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I. Introduction

Libration point orbits in the Circular Restricted Three-Body Problem (CRTBP) have been

studied for solar system and astronomical studies due to their special location and environment.

In the past three decades, many spacecrafts, such as ISEE-3, Soho, Genesis, Herschel, and Gaia

among others, have reached the Sun-Earth L1 and L2 points for space explorations or astronomical

observations [1]. Periodic orbits, quasi-periodic orbits, and their invariant manifolds in three-body

systems are well-known dynamical structures and have been employed as tools to design various types

of trajectories, such as Sun-Earth libration point missions [2, 3], low-energy captures into Mars halo

orbit [4, 5], and transfers between collinear libration points [6�8]. However, when a spacecraft moves

in the space where all the gravitational in�uences of the Sun, Earth, and Moon are too large to be

ignored, the complexity of the trajectory design problem increases. During preliminary studies, the

standard way to deal with this restricted four-body system, where a spacecraft is considered as the

forth body with in�nitesimal mass, is to decouple the system into two overlapping restricted three-

body problems, for example the Sun-Earth CRTBP and the Earth-Moon CRTBP. The spacecraft

can be shifted from one system to another by implementing maneuvers at the intersection points of

two manifolds coming from di�erent three-body regimes [9, 10]. Usually a re�nement of the patched

transfer in a high-�delity ephemeris model is necessary after these preliminary designs. Nevertheless,

sometimes the re�nement of is not straightforward and will severely distort the patched trajectory.

The Moon can be used as an outpost for future deep space exploration, under which circum-

stance the transfers between lunar orbits and Libration Point Orbits (LPOs) will serve as the basis

of the transportation. In this study, the transfer from a lunar orbit to a Sun-Earth LPO around

L2 is investigated. The background of such a transfer is the extension mission of the Chinese lunar

probe Chang'E-2 (CE-2) [11�13]. In this paper, a purely numerical approach is utilized to construct

natural transfers from a lunar orbit to the Sun-Earth LPO neighborhood, in the complete DE405

ephemeris model. The numerical approach utilizes a two-step strategy to extend the duration of

a spacecraft spent in the LPO neighborhood. When the duration is long enough, the spacecraft

is actually arriving on an LPO, because all motions except the LPO will leave the LPO neigh-

borhood rapidly due to the instability of the CRTBP. Compared to analytical or (semi-analytical)
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approaches, a numerical strategy is straightforward, e�cient, and capable of introducing various

mission constraints. After obtaining large amount of transfers, their features such as the departure

velocity and the distribution of all transfers are analyzed. These features are the key points that

should captured by any successful approximate model for this problem carried out either on the

Central Processing Unit (CPU) or the Graphic Processing Unit (GPU) platform.

Direct trajectory searching in the ephemeris model is an accurate approach of preliminary

mission design for deep space missions. However, this is usually a time-consuming practice. To

speed up the searching, CPU parallel computing can be brought in to increase the searching speed,

which is a common solution to speed up simulations or computations. On the other hand, the state-

of-the-art GPU parallel computing has shown great potential in handling massive computations in

many areas in recent years.

There have been some applications of the GPU parallel computing for trajectory design prob-

lems. A naturally parallelizable global point mascon model for the geopotential is established

through e�ective parallel computing on the GPU by Russell and Arora [14]. Bai et al. develop the

Modi�ed Chebyshev-Picard Iteration (MCPI) method to propagate ordinary di�erential equations

and to solve initial and boundary value problems [15�17], which is well suited for GPU implemen-

tations using the Compute Uni�ed Device Architecture (CUDA) [18]. Nakhjiri and Villac further

improve the MCPI method to be able to calculate state transition tensors only with di�erentiation

of polynomial, by developing particular algorithms appropriate for the GPU micro-architecture [19].

Wagner et al. have examined four Lambert solution methods on the GPU [20], by directly mod-

ifying Fortran routines to �t the requirements of CUDA, which is the GPU parallel programming

development environment of NVIDIA. Arora et al. utilize GPU parallel computing techniques to

develop a high-�delity trajectory propagation tool, which is used to simulate the orbit of resident

space objects [21]. They developed delicate routines using FORTRAN and CUDA to fully make use

of the GPU, including a particular approximated ephemeris model to feed GPU integrators with

the third-body perturbation data.

