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Abstract

We consider a Hamiltonian of three degrees of freedom and a
family of periodic orbits with a transition from stability to complex
instability, such that there is an irrational collision of the Floquet
eigenvalues of opposite sign. We analyze the local dynamics and the
bifurcation phenomena linked to this transition. We study the re-
sulting Hamiltonian Hopf-like bifurcation from an analytical point
of view by means of normal forms. The existence of a bifurcat-
ing family of 2D tori is derived and both cases (direct and inverse
bifurcation) are described.



1 Description of the problem and methodology

Let us consider a Hamiltonian with three degrees of freedom and a family
of periodic orbits with a transition from stability to complex instability,
that is, there is a critical periodic orbit for which a collision of Floquet
multipliers of opposite sign at an irrational point -complex instability- takes
place.

Our analytical approach is to compute the (formal) normal form, around
the critical periodic orbit, up to an arbitrarily high order and to use this
normal form to describe the dynamics around this transition. For this
computation, we carry out the following process:

e We change the system of coordinates to a suitable one, by means of a

symplectic transformation;

e we apply a canonical Floquet transformation to reduce the normal
variational equations of the orbit to constant coefficients;

e we complexify the Hamiltonian;

e we describe how to compute, in a some tricky and constructive way,
the normal form.

2 Main results

Dealing with the truncated normal form itself and the differential equations
associated to it,

e we derive the existence of two families of invariant 2D tori which
bifurcate from the critical orbit,

e we identify the coefficient that determines the unfolding type and the
stability of the bifurcating tori.

From a suitable parameterization of the 2D tori, we also describe the
effect of the unfolding on the local phase space in a neighbourhood of the
transition:

e Confinement on the direct case, and compression of 3d tori on the
inverse one.

e We remark the similarities to the local phase space structure of the
Hamiltonian Hopf bifurcation for a two-degree of freedom Hamilto-
nian.
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Main related works and applications:

e From a numerical point of view, some studies have been done both for

4D symplectic mappings (see [4], [8] and [12]) and for some particular
applications (see for example [5], [9], [10], [12] and [13] -and references
therein-, in celestial and galactic dynamics context).

Concerning analytical studies, the Hamiltonian Hopf bifurcation (a
Hamiltonian with two degrees of freedom and a family of equilibrium
points with a transition from stability to complex instability) is mainly
described in [14]. But, as far as we know, there are only two papers
where the bifurcation of an irrational collision was carried out from
an analytical point of view: the one by Heggie ([6]), using the Hamil-
tonian itself but with a previous isoenergetic reduction and a normal
form up to order six, and that by Bridges et al. ([3]), where they con-
sider a nonlinear 4D symplectic map, and use the normal form derived
in [2] in order to simplify the map. We remark that the theory for
existence and stability of periodic orbits in the unfolding of a rational
collision is analyzed in [1].

Our contribution is to present a constructive method (that can be
implemented numerically, from a practical point of view) to compute
the normal form in order to obtain a good approximation of the rele-
vant invariant objects (periodic orbits, 2D and 3D tori and invariant
manifolds) as well as the dynamics around them, for any particular
application described by a Hamiltonian.

Formulation of the problem

Let H(¢) with ¢ = (&, 7), be a real three degree of freedom analytic Hamil-
tonian, with its associated Hamiltonian system

¢=JVH((), (1)

with J3 the matrix of the standard canonical 2-form of R. Suppose that
this system has a non degenerate family of periodic orbits with transition
to complex instability, i. e., such that one of its orbits undergoes a collision

of Floquet multipliers on the unit circle. Further, denote by (y(0) a 27-

periodic parameterization of this critical orbit, with period Ty = 27 /wy.



5 The Jordan structure of the monodromy matrix

If My(27) is the monodromy matrix of (y(6), its Jordan normal form will
have a double eigenvalue equal to 1 forming a nontrivial Jordan block (in
the generic non degenerate sense), and two double eigenvalues A # 41,
1/X = )X again in a two nontrivial blocks.

Proposition 1 Under the conditions stated, there exists a symplectic com-
plex basis {u1,v1,va, Uz, w1, we}, with respect to the canonical 2-form, such
that
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Then we have that {uy,us, v}, vy, wi, w3} is a symplectic real basis that
reduces My(27) to its “real Jordan” normal form

(4)
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6 The quadratic part of the Hamiltonian in the adap-
ted coordinates

In order to compute the normal form around the periodic orbit, we assume
that we can introduce a suitable system of canonical coordinates to describe
a neighbourhood of this orbit. This adapted system of coordinates has to
contain an angular variable 6 (and its canonical conjugate variable I) to
parameterize the whole periodic orbit. Moreover, we have to introduce
other four Cartesian coordinates to describe the normal behavior of the
orbit. As we have shown in the previous section, these normal coordinates
can be chosen (real or complex) in such a way that the normal variational
equations of the orbit are reduced to a constant coefficient system with
matrix B. Let us remark that as it has been done in [7], in some cases
these coordinates can be found explicitly in a practical implementation of
this normal form methodology.

