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Abstract: Solving the problem of energy dispatch in a heterogeneous complex system is not a trivial task. 

The problem becomes even more complex considering uncertainties in demands and energy prices. This 

paper discusses the development of several Economic Model Predictive Control (EMPC) based strategies 

for solving an energy dispatch problem in a smart micro-grid. The smart grid components are described 

using control-oriented model approach. Considering uncertainty of load demands and energy prices 

simultaneously, and using an economic objective function, leads to a non-linear non-convex problem. 

The technique of using an affine dependent controller is used to convexify the problem. The goal of this 

research is the development of a controller based on EMPC strategies that tackles both endogenous and 

exogenous uncertainties, in order to minimize economic costs and guarantee service reliability of the 

system. The developed strategies have been applied to a hybrid system comprising some photovoltaic 

(PV) panels, a wind generator, a hydroelectric generator, a diesel generator, and some storage devices 

interconnected via a DC Bus. Additionally, a comparison between the standard EMPC, and its 

combination with MPC tracking in single-layer and two-layer approaches was also carried out based on 

the daily cost of energy production.  

Keywords: Smart grid, Model Predictive Control, Robust Optimization, Demand uncertainty, Energy      

         prices uncertainty 
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1. INTRODUCTION 

 

Complex systems such as smart grids whereby several 

heterogeneous components attempt to interact with each 

other, require definitely a well-defined proactive control 

strategy in order to optimize its efficiency, and avoid 

conflicting interactions. Furthermore, the complexity of smart 

grids increases in the presence of uncertainties. 

Model uncertainty and noise are two important factors which 

need to be taken into consideration in the development of 

robust MPC based control strategies. In linear time-invariant 

(LTI) systems, the problem of model uncertainty and noise 

can be solved through enforcement of computational 

constraints as reported in Bemporad et al. (1999), Loefberg 

(2003), and Abate et al. (2004). However, this approach is 

usually raising the issue of tractability. 

A better approach of tackling uncertainties is reported in 

Loefberg (2003) and Löfberg (2012) would be to consider 

optimization techniques such as Minimax MPC, even though 

Minimax is only based on worst case scenario. 

Moreover, in Ben-Tal et al. (1998), Ben-Tal et al. (2004), and 

Löfberg (2012), Adjustable Robust Solutions have been 

proposed, which assume that adjustable control inputs can be 

made to depend affinely on the uncertainty parameters of the 

problem. This approach is more flexible, and is most of the 

time expected to result in a computationally tractable 

problem (Vandenberghe et al. 1996). In this work, we follow 

the technique of affine dependence to solve the problem of 

demand and energy price uncertainty in electrical micro-grid. 

In Nassourou et al. (2016), uncertainty of load demand was 

taken into consideration, it was shown that the standard 

EMPC was not only superior to the standard MPC tracking, 

but also to the integration of both in single-layer and two-

layer approaches. 

In this paper, we repeat the study in Nassourou et al. (2016) 

by considering simultaneously the uncertainty of load 

demands and energy prices. Several studies (Ocampo-

Martinez et al. 2009; Grosso et al., 2012a; Grosso et al., 

2014; Limon et al, 2014) have dealt with the issue of tackling 

uncertainties separately using stochastic approaches. In this 

work, we use a deterministic approach namely robust 

optimization to model uncertainties. Considering both 

uncertainties at the same time, and using EMPC strategies, 

the optimization problem becomes non-linear and non-

convex. The technique of using an affine dependent 

controller is used to convexify the problem.  

Robust optimization based EMPC strategies for smart grids 

are discussed in this paper. We have explicitly included the 

uncertainty information into the Minmax optimization 

problem, by substituting the uncertain variables with their 

robust counterparts in the objective function, as well as in the 

constraints. Energy prices are split into actual prices and 

predicted ones. 



      

We consider a hybrid system comprising some photovoltaic 

(PV) panels, a wind generator, a hydroelectric generator, a 

diesel generator, and some storage devices interconnected via 

a DC Bus, from which load demands can be satisfied. 

EMPC based control strategies have been developed by using 

both single-layer and two-layer approaches. In the one-layer 

approach, standard EMPC strategy was applied to the hybrid 

system. After that, both the economic optimization and the 

tracking formulation were integrated in a single layer. 

In the two-layer approach, the upper layer consists of an 

EMPC controller acting as the supervisory unit, which is in 

charge of scheduling the operation of the subsystems, and 

computing their power references. At the lower layer, we 

used standard MPC tracking controllers responsible for 

implementing the computed reference values for each 

subsystem. 

