenient options are:

TABLE I. EFFECT OF COMPONENTS’ DEPLOYMENT ON SOME
ARCHITECTURAL PROPERTIES

SSC

DBMS

separated

DBMS & AS

separated
Replication

Performance Poor Average Good Improve

Scalability Poor Poor Poor Improve

Availability Poor Poor Poor Improve

Maintenance Good Average Average Damage

Security Poor Good Good Neutral

Complexity Good Average Poor Damage

• For Scenario 1, the DBMS is kept separated from the

WS and AS since scalability and availability are not
major concerns, whilst security is increased by
placing a firewall between the DBMS and the other
two components (see Fig. 2, a). Replication is not
implemented since its benefits are again concerning
criteria that are not important for the given NFRs,
whilst others would be damaged.

• For Scenario 2, since the agency provides a world-
wide service, the WS and AS are replicated to
improve availability and performance in those sites
for which a greater number of clients may be
expected. A load balancing system coordinates the
different WS to improve performance even more.
DBMS containing data local to the sites are put
together with the WS and AS, and firewalls are also
deployed for protecting each local DBMS. As a final
decision, a centralized DBMS contains some
replicated data that may be of interest for performing
some data mining operations. Fig. 2, (b), provides
the whole picture.

Other deployment options are possible. It is not a goal of
this section to discuss them, but just to emphasise the fact
that the final form of the software architecture depends on
the set of elicited NFRs and to give some initial idea of the
type of knowledge to manage and decisions to be made.

Figure 2. Two different deployment architectures for the Web portal case.

3

IV. NON-FUNCTIONAL REQUIREMENTS IN MODEL-
DRIVEN DEVELOPMENT: STATE OF THE ART

In the previous section, we have shown that NFRs have
an important effect in the final form that the software system
takes. If we consider MDD, we may say that an optimal
MDD production process should be able to deal with the set
of elicited NFRs and use them to select and apply the most
adequate transformations, in order to generate a software
system that satisfies the desired NFRs. In this section we
investigate to what extent this need is currently fulfilled.

We distinguish MDD aproaches that do not consider
NFRs as part of the transformations, from those that do.

A. MDD Approaches not supporting NFRs
We may find a great variety of MDD-based approaches

in the literature, many of them following the two-level (PIM
and PSM) classification introduced in the OMG’s MDA
approach [8]. Among the most popular ones, we find the
Executable UML proposals, with [12] as the most popular
representative. Executable UML methods use a reduced
subset of UML that it is directly executable, either using
UML interpreters or by providing a direct translation from
the models to the final code.

Using such Executable UML methods, the travel agency
model consists of use case diagrams, class diagrams,
sequence diagrams and activity diagrams that express the
roles, functionalities, data and behaviour of the system. None
of these artifacts is able to express any kind of NFR. Thus,
the transformation from PIM to PSM is fixed and it is not
possible to choose the most appropriate strategy for a given
set of NFRs: the PSM will be close to, or far from, the elicit-
ted NFRs depending on the system quality factors implicitly
encoded in the predefined transformations. Some action is
required in order to make the MDD approach effective.

We believe that this a critical situation, even more
considering that this Executable UML method [12] is the
basis for the upcoming OMG standard “Semantics of a
Foundational Subset for Executable UML Models” that
pretends to increase the use of UML in a MDD context.

If we consider the general form of MDD (see Fig. 1), we
may envisage two different, non-exclusive approaches to
make a generated product compliant with the stated NFRs:
1. The software developer directly modifies by hand the

result of the MDD process (see Fig. 3, left). In its
simplest form, she directly modifies the code obtained
after the final M2T transformation. In the best case, she
will able to work at the PSM level, modifying the model
to adapt it to the NFRs, and then use the M2T trans-
formation (possibly modified somehow) to generate the
code. This manual adaptation of the system collides with
the essence of the MDD paradigm and has several
drawbacks:
o Takes longer to produce the software.
o Provokes lower reliability of the final product due

to the human-based post-process.
o Damages traceability and thus comprehension.
o In case of changes due to maintenance, either the

post-process has to be replicated or the maintenance
is directly made on the final product.

Figure 3. Dealing with NFRs in a classical MDD approach

2. The MDD engineer modifies the M2M transformation in
order to obtain a PSM that satisfies the NFRs (see Fig. 3,
right). In our example above, we could have three
transformations for producing PSM compliant to the
SSC, DBMS separated, and DBMS and AS separated,
strategies. The drawbacks above are therefore solved, but
others appear in their place:
o The complexity of the MDD framework is greater,

because there are more transformations to maintain.
o It is difficult to anticipate all the possible scenarios,

in fact it may be even impossible (e.g., in Table I,
replication may be applied in many different ways,
and each would require a different transformation).

o The selection of the most appropriate transforma-
tion (for the given set of NFRs) to apply relies on
the software architect, becoming a human-based
pre-process, incrementing thus the likelihood of
errors in decision-making.

o When the software architect realizes that the
available transformations are not adequate for the
current process it is necessary to build a new ad-hoc
one, making the initial configuration time longer.