Then, if we denote by (q1, g2, p1, p2) the complex normal variables intro-
duced before (plus a suitable scaling), we have that the quadratic part of
the Hamiltonian takes the form:

(7)

where w; = ©1/Tp. If in equation (7) we use the Floquet real variables,

Hy = wol + iw1 (q1p1 + q2p2) + qop1,



then the quadratic part of the Hamiltonian is,

1

Hy = wol + w1 (z1y2 — z2y1) + 3 (y% + yg) ; (8)

where the variables (z1, 29, Y1, y2) are related with the complex ones, (q, p)
by

T1 — T2 Y1 — 1Yo Y1+ iy Ttz

= T = = Y- - Y- 9
1 V2 q2 V2 D1 NG b2 /2 (9)
relations which follow immediately from the change of basis in (4). Thus,

q1 = —p2, P1=q2, QG2 =DP1, P2 = —q1.

The symmetries above imply that if we consider the following expansion
of the Hamiltonian,

H (07 q1, 92, [7 D1, p2) - Z hl,ml,m2,n1,n2,keikollcﬁnlqghp?lpgz)7

l,my,mg9,n1,n9,k

then we have the following symmetries coming from the complexification

_ (_ 1)m1 +ns9
l7m17m27n17n27k — l,n2,n1,m2,m1,—k~

7 Normal form at higher order

Proposition 2 If we assume that there exist certain real constants C > 0
and T > 1, such that the wy, w1 satisfy the following Diophantine condition

C
okl = (10)
where |k| = |ko| + |k1| and w - k = kowy + kw1, for all ko, ki € Z; then the
(formal) normal form A of the Hamiltonian H, in the complex variables
introduced in the last section, takes the form

A = wol + 1wy (1p1 + @op2) + @op1 + N (I, 1p2, i (1p1 + @epo)),  (11)

with N'(A, B,C) being a real formal power series which begins with terms
of degree two.

SKETCH OF PROOF. The proof of the proposition 2 is done by using the Lie
series method to remove in an increasing order the “non-resonant terms” of



the Hamiltonian. Let us note that this order is defined by counting twice
the degree in the I variable with respect to (g, p).

1. The homological equation to be solved in any step of the normal
form process takes the form:

{H,,G}+ R =N, (12)

where R contains the terms to be removed (of a given degree s) by a
suitable G, while N stands for the non-removable terms.
2. Making the calculations one can see that if F' is a monomial of type

my1 _Mma, 7M1, T2

F = al,m,n,keikallfh gy "P1 Do athen

LH2F = {H27 F} = (leam27n17n27k —|— mlﬂ o nQE) F7 (13)
qz p2
being, by definition
Qm,n,k — le,mg,nl,ng,k = ink + iwl (ml +mo — N1 — n2) ) (14)

then, as in addition, the frequencies wy and w; are rational independent, it
can be shown that the necessary conditions for a monomial to be resonant
are

k=0 and (Qm,n,o =0&mi+mo=n1+ n2) . (15)

By discussing the structure of the equation (12), we can see that if the
above resonance conditions are not fulfilled by the monomial F', one can
remove the corresponding term in the homological equations giving the
adequate value to the coefficients a;, n 1 of the generating function G.

3. By a more careful analysis of the algebraic structure of equation (12),
one can see that the possible non-removable terms in the normal form are
the ones given by

f= Z Z fl,ml,M—ml,M—anIlqinlqév[_mlp?]lv[_mp?' (16)
LM 0<mq,no<M
Introducing the new variables,
X = q1p2, Y = qops, } (17)
Q =i(qp1+ @p2), P =qp1 — @p2

(note that X, Y, @ and P are real variables), it can be proved (see [11] for
details) that the terms in (16) which can not be removed, written in the
variables (17) are

M
S g nI'X QM (18)

I,M n=0



with g1 n0—n € R. Thus, the normal form is a formal power series in the
variables I, q1ps and i (g1p1 + q2p2), with real coefficients.

8 The resonant normal form

As stated in proposition 2 the resonant normal form around the periodic
orbit that corresponds to the transition from stability to complex instability
is given by:

A0, q1, 92, I, p1,02) = wol +iwi(qip1+qepa2) +qap1+N (I, g1p2, i(@ip1+¢ap2)),

where N(A, B,C) is a real formal power series expansion, beginning at
degree 2 with respect to (A, B, C). Nevertheless, in what follows we will
discuss the properties of N as if it were a real analytic function, defined
around A = B = C = 0. In fact, due to the Diophantine conditions, this is
so if M is truncated at some finite order, as usual in practical computations
involving normal forms.