A great barrier that stops most researchers to employ GPU parallel computing is the high

learning cost. For instance, one needs to design communications between CPU and GPU, which is
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a di�cult task as elaborated in Arora's dissertation [22]. Writing programs directly with CUDA is

a time-consuming job and requires high-level computer science skills. For researchers, it is much

preferred to exploit GPU parallel computing easily and quickly. And it is especially helpful when

one wants to do some tests before determining whether to migrate to the CUDA environment or

not. In this paper, we demonstrate that it is possible to conveniently take advantage of the powerful

GPU parallel computing from a high-level programing approach, such as the Matlab platform, to

design complex interplanetary trajectories.

Apart from learning cost, there are additional challenges and constraints to writing CUDA

programs, which makes it di�cult to solve trajectory design problems on the GPU. For instance,

in the numerical searching in the ephemeris model mentioned above, the GPU does not support

caching ephemeris data for each thread on the GPU due to its physical structure. The GPU is also

not designed to support ephemeris packages like SPICE (or its Matlab interface MICE). Another

barrier is that CPU parallel computing is mature and it can stop researchers from migration to the

GPU platform. But as will be revealed by our results, the GPU is particularly e�cient to handle

massive searches of transfers.

In this paper, we have made four contributions to overcome the above mentioned challenges:

1) we establish a new Patched ERTBP model that approximates high-�delity ephemeris model

accurately for deep space trajectory design in the Sun-Earth-Moon system, which is a signi�cant

improvement of standard Patched CRTBP model; 2) our experiments demonstrate that eccentricities

of the Sun-Earth (∼0.0167) and Earth-Moon (∼0.0554) system should be considered in order to

improve the accuracy of preliminary trajectory designs by using ERTBP instead of CRTBP models;

3) our results reveal that eccentricities is not the major cause of the monthly variation of the

distribution of transfers from lunar orbits to LPOs around the Sun-Earth L2; and 4) we also show

the potential great speedup that GPU parallel computing can achieve for space mission designs, and

presente a convenient approach to incorporate GPU parallel computing with a little learning cost

and on inexpensive computation platforms.

The outline of the paper is as follows. In Section II, the two-step strategy searching feasible

transfers from the lunar orbit of the CE-2 to Sun-Earth L2 point neighborhood is introduced in
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the ephemeris model. In Section III, the Patched ERTBP model is established to approximate the

Sun-Earth-Moon system by decoupling it into two ERTBP models. The model is programed using

Matlab and can be launched on both CPU and GPU. In Section IV, the search of transfers is �rst

carried out in the DE405 ephemeris model using CPU parallel computing, and then in the Patched

ERTBP model using GPU parallel computing. The comparison between the two results validates

that the Patched ERTBP model approximates the ephemeris model well for the trajectory design

problem in this paper. A speedup analysis is also presented to demonstrate the high enhancement

one achieves from of the GPU parallel computing suing Matlab. In Section V, conclusions about

the result and the implementation in this study are given.

II. Methodology for Searching Transfers in Ephemeris Model

In this section, the Sun-Earth LPO region is de�ned �rst, and then the two-step strategy

searching for transfers from a lunar orbit to Sun-Earth LPOs is presented in two subsections.

In the CRTBP, there are �ve equilibrium points known as libration points, where three of

them, L1, L2 and L3, are collinear and unstable. In this work we are interested in the families

of LPO around the Sun-Earth collinear points L2, including periodic (Lyapunov and Halo) and

quasi-periodic (Lissajous and quasi-Halo) orbits [23, 24].

550,000 km 550,000 km

LPO region

Moon’s orbit

Earth L2

Sun
t

V

d d( , )t X

Enter

LPO region

Leave

LPO region

Fig. 1 Illustration of the LPO region about the Sun-Earth L2 point.

Previous researches [10] indicate that there exists zero-cost transfers between the Sun-Earth

and Earth-Moon libration point regions. A spacecraft orbiting the Moon can reach a Sun-Earth
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LPO asymptotically without other maneuvers but only an escaping maneuver at the lunar orbit [1].

Based on these results, we �rst de�ne the LPO region in the Sun-Earth system, which is a cuboid

neighborhood centered at the L2 point in the Sun-Earth rotating frame. Due to the fact that the

zero velocity curve limits the size of an LPO [24], only the x component is needed to de�ne the

LPO region. Figure 1 illustrates the projection of the de�ned LPO region on the ecliptic plane,

represented by the gray box region, centered at the L2 point. The width of the region along x-axis

should be designed to contain all LPOs of interest, so the upper and lower boundaries for the x

component of the region are 5.5× 105 km away from L2 point.