The two approaches presented above represent two
extreme cases. Hybrid solutions may also exist, where some
NFRs are addressed by the M2M transformation and others
remain under the final responsibility of the developer.

To sum up, we may state that MDD approaches that are
not able to deal with NFRs in the software production
process suffer from severe drawbacks that must be manually
fixed by either the developer or the MDD engineer and that,
therefore, may compromise their adoption.

The situation is even worse when considering not the
theory but the real state of practice of MDD, hampered by
the limitations of MDD tools available in the market. For
instance, their code-generation capabilities are limited to
particular technologies/languages (which implies that usually
only some parts of the system can be transformed and
generated by the tool) and it is not always possible to change
the predefined M2M and M2T transformations offered by
the tool. Therefore, a scenario more realistic than those
depicted in Fig. 3 is described below (see Fig. 4):

• The MDD engineer specifies a PIM that contains
only information about system functional aspects.

• The software architect defines (or chooses from the
modeling tool she is using) a set of transformations
that are applied to different parts of the PIM,
generating each an unrelated part of the target PSM.
Each generated PSM part is compliant with a
particular technology.

4

Figure 4. Dealing with NFRs using current MDD technologies

• M2T transformations are applied to the PSM for
obtaining the final code.

• The developer complements the generated code and
combines the generated code-excerpts into a
coherent architecture.

This process is adding some new drawbacks:
• There is not a single transformation generating a

complete PSM, but a set of partial transformations
generating separated pieces that may yield an
incomplete PSM. Even, some tools skip the
generation of the PSM and jump directly to the code.

• The different pieces generated by the
transformations need to be manually linked, writing
additional glue code.

• With respect to NFRs, each transformation results on
PSM parts that may not satisfy the stated NFRs (in
fact, depending on the available transformations
each excerpt can enforce different and maybe
contradictory NFRs).

B. MDD approaches that deal with NFRs
To know about the approaches that currently deal with

NFRs in the MDD process, we have set up a Systematic
Literature Review [13] that we briefly describe belos.
Concretely, we have search in the Web of Science (WoS) by
topic (title+abstract+keywords) using as search string:

("model driven" or "model-driven" or "MDD" or "MDA"
or "MDE") and ("non functional" or "nonfunctional" or
"non-functional" or "quality" or "NFR") and
("requirements" or "aspects" or "properties")

From that search we obtained 228 results, reduced to 36
after reading the title and the source of each publication
(remarkably conference name), then reduced to 15 when
reading the abstracts, and finally, to 11 representative papers
after reading the full text. To complement the results from
WoS we have also analyzed 26 additional papers that are
cited by this 11 and didn’t appear in the WoS-based search,
and from this analysis 2 more papers were selected.

All the analyzed approaches focus on a particular MDD
activity and/or type of NFR. Concerning analysis, they either
focus on the modeling of the NFRs, on their use as part of a
model transformation or on their analysis. Concerning types
of NFR, most approaches are centered in only one or two
NFRs and/or for a specific domain (see Table IITABLE II.).
In what follows we provide some additional details.

1) Modeling NFRs. Several authors propose to model
NFRs using UML extensions [14][15][16], including the
OMG standard UML profiles MARTE [17] and QoS-Profile
[18]. Others designed a specific metamodel to represent
NFRs [19][20][21].

TABLE II. APPROACHES THAT DEAL WITH NFRS IN MDD
ACCORDING TO OUR SYSTEMATIC LITERATURE REVIEW

Ref. Type of NFR addressed Domain Instrument

Modeling NFRs

[14] Operationalizable NFRs Independent NFR Framework +
UML annotations

[15] Security, Fault Tolerance SOA UML Profile
[16] Any Independent UML Profile
[19] Performance SOA Own metamodel
[20] Resource Usage Embedded systems Own metamodel
[21] Usability Web IS Own metamodel

Model Transformation
[22] Quality of Service (QoS) Independent Patterns
[23] Any Independent Patterns

Model Analysis
[24] Quality of Service (QoS) Independent Measurable models
[25] Performance, Reliability Independent Markov models
[26] Performance, Reliability SOA Probabilistic models
[27] Reliability Independent LTSA*
[28] Any Independent Not specified

* Labelled Transition Systems Analyser

2) Model transformation. Given a set of NFRs, [22]
proposes a set of patterns that satisfy QoS requirements. In
[23], the proposed patterns consider architectural aspects.

3) Model analysis. Following the ideas proposed in [24],
these proposals analyze the satisfaction of a given NFR in a
particular software design by transforming this design into a
specific formalism (different for each NFR) in which the
analysis can take place. Examples are [25][19][26][27]. In
these approaches each kind of NFR may be seen as a whole
dimension of the software. [28][25] propose analyzing each
NFR type separately and also to use different abstraction
levels for NFRs (at CIM, PIM and PSM levels).

As a conclusion, we may say that although several
valuable approaches have been proposed that deal with
NFRs in the MDD process, none of them propose an
integrated view, which is the goal of this vision paper.