In order to simplify the Hamiltonian equations associated to A, we
shall introduce the following system of canonical coordinates. We replace

(q17 q2, P1, p2) by

q = \/"_aexp (230)7
_ L\ exp (ip)
@ = /rexp (ip)p, 2y PP

_ L exp (—ip)
p1 = rexp(—ip)p, + 2y Do

p2 = —+/rexp(—ip),

where ¢ € S!, and where we remark that » > 0, p, and p,, are real variables.
We can write them as:

r = —qip2,

q1p1 — g2p2
Dr = 2—7
T

P, = i(q1p1 + @2p2)-

Here, (7, ) are new positions, and (p,, p,) are the corresponding conjugate
momenta. If we re-write A in these new coordinates, it takes the form:

2

p
A(07 Y, T, ]7p507pr) = WOI + wlpgo + T’p? + ﬁ +N(I7 -, pgo)



The corresponding Hamiltonian equations are:

é = wo—|—01/\/'(l,—r,p<p),
o = wl—l-g—i—l—(‘?g/\/’(l,—r,p@),

ro= 2rp,

I =0,

p, = 0,

. ., D)

Dr = —pr+@+82/\/(1,—r,p¢).

We have that I and p, are first integrals of the resonant normal form.
Hence, by taking fixed values of I = I° and Py = p?o, we can reduce the A
to a one degree-of-freedom Hamiltonian system, given by

0)2
p
AO(Ta pr) — ’I"p% + % —l_N(IOa -, pg)

We can compute:
e 2-dimensional tori of A as fixed points of Ag.

e 3-dimensional tori of A as periodic orbits of Ayg.

The fixed points of such reduced system are given by p, = 0, and r as a
solution of .-
(Py)

472
In order to parameterize the solutions of (19), we introduce a new (depen-
dent) variable N defined as

N = BN (I, —r,py).

+ BN (I°, —r, pg) = 0. (19)

Then, let us remark that to give sense to equation (19), we have to restrict
N <0 and r > 0. Thus, we can parameterize the solutions of (19) as

py(r,N) = +2rv/—N, (20)
p,jf(’l“,N) = 0,
N = WN{I*(r,N),—r,+2rv/—N), (21)

where I* as function of (r, N) are obtained from the implicit function
theorem if we assume that

021N (0,0,0) £ 0,



Remark 2 It seems as if we had two different families of fized points of Ay
from (21), and hence, two different families of “bifurcated” 2-dimensional
tori from A, but we remark that when we put N = 0, then I*(r,0) =
I=(r,0). In fact the sign + is only associated to the choice of the sign of

Py in (20).

Finally, the frequencies of the quasi-periodic motion on the 2-dimensio-
nal tori computed are given by

0 = OF =wy+ ON{I*E(r,N), —r,£2rvV—N),
¢ = O =w £V-N+&BN({I*(r,N),—r,£2rv/—N).

9 Determination of the stability of the bifurcated 2-
dimensional tori

The eigenvalues of the linearized system of Ay around the fixed points
computed before are:

:I:\/4N — 2709 o N (I*(r,N), —r, £2rv/—N).

o If 055N (0,0,0) > 0, then the eigenvalues are purely imaginary for
small values of > 0 and N < 0, both not simultaneously zero (case
of a direct bifurcation).

o If 9,,M(0,0,0) < 0, then we have a transition from stability to insta-
bility characterized by:

4N — 2109 oN (I*(r, N), —r, £2rv/—N) = 0,

(case of an inverse bifurcation). This expression allows to write r as
function of N:
r = r*(N), with r=(0) = 0.

Both cases are illustrated in figures 1 and 2. The plots therein are obtained
taking only the terms of degree two in N (fourth order in the Hamiltonian).
In both figures, the vertical axis corresponds to p, = 0 (stable tori in the
direct bifurcation and unstable in the inverse case); and the horizontal axis
contains the periodic orbits, » = 0 (stable if I < 0 and unstable if I > 0).
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Figure 1: Direct case. The stable tori unfold on the unstable side. The
hyperbolas obtained from (20) show families of 2D tori with a fixed value
of p, = pg, whereas each “vertical” curve correspond to a fixed I = I°.
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Figure 2: Inverse case. The unstable tori unfold on the stable side. The
hyperbolas and the other curves represent families of 2D-tori with p, = pg
and with I = I°. The “transversal line” separates the unstable an stable
tori region.
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10 Future work

e Theoretical approach.

1. Bounds on the remainder of the normal form.

2. Proof of the existence of bifurcated 2D tori (in Cantor sets) for
the complete (non-integrable) Hamiltonian.

e Application for a particular example: numerical implementation of
the normal form methodology around a transition orbit of the RTBP.
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