Figure 1 also shows a transfer trajectory (red curve), which asymptotically approaches an LPO

(purple circle) along its stable manifold, but will �nally leave the LPO region. This is because

any small deviations will increase exponentially due to the instability of the LPO region. At the

departure epoch td, the tangential departure maneuver ∆V is performed at the lunar orbit to

transfer the spacecraft to a Sun-Earth LPO. After performing the departure maneuver, the initial

inertial state Xd = [X,Y, Z, Vx, Vy, Vz]T ∈ R6 of the spacecraft is propagated forward in time in

the DE405 ephemeris model, until it enters and leaves the LPO or reaches a maximum propagation

time. The time duration ∆t that the spacecraft remains in the LPO region plays a key role in the

following two-step strategy to construct transfers. We remark that the following numerical method

is �rst introduced in a previous study [25], which focuses on more general analysis of the transfer

and the correction maneuver.

A. Grid Searching for Potential Transfer

The �rst step is a grid searching of initial departure conditions with the goal to locate all

potential transfers, which lead to trajectories that enter and remain in the LOP neighborhood for

a certain time ∆tmin.

To compute the transfers, the set of variables (td,∆V ) which de�nes an initial condition is

discretized into two-dimensional grids on the parameter plane. Each grid of initial condition is

propagated up to its �rst intersection with the LPO region at a certain epoch tin, and then we start

to accumulate the time duration ∆t that a spacecraft remains in the LPO region. At each step, the
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trajectory is transformed into a synodic frame using standard methods [24] to examine its position

with respect to the LPO region. The propagation is stopped when the trajectory leaves the LPO

region at a certain epoch tout.

Due to the fact that the escaping rate in the LPO region is exponential, a trajectory that only

temporarily passes by the LPO region will leave rapidly, but a trajectory that tends to arrive on an

LPO will stay much longer. So, in order to reject those transient trajectories, a minimum duration

∆tmin is speci�ed as 92 days, which is approximately a half period of a typical Sun-Earth LPO. The

period of an LPO is typically around a half of the period of the primaries, so it is around 183 days

for a Sun-Earth LPO. During the search, one grid is considered to lead to a potential transfer if its

initial condition leads to a trajectory whose ∆t is larger than ∆tmin, and then the grid is proceeded

for re�nement in the next step. Otherwise, the grid is rejected.

B. Re�ne Potential Transfers with Bisection Method

In the second step, a bisection strategy is used to extend the duration ∆t of a potential transfer

to a desired duration ∆tdes speci�ed as 450 days, by re�ning the initial condition of the transfer.

This 450-day requirement corresponds to 2.5 revolutions of a typical Sun-Earth LPO around the

L2 point. The number is determined by a trail-and-error process to ensure both a long enough

duration ∆t and an acceptable computation cost. If the re�nement of a potential transfer succeeds,

the re�ned ∆V is recorded as giving a feasible transfer.

The re�nement algorithm is illustrated in Fig. 2. Starting from a potential transfer, we slightly

vary the initial condition of the corresponding grid value of ∆V to get two nearby values ∆V − δV

and ∆V + δV , between which we assume there should be a feasible transfer satisfying ∆t ≥ ∆tdes.

This transfer is detected by a bisection iteration summarized below (as shown in Fig. 2):

1. Set the desired duration time ∆tdes ≥ ∆tmin; set the initial maneuver ∆V (0) as that of the

potential transfer; set the initial deviation δV (0) > 0; set the grid number N ∈ N+ and

maximum iteration number imax > 0.

2. Assume at iteration i, propagating the trajectory with ∆V
(i)
k gives the maximum ∆t

(i)
k .
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Fig. 2 Illustration of the bisection re�nement procedure for a potential transfer.

3. At iteration i+ 1, propagate the 2N + 1 initial conditions with ∆V
(i+1)
k = ∆V

(i)
k + k−N

N · δV (i)
k

(k = 0, 1, ..., 2N), and recored all durations ∆t
(i+1)
k within the LPO region.

4. Update ∆t by the largest ∆t
(i+1)
k .

5. If ∆t ≥ ∆tdes, then stop the iteration, and return current ∆t and the corresponding ∆V
(i+1)
k

as the feasible transfer.