V. NON-FUNCTIONAL REQUIREMENTS AS PART OF THE

MODEL-DRIVEN DEVELOPMENT PROCESS

In the previous section we have shown that MDD
approaches that do not consider NFRs as part of the genera-
tion process suffer from serious drawbacks, and that, unfor-
tunately, this is the predominant type of approach nowadays.
In this section we discuss a general solution to this problem.

A. Basic concepts for dealing with NFRs in MDD
Many authors have reported the intimate relationship

among requirements and architectures and also the great
impact that NFR have on architectures [29][30][31]. For
example, in the analysis of Section IV, we have shown how
new components (e.g., firewalls and load balancers) and
physical component allocation (e.g., replication) can be
justified in terms of the NFRs that must be satisfied.
Therefore, we envisage an approach to MDD in which the
PIM is transformed into a complete software architecture.
Transformations have the mission of allocating the
responsibilities coming from the PIM functional part to
components that are deployed into an architecture that
satisfies the NFRs.

5

But NFRs are also important when determining the
choice of technologies needed to implement the architecture.
For instance, it may be necessary not just to know that a
relational data base is needed, but also that a particular
brand, or even version and release, is the right choice.
Interoperability requirements (e.g., “The portal shall be
compatible with our current data base in the central
management system”) or non-technical requirements [32]
(e.g., “The data base vendor shall provide 24×7 call center
assistance”) are clear examples of NFRs with this effect.

Table III describes the main elements that constitute our
envisioned framework proposal. Remarkably, and following
the discussion above, we introduce two kinds of models
between the PIM and the code: the model representing the
architecture, and the model representing the technological
solution. Whilst the latter is clearly a PSM, the former lays in
between the two levels of abstraction and therefore we
denote it by PIM/PSM. For each kind of model, we include
between parentheses the requirements that are satisfied by
the elements in that model,. Finally, as a consequence of
having two different intermediate models among the PIM
and the code, we have two corresponding M2M
transformations, M2March and M2Mtech.

B. An NFR-aware MDD process: Integrating NFRs into
the PIM

We believe that the most natural way to integrate NFRs
into the MDD process is by considering NFRs from the very
beginning of the development process, i.e. as part of the
PIM. As functional requirements, NFRs become first-order
citizens of the MDD process.

The MDD process then works as follows:
• The analyst specifies a PIM that contains both the

functional and non-functional requirements,
PIM(f+nf).

• The MDD decisional engine decides, given the
PIM(f+nf) and the contains of the MDD knowledge
base (i.e., information about non-functionality,
architectures and technologies), the final form of the
transformation M2March:

M2March: PIM(f+nf) → PIM/PSM(f+nf0)

This transformation takes PIM(f+nf) as input and
produces PIM/PSM(f+nf0), a model describing an
architecture that implements all the functionality f in
a way that satisfies the elicited subset of NFRs nf0
whose satisfaction depends on the decisions made at
the architectural level.

• Once the PIM/PSM(f+nf0) has been generated, the
MDD decisional engine applies a second M2M
transformation that generates the PSM for the
desired final implementation technology. This PSM
follows the architectural guidelines expressed above
(and thus, satisfies nf0) but also takes into account all
the remaining nf (directly related to technologies, as
those mentioned in V.A), forcing the adoption of a
particular technology or product:

M2Mtech: PIM/PSM(f+nf0) → PSM(f+nf)

• Last, a simple M2T transformation can be applied to
obtain the code from the technology:

M2T: PSM(f+nf) → Code(f+nf)

In the framework, the transformations are presented as
single functions. In fact, this is a simplified view since a
transformation will be in fact a composition of the appli-
cation of many transformation rules. Thus, we may say that:

TABLE III. CONCEPTS NEEDED WHEN INTEGRATING NFRS INTO THE MDD PROCESS

Concept Definition Example

f, nf
The elicited functionality and non-functionality
of the system (not represented as model)

An IEEE 830-compliant Software Requirements Document

PIM(f)
PIM that specifies some functionality f of the
system

A UML class diagram specifying the system data

PIM(f+nf)
PIM that specifies all the requirements of the
system

An i* model of the system complemented with UML data and
behavioural diagrams

PIM/PSM(f+nf)
Model mixing PIM and PSM levels that specifies
some functionality f satisfying the NFRs nf

A 3-layer architecture expressed with the ACME Architectural
Description Language (ADL)

PSM(f+nf)
PSM that specifies some functionality f satisfying
the NFRs nf

A model with a class diagram annotated with database stereotypes (e.g.
<<PK>>, <<Table>>) that only have meaning for the Oracle DBMS

Code(f+nf)
Executable system that implements the
functionality f satisfying the NFRs nf

Implementation of the 3-layer architecture above using Java
components, XML interchange data formats, Oracle DB schema, etc.