2. PROBLEM FORMULATION 

 

The main objectives of this work is the development of a 

controller based on EMPC strategies, that tackles load 

demand and energy prices uncertainties, in order to minimize 

economic costs and guarantee service reliability of the 

system. To achieve this aim, three operational goals have 

been considered: 

Economic cost: 

The total economic cost is given by:  

fE(k)  = (α1 +α2(k))T
u(k)∆t  (1) 

where: u(k) is a vector of control actions at time k;       

∆t is the sampling time in seconds; 

α1 is a known vector related to economic costs of 

maintenance of generators and its accessories;  

α2(k) is an unknown time-varying vector associated to the 

economic cost of power flows related to transmission and 

distribution. 

In this study we consider α2(k)  to be uncertain but with 

known bounds:  

α2
min(k) ≤ α2(k)  ≤ α2

max(k)                        (2)           

where α2
min(k) and α2

max(k)   are the lower and upper bounds

of the energy prices respectively that are known functions. 

Safety Storage Measures: 

This function is used to penalize quadratically the amount of 

power that goes below the pre-specified security threshold δ 

in (8). The safety measures are defined as:  

fS(k)  =  ε(k)T
ε(k)             (3)

where ε(k) is the amount of soft constraint violation. ε = 0 

means there is no violation. 

Smoothness/Stability of the control action: 

This function is used to avoid excessive power on the DC 

Bus. 

f∆u(k)  =  ∆u(k)T∆u(k)               (4)

where ∆u(k) is the rate of change of control signal, defined as 

∆u(k)=u(k) – u(k-1). 

3. CONTROL-ORIENTED MODELING 

 

Smart grids could be viewed as instances of generalized flow-

based networks. Basically every flow-based network is made 

up of some components (Ocampo-Martinez et al. 2009; 

Nassourou et al. 2016) e.g.: flow sources, links, nodes, 

storage, flow handling, and sink elements. 

3.1. Control-oriented model 

 

A smart grid consisting of nx storage elements, nu  energy 

flow handling and source elements, nd sinks and nq 

intersection nodes is considered. The source elements are 

considered as inflows. 

3.1.1. State space model 

The hybrid power system is an example of a MIMO 

(multiple-input multiple-output) system, whose linear state 

space modelling is given by the following equations: 

 

( 1) ( ) ( ) ( )                   (5a)

( ) ( ) 0                                         (5b) 

d

u d
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where: 
xn

x  is the state vector, un
u  stands for the vector of 

control inputs, dn
d  denotes the disturbances vector. 

x xn n
A , xn nu

B , xn nd

d


B  are system matrices.

n nq u

u


E

 and 
n nq d

d


E  are matrices of suitable 

dimensions relating the supply and the load demand on the nq
 

DC Bus(ses).   

  

3.1.2. Constraints 

Control inputs are subject to some bounds (upper and lower 

limits): 

u
min(k) ≤ u (k) ≤  umax(k)        (6) 

 (umin(k) is in this case always zero, because energy flow from 

the generators is positive). 

The state of charge (SOC) of each storage element is subject 

to the following constraint: 

       x
min ≤ x(k) ≤ xmax                (7)         

where x
min and x

max are the lower and upper limit values of

the state of charge respectively. 

To guarantee availability of energy in the batteries we set:    

 x
min (k) ≥ δ  (8) 

where δ is the minimum quantity of energy that should 

always be available in the batteries. 

The disturbance d(k) representing the load demand is 

uncertain but with known bounds: 

      d
min(k) ≤ d(k)  ≤ dmax(k)                                    (9) 

where  dmin(k) and dmax(k)  are the lower and upper bounds of 

load demands respectively. 

 

4. ROBUSTNESS IN EMPC STRATEGY 

 

The performance and accuracy of MPC relies principally on 

the model used to predict the behaviour of the plant. 

Unfortunately for real systems, there are frequently 

uncertainties about the model parameters, as well as 

occurrences of external disturbances. These uncertainties 

degrade the performance of the controllers. They can be 

tackled using stochastic or deterministic approaches. In this 



      

work, a deterministic approach namely robust optimization is 

selected, which offers some possibilities of bounding 

uncertain parameters and variables. 

Load demand d(k) and the energy prices namely α2(k)  (as 

explained in Section 2)  are chosen to be uncertain. 