6. If i ≥ imax, then stop and report the potential transfer as not feasible.

7. Let δV (i+2) = δV (i+1)/N , go to step 3 and move on to next iteration.

With the above procedure, we can determine transfers that remain inside the LPO region for at

least 450 days. Additionally, small corrections of the order of 0.1 m/s or even smaller are needed in

the re�nement. Most of potential transfers that fail this re�nement procedure are in fact transient

trajectories passing through the LPO region.

This two-step searching procedure would require a great amount of computation time. However,

the above searching algorithm is naturally parallelizable. In next section, we exploit a new approach

that utilizes GPU parallel computing.
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III. GPU Parallel Searching in Patched ERTBP Model

To design transfers discussed in the last section, at least the Sun-Earth-Moon system should be

considered, leading to a four-body problem together with the spacecraft. We choose to decouple this

four-body system into the Sun-Earth ERTBP and the Earth-Moon ERTBP model in this paper.

In this section, �rst the ERTBP model is brie�y reviewed, then the Patched ERTBP model is

established, and at last the GPU implementation of the Patched ERTBP model is presented.

A. Elliptic Restricted Three-Body Problem

x

X

Yy

1r
2r

1m

2m

f 0f 

( )f

1L
2L

Barycenter

Fig. 3 Pulsating synodic frame of the ERTBP.

In the ERTBP, as shown in Fig. 3, the two massive primaries m1 and m2 (m1 > m2) revolve

round their common barycenter on two elliptic Keplerian orbits respectively, with the same eccen-

tricities and periods. The third body, the spacecraft, has ignorable mass compared with the two

primaries. So the spacecraft is assumed to move in the mutual gravitational �eld of the two pri-

maries, but does not a�ect the motion of the primaries. The distance ρ between m1 and m2 is

varying with respect to the time t (or the true anomaly f) as ρ(f) = a(1−e2)
1+e cos f , where a is the semi-

major axis and e is the eccentricity. As shown in Fig. 3, a nonuniformly rotating and periodically

pulsating frame (x, y, z) located on the barycenter is used to simplify the equations of motion. The

x-axis is always pointing from m1 to m2, therefore rotating nonuniformly. In Fig. 3, the synodic

frame (x, y, z) is related to the inertial frame (X,Y, Z) by the true anomaly f measured anticlock-

wisely from the inertial X-axis, which is always connecting the focuses of the two primaries. The

z-axis (or Z-axis) is pointing outside of the paper and omitted for clarity, and the y-axis (or Y -axis)

completes a right-handed frame.
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The instantaneous distance ρ(f) between two primaries, the total mass m1 + m2, and the

reciprocal of the mean motion n̄ are chosen as the distance, mass, and time units respectively.

Then, the independent variable is transformed from the time t to the true anomaly f by the chain

rule d
dt = df

dt ·
d
df where df

dt = (1 + e cos f)2/
√

(1− e2)3 is the angular velocity. In this way, the two

primaries are �xed on the x-axis at x1 = −µ and x2 = 1 − µ, where µ = m2

m2+m2
is the normalized

mass of m2. At last, the equations of motion of the spacecraft can be expressed as [23]

x′′ − 2y′ =
∂ω

∂x
,

y′′ + 2x′ =
∂ω

∂y
,

z′′ + z =
∂ω

∂z
,

(1)

where the primes indicate that the derivatives are taken with respect to the true anomaly f , and

ω(x, y, z, f) =
1

1 + e cos f

[
1

2
(x2 + y2 + z2) +

1− µ
r1

+
µ

r2
+

1

2
µ(1− µ)

]
, (2)

with r1 =
√

(x+ µ)2 + y2 + z2 and r2 =
√

(x− 1 + µ)2 + y2 + z2 are the instantaneously normal-

ized distances to the two primaries respectively.

The ERTBP is a nonautonomous system explicitly depending on the time t, due to the depen-

dency of ω on f and thus on t as shown in Eq. (2). Simply substituting e = 0 into Eqs. (1) and (2)

will lead to the equations of motion in the CRTBP. The ERTBP does not have any �rst integral

and is nonconservative [26, 27], therefore it is much more complicated than the CRTBP.

In this paper, we decouple the Sun-Earth-Moon system into the Sun-Earth ERTBP with µ1 ≈

3.040×10−6, e1 ≈ 0.0167, and the Earth-Moon ERTBP with µ2 ≈ 0.0122, e2 ≈ 0.0554. Hereinafter,

the subscript i of a symbol ξi indicates that it is de�ned for the Sun-Earth ERTBP when i = 1,

and the Earth-Moon ERTBP when i = 2. The obliquity of the Ecliptic and Moon's orbit has been

ignored in the model. Although more parameters can be introduced to model the angle, but as will

be demonstrated in Section IV, the result has already approximated the result in the ephemeris

model very well.