M2M M2M transformation from a PIM to a PSM
Transformation of a UML specification into a technological solution
including an Oracle data base and a Pound load balancer, among others

M2March
M2M transformation from a PIM to a PIM/PSM
that represents the architecture of the system

A mapping from an Executable UML model of functionality into a 3-
layer architecture expressed with the ACME ADL

M2Mtech
M2M transformation from a PIM/PSM into a
PSM that represents the technological solution of
the system

Transformation of the ACME architectural model into a representation
of technology that, for instance, annotates a class diagram with Oracle-
compliant database stereotypes

M2T
M2T transformation from a PSM to the
executable system

Transformation of a stereotyped UML diagram to EJB Java classes

6

M2M(m) = rkm2m(…(r1m2m(m)...)

being M2M either M2March or M2Mtech. From a conceptual
point of view, the vision of the transformation as a single
function is a convenient simplification that does not hamper
the generality of the approach.

C. Example: deciding the need of firewall components
In this example we illustrate the kind of information to

record, and steps to apply, in order to derive part of the
architectural model for the Web portal example presented in
Section III. We remark that the notations used to represent
the models, and even the concrete steps taken and their order
are just an example of how they may look like, we refer to
Section VI for further discussion.

We distinguish three parts: the knowledge base used by
the MDD decisional engine; the creation of the starting PIM;
and the application of our MDD process itself. For the latest,
we will restrict to the creation of the PIM/PSM.
1) Representing the MDD knowledge. We focus on the

concepts directly related to NFRs. First, it is necessary to
represent the types of NFRs managed and the consequences
that architectural decisions may have on them. We can
represent this using a tabular structure (like Table I) or by
means of a notation like the NFR framework [30], used with
similar purposes in several works (e.g., [33][34]). The
model depicted in Fig. 5, top, shows an excerpt of the
information needed, with several softgoals to represent the
NFRs and two particular operationalizations for them (each
with a different positive/negative effect on them).

Next, it is necessary to represent the implications of each
operationalization on the architecture. This is described for
the firewall case in the lower part of Fig. 5. The firewall
solution requires three participants: the firewall component
itself, and two subsystems that are connected, the internal
(i.e., protected) and the external ones. These elements are in
fact instances of architectural metaelements, e.g. subsystem,
defined according to some architectural ontology like those
in [9][35].

Figure 5. Knowledge representation in the MDD Knowledge Base

2) Creating the PIM(f+nf). The process starts with the
PIM definition. For the functional part we can still follow
any existing proposal, e.g. Executable UML. For the NFRs,
we may decide to use a natural language representation
based on requirement patterns as in [36]. which allows to
establish easily the link between such NFRs and the predefi-
ned NFRs types in the MDD knowledge base (KB). For ins-
tance, Fig. 6 represents the R1 NFR (see Section 3) and the
link with the Security NFR type maintained in the KB.
3) Creating the PIM/PSM. The following actions are

taken to process R1:
• The MDD decisional engine chooses, using some

appropriate analysis technique (e.g., [30][37]), the
Firewall operationalization to support R1.

• As a consequence of the system being a Web
application (which is a decision coming from the
intrinsic nature of a Web portal), a transformational
step decomposes the system into three main
subsystems: WS, AS and DBMS. The MDD
Knowledge Base knows that the communication
between these subsystems is: WS ↔ AS ↔ DBMS.

• The assignment of elements from the functional part
of PIM(f+nf) into WS, AS and DBMS, takes place.
In particular, the data model elements are assigned
into DBMS.

• Since R1 is referring to data protection, and since
DBMS is bound to data, the MDD decisional engine
decides that the protected subsystem for the firewall
is the DBMS. Since the communication for Web
application is from AS to DBMS, it is also possible
to deduce that the “source” of the Firewall is the AS.

• In Scenario 1, since there is no replication, there are
just one AS and one DBMS, and thus just one
Firewall is induced (see Fig. 6). In Scenario 2, due to
replication, there are as many Firewalls as pairs AS-
DBMS. The fact that the WS and the AS are
deployed together completes the information needed
to determine the final form of the architecture.

Figure 6. Architectural consequences of R1 in the NFR-aware MDD process

D. An NFR-aware MDD process: Using NFRs for
decision-making

Although the framework presented above is theoretically
neat, it is clear that it has a lot of complexity to manage.
Remarkable, it requires:

7

• To determine the most adequate formalism for
representing the non-functional part of PIM(f+nf).
We have used in the example the NFR framework,
that is basically a qualitative-oriented one, but also
more quantitative approaches may be considered,
e.g. in QoS-style [38].

• To embody in the MDD decisional engine all the
knowledge needed to make informed architectural
decisions, i.e. to determine the concrete form that the
M2M functions take. In other words, the M2M are
required to provide a correct output in all possible
situations. This is a very strong condition mainly
because of: 1) the amount of knowledge to represent
is huge and not always clear; 2) the conflicting
nature of NFRs: architectural decisions permanently
require trade-off analysis.