 

4.1. Modelling uncertain energy prices 

 

In this paper, we will consider that there is independence 

between the different uncertain variables. i.e. for the 

uncertain energy prices: 

α2,i
min(k) ≤ α2,i(k)  ≤ α2,i

max(k)        1,..., ui n               (10) 

Therefore, at every time instant k energy prices α2(k)  can be 

bounded by a box Θα(k): 
min max min max

2 2,1 2,1 2,nu 2,nu( ) ( ) α ( ),α ( ) α ( ),α ( )k k k k k k
         α Θ

Upper and lower limits of the price (α2,i
min(k) and α2,i

max(k)) 

can be found by means of a forecast considering additive 

bounded error:       
2,1

0

2,1 2,1 αα ( ) α ( ) ( )k k k          (11) 

where 0

2,1α ( )k  is the price forecast and 
2,1α ( )k  is the additive 

error that is bounded by 
2,1 2α α( ) ( )k k    with 

2α ( )k  a known 

function. Then, the prices upper and lower limits can be 

computed as: 

2 2

min 0 max 0

2,1 2,1 α 2,1 2,1 αα ( ) α ( ) ( );    α ( ) α ( ) ( )k k k k k k       

4.2. Modelling uncertain load demands 

The  load demand d(k)  is  split  into  two parts:  a nominal de-

mand and an uncertain additive demand.   

The uncertain additive load demand is bounded at every time 

instant k by a box Θd(k): 
min max min max

d 1 1 nd nd( ) ( ) d ( ),d ( ) d ( ),d ( )k k k k k k         d Θ  

Upper and lower limits of the demand (di
min(k) and di

max(k))

can be found by means of a forecast considering additive 

bounded error:          0

dd ( ) d ( ) ( )
ii ik k k                   (12) 

where 
0d ( )i k  is the price forecast and d ( )

i
k  is the additive 

error that is bounded by d d( ) ( )
i i

k k    with d ( )
i

k  a known 

function. Then, the demands upper and lower limits can be 

computed as: 
min 0 max 0

d dd ( ) ( ) ( );    d ( ) d ( ) ( )
i ii i i ik d k k k k k       

Using the affine dependence method, it is possible to 

establish a relationship between the control and the load 

demands and the control inputs. A mathematical derivation of 

this relationship has been developed in Nassourou et al. 

(2016). 

 

 4.3. Parameterization of control inputs with respect to both 

uncertainties 

 

Considering price and demand uncertainties simultaneously, 

and using the economic cost function defined in (1), we end 

up with a non-linear non-convex problem. In fact, equation 

(1) consists of a multiplication of the two uncertainties. 

A non-convex optimization problem in the case of smart grids 

is not desirable, because of the fact that, there could be many 

local optimal solutions, which make the identification of a 

global optimal solution extremely difficult. 

One optimal approach to deal with multiple uncertainties 

simultaneously would be to convert the non-convex problem 

into a convex one. 

The relationship between control inputs and the disturbances 

is evident through the equation (5b). This justifies as well the 

affine dependence between the control inputs and the load 

demand (Abate et al. 2004). However, the relationship 

between the control inputs and the energy prices is not 

evident. 

In this approach, the approach for dealing with the 

uncertainties based on an affine dependence between the 

control inputs and both uncertainties has been considered 

(Loefberg, 2003; Abate et al., 2004): 

 

u= v + Wd + Zα2 (13) 

where  

u=[u(k|k),…, u(k+N-1|k)]T 

v=[v(k|k),…, v(k+N-1|k)]T 

d=[d(k|k),…, d(k+N-1|k)]T 

α2=[α2(k|k),…, α2 (k+N-1|k)]T 
 

with W and Z matrices of proper dimensions and N the 

prediction horizon. With this parameterization (affine 

dependence between control inputs and uncertain variables) 

the non-linear non-convex problem is transformed into a 

convex problem. 

 

It might be important to mention that two other strategies 

could be used:  

 Transformation of the problem into a simpler and 

equivalent one;  

 Control inputs do not dependent affinely on energy 

prices  

These strategies will be discussed in our future works. 

5. PROPOSED APPROACHES 

 

All the problems are formulated using the worst-case robust 

optimization approach, namely the minmax format of the 

Wald's maximum model (Loefberg, 2003). The problems are

solved using the robust convex optimization methods 

proposed in Loefberg (2012). 

The goal is to minimize the costs of energy production in the 

presence of uncertain load demands and energy prices.   

5.1. Economic MPC 

 

The MPC objective function is given by using (1), (2) and (3) 

JEMPC= λ1 (α1 + α2(k))T
u(k)∆t

+ λ2 ε(k)T
ε(k)  + λ3 [u(k) - u(k-1)]T[u(k) - u(k-1)]  (14)

where  λ1, λ2, and λ3 are weighting coefficients for prioritizing 

the objectives. 