These problems lead to propose a second alternative
specially interesting until clearly accepted technical solutions
for the previous points are provided. Instead of considering
NFRs as part of the PIM and then be an input of the MDD
process, we may consider that the MDD process asks the
software architect the NFR-related information as it is
needed. The resulting process becomes:

• The analyst specifies a PIM that contains just the
functional requirements, PIM(f).

• The transformation function M2March takes PIM(f) as
input and produces PIM/PSM(f+nf0) (nf0 stands
again for those NFRs that concern the architecture).
To produce this output, the MDD process presents a
series of questions Q = {q1, ..., qn} to the software
architect whose answer is needed in order to decide
the transformation steps to apply. The software
architect provides answers A = {a1, ..., an} according
to the NFRs nf0. If we denote by σarch the function
that records the mapping from questions to answers,
σarch(qi)=ai, the transformation function is defined as:

M2March: PIM(f) × σarch → PIM/PSM (f+nf0)

• The subsequent M2M transformation for the
technology acts the same, requiring a similar σtech
function to obtain from the MDD engineer the
information needed to make informed decisions:

M2Mtech: PIM/PSM (f+nf0) × σtech → PSM (f+nf)

• The M2T transformation is not affected:

M2T: PSM(f+nf) → Code(f+nf)

Questions that the MDD decisional engine may raise to
the architect may be manifold. For instance, there may be
high-level questions like the type of organization with
respect to departments (e.g., to decide which nodes are part
of the physical architecture) and lower-level ones like the
probability of execution of a given operation or use case.

The two NFR-aware approaches presented in this Section
V represent two extreme visions but of course we can think

of hybrid solutions, in which the MDD decisional engine
supports decision-making for some types of NFRs,
architectural elements and technologies, whilst the software
architect and developer may provide the information missing
under demand.

E. Comparison
In this section we compare the two NFR-aware

approaches presented in this section with the three
approaches presented in Section IV. Fig. 7 aligns the five
approaches for an easier comparison. When comparing,
please pay attention to: the number and nature of models and
transformations; the extent of requirements in the models
(enclosed in parenthesis); and the type of interaction with the
human assistant (where, and in which direction). Table IV
includes a detailed comparison respect to several criteria.

In short, the main benefits of NFR-aware approaches are:
• NFR-aware approaches fully integrate NFRs into the

MDD process. Especially in the first NFR-aware
framework presented (Fig. 7(d)), NFRs are
considered at the same level than the functional
specification, being both part of the departing PIM.
Knowledge may be incrementally stored in the MDD
knowledge base (gradually improving accuracy of
results) and may be reused in each new project.

• As a consequence, there is no need for the developer
neither to write glue code (since the different
components of the PSM model are already
interrelated) nor to adapt the code to satisfy the
NFRs (since the NFRs have been already taken into
account when creating the PSM model).

• Instead of obtaining several incomplete PSM, using
a single transformation that targets a specific
architecture a single, a comprehensive and unified
representation of the system is derived.

• Two levels of abstraction are recognized, one for
representing architectures, other for representing
technologies. This distinction fits with the levels of
abstraction that practitioners use in their daily work.

• The explicit representation of NFRs allows defining
model transformation repositories inside the MDD
knowledge base that can be used to select the proper
transformations to apply. Also, when NFRs are
considered at the PIM level, classical analysis
techniques from Requirements Engineering may be
applied in the early stages of the MDD process.

• Hybrid approaches (between options from Fig. 7(d)
and 7(e)) allow customizing the NFR-awareness to
the resources, skills and preferences of software
architects. For instance, an empirical study that we
recently conducted shown that software architects
are reluctant to lose all the control over the
architectural decisions to be made [39].

But as the Table IV shows, these benefits are not for free.
Incorporating NFRs results in higher modeling effort, both
for constructing the PIM and for building the MDD
knowledge base. Also, it requires discipline to keep this
MDD knowledge base up to date. Complexity of the MDD
process is the overall challenge to overcome.

8

(a) (b) (c) (d) (e)

Figure 7. The five different possibilities: (a) manual modification of the code; (b) manual configuration of the transformation; (c) multiple and
heterogeneous transformations; (d) integrating NFRs into the PIM; (e) elicitating NFR-related information from human. It holds that nf0 ⊆ nf1 ⊆ nf.

TABLE IV. COMPARISON AMONG THE DIFFERENT MDD STRATEGIES ANALYSED IN THE PAPER

 MDD approaches not dealing with NFR NFR-aware MDD frameworks

 Fig. 7(a) Fig. 7(b) Fig. 7(c) Fig. 7(d) Fig. 7(e)
Project set-up

Modeling time
Fair (just functio-
nality is modeled)

Fair (just functio-
nality is modeled)

High (several nota-
tions used to build
the PIM)

Very high (NFRs
need to be modeled)

Fair (just functio-
nality is modeled)

MDD configuration
time for a
particular project

None (transforma-
tion applied as is)

Probably high (if a
new transformation
is needed)

None (transforma-
tions applied as are)

None (transforma-
tions applied as are)

None (transforma-
tions applied as are)

Production process

Production time
once configuration
finished

High (full post-
process adaptation)

Fair (slight post-pro-
cess adaptation will
probably be needed)

Very high (post-
process adaptation
and gluing)

None (if
transformations are
complete)

Low (guided
conversation with
human)

Criticality of
human intervention
during production

High (high respon-
sibility of the deve-
loper at the end)

Fair (slight post-pro-
cess adaptation will
probably be needed)

High (high respon-
sibility of the deve-
loper at the end)

None (since there
are no human
interactions)

Low (she just needs
to respond to very
concrete questions)

Complexity of the
process

Low (the MDD
infrastructure is
static)

High (several
transformations co-
exist)

Very high (several
heterogeneous trans-
formations exist)

High (the transfor-
mations used will be
more complex)

Moderate (human
intervention simpli-
fies the process)

Knowledge reuse
and learning ability

Very low (just the
functional-related
knowledge is
reused)

Low (learning
ability comes from
the MDD engineer)

Very low (just the
functional-related
knowledge is
reused)

Very high (NFR-
related knowledge
may be reused and
may grow)

High (some NFR-
related knowledge
may be reused and
may grow)

MDD KB
maintenance cost

Low (since it just
covers
functionality)

Fair (updates up to
the MDD engineer)

Fair (updates up to
the MDD engineer)

Very high (all new
knowledge needs to
be modeled)

High (some new
knowledge needs to
be modeled)

Product management

Product
Traceability

Very low (generated
product modified)

Fair (depending on
the complexity of
the post-process
adaptation)

Extremely low
(generated product
modified; informa-
tion across models)

Potentially complete
(all decisions can be
traced)

High (answers to
questions may be
recorded)

Maintainability

Very low (changes
made are probably
lost if product
generated again)

Fair (depending on
the complexity of
the post-process
adaptation)

Very low (changes
made are probably
lost if product
generated again)

Very high (it is
possible to work
only at PIM level)

High (functionality
at PIM level; chan-
ges on NFRs require
new questions)

VI. DISCUSSION AND RESEARCH AGENDA

Putting a NFR-aware MDD production process into
practice looks like a great challenge. In this section we
outline the most relevant issues to investigate with emphasis
on requirements-related issues.

1) Modelling of NFRs at the PIM-level. (a) Which types
of NFRs are most relevant to the MDD process? It is
important to devote efforts to the NFRs that software
architects perceive as the most important. Surveys (e.g.,
[39]) and interviews are needed. (b) Which notation to use
for representing NFRs? As comented, quantitative and

9

qualitative approaches are the two (non-exclusive) big
families. This is an old research topic in Requirements
Engineering (already appearing in the 2000’s roadmap [40])
and results obtained in contexts other than MDD may be
transferred here. (c) How NFRs may be linked to the
functional elements? Some approaches have been cited
[14][17][18] at this respect.

2) Elicitation and representation of architectural
knowledge. (a) Which types of architectural knowledge exist
and how are they used in practice? Again empirical studies
are needed to give light to this question [41]. (b) Which are
the quality attributes corresponding to these styles? (c)
Which are the matching rules that allow determining the
architectural solution that best fits the required NFRs?

3) Nature of models. The classification of MDD models
into CIM, PIM and PSM as defined in the MDA approach
results in some rigidity in our context. We have already
defined the architectural model as an intermediate PIM/PSM
model. The situation may even be more confusing if we
inject the concept of architectural view [9] into the core of
the MDD process. For instance, we may envisage that the
evolution from the PIM down to the architectural models
yields to a sequence of models in decreasing abstraction le-
vel, corresponding to the different architectural views, from
the logical view down to the physical view. In this case,
labelling the models may be artificial. We remark too that
current MDD approaches focus on the architectural logical
view, thus addressing other views is a progress by itself.

4) M2M transformations. Challenges are: (a) Gradually
developing and incorporating in the framework
transformations for all popular architectural styles. (b)
Selecting the best alternative for each non-deterministic
transformation depending on the expected NFRs. (c)
Defining a transformation composition language for gluing
separate transformations into the MDD models. This last
point is highly connected with the vision promoted in
[24][27] where different types of NFR are handled
separately. Being true that the specifities of each NFR type
makes it difficult to treat them uniformily, it is also clear
that we need to be able to reconcile them since the generated
system needs to fulfil all of them together. (d) The
framework presented here conceives the application of
transformation (and thus obtention of models) top-down
with respect to abstraction level. However, this does not
need to be always this way. For instance, a technological
NFR fixing the brand and release of the data base product
will have an implicit consequence on some other more
abstract model, namely to know that a data base of a
particular type (relational, OOR, …) has to be integrated
into e.g. the development view of the architecture.

5) The MDD core: decisional engine and knowledge
base. The research agenda includes: (a) Being able to keep
and reuse the knowledge acquired in MDD projects (e.g.,
success and failure experiences). (b) Exploring the
applicability of artificial intelligence techniques for taking
informed decisions (case-based reasoning, Bayesian
networks, etc.). (c) Exploit the knowledge of software

architects to improve the automation of the process by
means of a comprehensive program of interviews and
surveys. (d) Define the roles and responsibilities that play a
part in the MDD process: software architect, MDD
engineer, software developer, domain expert, etc.