The EMPC optimization problem is formulated as follows:  
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2

1

 
0

2 2

5 , 6 , 7 , 8 , (9), (10)

min m

( ) ( )

a

s.t

,

x

,

N

EMPC
k k k k

k

d

J

kk k k k

k







 


u x α d

α Θ d Θ

     (15) 

5.2. Two-layer approach: EMPC and MPC tracking 

 

The main idea behind the use of a two-layer approach is to 

overcome the problem of non-reachable reference trajectories 

(feasibility). The standard Economic MPC (EMPC) is used as 

the supervisory controller (upper layer), which computes the 

reference trajectory (set-points) for the lower layer 

comprising standard MPC tracking controllers responsible for 

driving the subsystems to desired set-points accordingly. 

 

a) Upper layer: Economic MPC

This layer comprises the EMPC described in Section 5.1. The 

problem to be solved is expressed in (15). 

b) Lower layer: MPC tracking

The lower layer consists of a standard MPC tracking. Instead 

of using manually selected reference trajectories, the 

computed states and control inputs by the upper layer are 

used.  

The following objective function  is used: 

     
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( ) ( ) ( ( )

 

)

   

r T

r

r r T r

MP

r

Np Np Np Np

C
T

J      
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x

x x x x

x x Q x x u u R u u

S

Npx is the vector of terminal state and 
r

Npx  its reference 

trajectory; 

Q, R and Sx are weights on the states, control inputs, and 

terminal state respectively. 

b b h h g g d hy w pv c

1 0
; diag(c ,c ,c ,c ,c ,c ,c ,c ,c ,c ); .

0 1
   
  

x
Q R S W Q

cb, ch, cg, cd cd, cpv, cw, chy , are positive weight coefficients 

(≤1) for the lead-acid battery, hydrogen battery, grid 

connection, diesel, solar, wind, and hydroelectric generators 

respectively, and Wc is a positive scalar. 

 

The optimization problem is formulated as follows: 

     
 

       
 

1

 
0

min max

s.t 5 , 6 , 7 , 8

( ),

, (9)

N

MPC
k k k

k

d

J k

k k k








u x d

d Θ

           (17) 

5.3. Single-layer approach: EMPC and MPC tracking 

Contrary to the two-layer approach as defined above, the  

economic optimization (EMPC) and the tracking formulation 

(MPC tracking) are integrated in a single layer. 

The problem to be solved is given as follows:  

       
    

       
   

2

1

 
0

2 2

min max

s.t. 5 , 6 , 7 , 8 ,(9),(10)

( ) ( ),,

N

EMPC MPC
k k k k

k

d

J k J

k k

k

k k k







 


u x α d

α Θ d Θ

  (18) 

 

6. CASE STUDY 

 

6.1. Description 

 

In this subsection, we present a smart micro-grid that consists 

of: two storage elements (batteries), three sinks (loads) and 

one virtual sink (external grid connection), one node (DC 

Bus), four sources (PV, Wind, Hydroelectric, and Diesel 

generators), and one virtual source (external grid connection).  

Since all the components (excluding sinks) are connected to a 

single node (DC Bus) through flow handling elements, they 

are all considered as manipulated inputs. The states of the 

smart grid are defined to be the state of charge of the storage 

elements. The block diagram of the smart micro-grid is 

shown in Fig 1. 

 
Fig 1. block diagram of the smart micro-grid 

6.2. Control-oriented Model  

State variables: 

xb and xh are the state of charge of the batteries (lead-acid and 

hydrogen respectively). x(k) ≜ [xb(k), xh(k)]T 

Control input variables: 

Pb1 and Pb2 are charged power and discharged power of the 

lead-acid battery; 

Ph1 and Ph2 are the charged and discharged power of the 

hydrogen battery; 

Pg1 and Pg2 are the exported and imported power into/from 

the external grid; Pd, Phy, Ppv, and Pw stand for the power 

supplied to the DC Bus by the diesel, hydroelectric, wind, 

and photovoltaic generators respectively; 

u(k) ≜ [Pb1(k), Pb2(k), Ph1(k), Ph2(k), Pg1(k), Pg2(k), Pd(k),   

Phy(k), Pw(k), Ppv(k)]T 

Disturbance variables: 

d1 is the industrial load, d2 is the residential load, and d3 is the  

DC-load. The disturbance vector d consists of the three loads. 

d(k) ≜ [d1(k), d2(k), d3(k)]T 

The matrices and vectors that define the system and its 

constraints are given as follows: 



      

   
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0 0 0 0 0 0 0 01   0
;    ;

0 0 0 0 0 0 0 00  1 

1 1 1
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1 1 1
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1 1

bc bd

hc hd

T Tmin max

T Tmin max
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 

  
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Table 1 presents system and control parameters as well as 

energy prices. 