6) Variations from the proposed frameworks. Being the
presented frameworks general, variations may be thought to
be formulated. Let’s consider one particular variation,
namely the incorporation into the MDD process of the
concept of architectural style. According to [42][43], an
architectural style consists of the description of the types of
architectural components supported, their organization, and
how can they be integrated. In some sense, we may say that
different architectural styles use different ontologies, e.g.
whilst SOA talks about services, choreography and MOM,
layered architectures introduce layers, persistence and push
communication model. Incorporating this concept into the
framework has consequences on its very core. If the M2M
translation from PIM to PIM/PSM renders a software
architecture, it follows that each architectural style requires
a different metamodel, thus both PIM/PSM models and
M2M transformations are dependant on the architectural
style, becoming families of models and functions:

(M2March[st]: PIM(f+nf) → PIM/PSM[st] (f+nf0))st∈style

Determining the architectural style should be the first
decision to be made in the MDD process. Adopting a pure
MDD perspective, it should be determined from the
PIM(f+nf). However, it is true that the decision of whether it
must be, for example, an SOA or a Web rich client
architecture is often a decision made before the MDD
process starts for reasons that are not always tangible and are
only in the architect’s mind.

7) Correctness and completeness issues. Last but not
least, we mention the need of accurately investigating the
notion of correctness of an NFR-aware approach. We may
envisage the following conditions that need to be refined to
the chosen formalisms. A couple of examples of predicates
to investigate are:
• The NFRs should be correct both independently (e.g.,

there are not contradictory NFRs) and when referred to
the functionality f (each functional element is qualified
by meaningful types of NFRs): correct(nf) ∧
applicable(nf, f).

• The knowledge embedded in the MDD knowledge base
should find feasible alternatives for any given NFRs that
fulfil the correctness and applicability conditions above:
correct(nf) ∧ applicable(nf, f) ⇒ reducible(KB, nf)

VII. CONCLUSIONS

In this vision paper we have: explored the state of the art;
envisaged some generic solution to the identified problems;
and enumerated new lines of research and challenges to
overcome; of one requirement-related practice, the
management of non-functional requirements (NFR) in the
model-driven development (MDD) production paradigm.

10

Being this a vision paper, the main goal has been to agree
on a perspective of the current state of the addressed problem
and in the need to keep progressing towards several
directions. Concerning the state of the art:

• We have analysed how MDD methods not dealing
with NFRs behave to ensure their satisfaction.

• We have run a systematic literature review to learn
insights of the MDD methods that deal with NFRs.

Concerning the improvement of this state of the art:
• We have formulated an NFR-aware general

framework which allows customization to different
settings with their own peculiarities

• We have discussed variations on this framework.
• We have aligned and thoroughly compared the

different alternatives discovered, trying to make
clear not just the benefits but also the obstacles of
this general framework.

• From these obstacles, we have formulated a research
agenda with the hottest open issues.

All in all, this paper agrees with the observation in [44]:
“...MDD has a chance to succeed in the realm of large,
distributed, industrial software development, but it is far
from a sure bet”. We hope that this paper contributes to boost
the MDD adoption by practitioners and the design of more
powerful MDD methods and better software production
processes, and thus increases the likelihood of this bet.

REFERENCES

[1] M. Glinz. “On Non-Functional Requirements”. RE 2007.

[2] F.P. Brooks. “No Silver Bullet – Essence and Accidents of Software
Engineering”. Computer IEEE 20(4), 1987.

[3] A. Finkelstein, J. Dowell. “A Comedy of Errors: the London
Ambulance Service Case Study”. IWSSD 1996.

[4] N. Yusop, D. Zowghi, D. Lowe. “The Impacts of NonFunctional
Requirements in Web System Projects”. Int. J. Value Chain
Management 2(1), 2008.

[5] C. Atkinson, T. Kuhne. “Model-Driven Development: A
Metamodeling Foundation”. IEEE Software 20(5), 2003.

[6] S.J. Mellor, A.N. Clark, T. Futagami. “Model-Driven Development”.
IEEE Software 20(5), 2003.

[7] B.H.C. Cheng et al. “Software Engineering for Self-Adaptive
Systems: A Research Roadmap”. In Software Engineering for Self-
Adaptive Systems, LNCS 5525, Springer, 2009.

[8] The OMG. “MDA Guide Version 1.0.1”. At http://www.enterprise-
architecture.info/Images/MDA/MDA%20Guide%20v1-0-1.pdf, 2003.

[9] P. Krutchen. “Architectural Blueprints—The 4+1 View Model of
Software Architecture” IEEE Software 12(6), 1995.

[10] S. Ceri, A. Bongio, P. Fraternali. Designing Data-Intensive Web
Applications. Morgan Kaufmann, 2002.