Initial values of the subsystems, as well as the state of charge 

of the batteries are set to zero. The simulations were made for 

96 hours (4 days). The batteries were used during the first 

two hours of the day. They delivered 2 kWh in the first hour 

and 1 kWh in the second hour. 1 kWh was bought from the 

external grid during the second hour of the day. Each additive 

uncertain load demand (as explained in Section 4.2) is 

bounded as follows 
2,1α ( ) 1k   kW. On the other hand, the 

prices forecast error (as explained in Section 4.1) is bounded 

d ( ) 3
i

k    e.u (economic unit).  

 
System parameters  Control parameters     Energy prices (e.u) 

Parameters   Values  

(kW) 

 Parameters   Values  Lead-acid battery 

charging 

2.2 

Pmax
pv  15  Np  24  Lead-acid battery 

discharging 

2.2 

Pmax
w  15  Nc  24  Hydrogen battery 

charging 

2.2 

Pmax
hy  15  cpv  0.2  Hydrogen battery 

discharging 

2.2 

Pmax
d  15  cw  0.3  External grid selling  3 

Pmax
b1  35  chy  0.4  External grid buying  3 

Pmax
b2  15  cb  0.75  Diesel  3.3 

Pmax
h1  35  ch  0.75  Hydroelectric  2.1 

Pmax
h2  15  cd  1  Wind  2.1 

Pmax
g1  15  cg  0.75  Solar  2 

Pmax
g2  15  Q as defined 

previously 

   

ηbc  0.95  R as defined 

previously 

   

ηbd  1  λ1  2500     

ηhc  0.85  λ2  12     

ηhd  1.0  λ3  0.1     

Δ [35 35]T        

Table 1. System and control parameters; and energy prices 

 

Figure 2 shows the profiles of the load demand. The additive 

uncertain demand is represented with the shadowed area. 

 

 
Figure 2. Load demands’ profiles 

 

Figure 3 shows the profile of the energy prices. The forecast 

error is the shadowed area. 

 
         Figure 3. Profile of the energy prices 

 

6.3. Simulation Results 

 

The MPC controller implementations have been made using 

YALMIP (CPLEX and QuadProg solvers) (Löfberg,  2012) 

within the Matlab environment. In order to get a reasonable 

computational time, demands and prices in (13) have been 

considered unknown but constant during the prediction 

horizon N. One of the goals of this study is to minimize the 

energy production as much as possible in the presence of 

uncertainties (load demands and energy prices uncertainties).  

Figures 4a and 4b show a sample comparison of the energy 

production of the diesel and wind generators.  

Figure  4  displays  a  sample  plot  of  the  batteries’  state  of 

charge trajectories. 

 
Figure 4a. Plots of the energy generation in summer 

 
Figure 4b. Plots of the energy generation in winter 

 



      

 
Figure 5. Plots of the batteries’ state of charge trajectories 

 

Figures 4 and 5 show that, the EMPC strategy offers a better 

result, since it yields the lowest energy production, and a 

higher energy saving in the batteries.  

It can be stated that, one-layer approach is economically 

superior to a two-layer hierarchical scheme. This study 

confirms the results found in Nassourou et al. (2016). Similar 

result was obtained in Grosso et al. (2012a).  

Finally, Table 2 shows that the EMPC produces the lowest 

overall economic costs, thereby proving its superiority to the 

other strategies. 

Table 2 presents a comparison of the three EMPC strategies' 

economic costs (measured in economic unit (e.u)). 

 

  EMPC  EMPC + MPC 

tracking 

(single-layer) 

EMPC + MPC 

tracking 

(two layer approach) 

Summer economic cost  7722.4    8421.9   8433.5 

Winter economic cost  7891.7    8645.0   9312.4 

Table 2. Quantitative comparison of the economic costs  

 

7. CONCLUSION AND FUTURE WORK 

 

In this study, we have presented the application of three 

variations of robust optimization based EMPC strategies for 

controlling energy dispatch in a smart micro-grid. Load 

demands and energy prices uncertainties have been 

simultaneously considered, and modelled using the affine 

dependence method. Several EMPC strategies have been 

discussed and compared. The optimization problems were 

solved using minmax worst case approach. It has been found 

that, a single layer approach is superior to a hierarchical 

scheme. Moreover the standard Economic MPC yields a 

better economic result. The study confirms that, uncertainties 

degrade the performance of the micro-grid, because the cost 

of energy production increases. The next task for extending 

this work will be devoted to tackling uncertainty of 

renewable energy sources. 
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