[11] P. Clements, R. Kazman, M. Klein. Evaluating Software
Architectures. Methods and Case Studies. Addison-Wesley, 2002.

[12] S.J. Mellor, M. Balcer. Executable UML: A Foundation for Model-
Driven Architectures. Addison-Wesley, 2002.

[13] B. Kitchenham. “Procedures for Performing Systematic Reviews”.
Keele University Technical Report TR/SE-0401, 2004.

[14] A. Fatwanto, C. Boughton. “Analysis, Specification and Modeling of
Non-Functional Requirements for Translative Model-Driven
Development”. ICCIS 2008.

[15] H. Wada, J. Suzuki, K. Oba. “A Model-Driven Development
Framework for Non-functional Aspects in Service Oriented
Architecture”. Int. J. of Web Services Research 5, 2008.

[16] L. Zhu, Y. Liu. “Model Driven Development with Non-Functional
Aspects”. EA @ ICSE 2009.

[17] The OMG. ”UML Profile for MARTE, Beta 2”. 2008.

[18] The OMG. “UML profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms, v1.1”. 2008.

[19] L. Gonczy, Z. Deri, D. Varro. “Model Transformations for
Performability Analysis of Service Configurations”. MODELS 2008
Workshops and Symposia.

[20] S. Kugele, W. Haberl, M. Tautschnig, M. Wechs. “Optimizing
Automatic Deployment Using Non-functional Requirement
Annotations”. ISoLA 2008.

[21] F. Molina, A. Toval. “Integrating Usability Requirements that can be
Evaluated in Design Time into Model Driven Engineering of Web In-
formation Systems”. Advances in Engineering Software 40(12), 2009.

[22] A. Solberg, J. Oldevik, J. Aagedal. “A Framework for QoS-aware
Model Transformation using a Pattern-based Approach”. DOA 2004.

[23] A. Sterritt, V. Cahill. “Customisable Model Transformations based on
Non-functional Requirements”. IEEE Congress on Services 2008.

[24] S. Röttger, S. Zschaler. “Model-Driven Development for Non-
functional Properties: Refinement Through Model Transformation”.
<<UML>> 2004.

[25] D. Ardagna, C. Ghezzi, R. Mirandola. “Rethinking the use of Models
in Software Architecture”. QoSA 2008.

[26] S. Gallotti, C. Ghezzi, R. Mirandola, G. Tamburrelli. “Quality
Prediction of Service Compositions through Probabilistic Model
Checking”. QoSA 2008.

[27] G. Rodrigues, D. Rosenblum, S. Uchitel. “Reliability Prediction in
Model-driven Development”. MoDELS 2005.

[28] V. Cortellessa, A. Di Marco, P. Inverardi. “Non-Functional Modeling
and Validation in Model-Driven Architecture”. WICSA 2007.

[29] B. Nuseibeh. “Weaving Together Requirements and Architecture”.
Computer IEEE 34(3), 2001.

[30] L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos. Non-Functional
Requirements in Software Engineering. Kluwer, 2000.

[31] P. Grünbacher, A. Egyed, N. Medvidovic. “Reconciling Software
Requirements and Architectures with Intermediate Models”. SoSyM
3(3), 2004.

[32] J.P. Carvallo, X. Franch, C. Quer. “Managing Non-Technical
Requirements in COTS Components Selection”. RE 2006.

[33] D. Gross, E. Yu. “From Non-Functional Requirements to Design
through Patterns”. Requirements Engineering Journal 6(1), 2001.

[34] L. Bastos, J. Castro. “Systematic Integration Between Requirements
and Architecture”. SELMAS 2004.

[35] R.C. de Boer, R. Farenhorst, P. Lago, H. van Vliet, V. Clerc, A.
Jansen. “Architectural Knowledge: Getting to the Core”. QoSA 2007.

[36] S. Renault, O. Mendez, X. Franch, C. Quer. “A Pattern-based Method
for building Requirements Documents in Call-for-tender Processes.
Int. J. of Computer Science & Applications 6(5), 2009.

[37] J. Horkoff, E. Yu. “Qualitative, Interactive, Backward Analysis of i*
Models”. i* Workshop 2008.

[38] D. Roman et al. “Web Service Modeling Ontology”. Applied
Ontology Journal, 1(1), 2005.

[39] D. Ameller, X. Franch. “Usage of Architectural Styles and
Technologies in IT Companies and Organizations”. EASA 2009.

[40] B. Nuseibeh, S. Easterbrook. “Requirements Engineering: A
Roadmap”. ICSE 2000.

[41] V. Clerc, P. Lago, H. v. Vliet. “The Architect’s Mindset”. QoSA 2007.

[42] M. Shaw, D. Garlan, D. Software Architecture: Perspectives on an
Emerging Discipline. Prentice-Hall, 1996.

[43] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-
Oriented Software Architecture: a System of Patterns. Wiley, 1996.

[44] B. Hailpern, P. Tarr. “Model-driven Development: The Good, the
Bad, and the Ugly”. IBM Systems Journal 45(3), 2006.