B. Patched ERTBP Model

Although the CRTBP model is usually used as the basic three-body model when decoupling

the Sun-Earth-Moon system into two simpler CRTBP models [28, 29], the ERTBP model has also
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been used [27]. By considering the eccentricity, the model becomes more complicated but whereas

more realistic for designing transfers.



2f

1f

1

1

2

2

2SEL

Sun

Earth

Moon

3BSOI

Fig. 4 Illustration of the Patched Sun-Earth ERTBP and Earth-Moon ERTBP model.

Figure 4 shows the geometry of the two ERTBP models, where the z-axis and Z-axis of both

ERTBP models are always pointing outside of the paper and thus omitted for clarity. The synodic

frames Ri and inertial frames Ii (i = 1, 2) are de�ned in each ERTBP model as described in the

previous section. The synodic frame R1 (red) represents the Sun-Earth ERTBP, where the Sun is

the major primary and the Earth-Moon barycenter is the secondary primary. The synodic frame

R2 (blue) represents the Earth-Moon ERTBP, centered at the secondary primary of the Sun-Earth

ERTBP. Each pair of Ii and Ri is related by the corresponding true anomaly angle fi. The two

inertial frames I1 and I2 (gray) are related by the constant angle ϕ in Fig. 4 between x-axis of the

two frames.

To patch the two ERTBP models, we adopt the concept of the Three-Body Sphere-Of-In�uence

(3BSOI) [27, 30]. In Fig. 4, the dashed black circle centered at the Moon represents this 3BSOI,

with a radius of 159, 200 km [30]. The 3BSOI is instantaneously normalized in both ERTBP models,

so it appears pulsating periodically during propagation. When a spacecraft is located inside of the

3BSOI, its motion is propagated in the Earth-Moon ERTBP, ignoring the solar perturbation; when

the spacecraft gets out of the 3BSOI, the motion is propagated in the Sun-Earth ERTBP, ignoring

the irregular motion of the Moon.
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Denote the state of a spacecraft in the Sun-Earth ERTBP rotating frame R1 by x1 = [x, y,

z, x′, y′, z′]T ∈ R6, and in the Earth-Moon ERTBP by x2 ∈ R2. The conversion between the two

ERTBP models takes several steps. First, we translate x1 to an intermediate frame located at the

Earth-Moon barycenter but parallel with R1, and clockwisely rotate this frame with an angle of f1

so that it is parallel with the inertial frame I1. Denote the new state in this temporary inertial

frame by X1, and we have the expression,

X1 =

 R−1z (f1) · ρ1(f1) 03

d
[
R−1z (f1) · ρ1(f1)

]
df1

· df1
dt1

R−1z (f1) · ρ1(f1) · df1
dt1

 · (x1 − [1− µ1, 0, 0, 0, 0, 0]T). (3)

Second, we rotate the intermediate frame anticlockwisely by an angle of ϕ, and get the state X2 in

the Earth-Moon ERTBP inertial frame I2, expressed as

X2 =

Rz(ϕ) 0

0 Rz(ϕ)

 ·X1. (4)

Finally, we rotate the frame anticlockwisely by an angle of f2 to get the state of the spacecraft x2

in the Earth-Moon ERTBP rotating frame R2, expresses as

x2 =

 Rz(f2)/r12.2(f2) 0

d [Rz(f2)/r12.2(f2)]

dt2
· dt2
df2

Rz(f2)/r12.2(f2) · dt2
df2

 ·X2. (5)

In above equations ρi (i = 1, 2) stands for the distance between two primaries in two ERTBP models,

and Rz(ν) is the rotational matrix of a frame with respect to its z-axis, de�ned as

Rz(ν) =


cos ν sin ν 0

− sin ν cos ν 0

0 0 1

 . (6)

The Patched ERTBP model is initialized as below. Given an initial epoch t̂0, where the hat

over t means dimensional variable, we extract from the ephemeris data the geometric con�guration

of the Sun-Earth-Moon system. Then, the initial true anomalies fi.0 (i = 1, 2) of the two ERTBP

models can be obtained from the geometric con�guration. Additionally, the constant frame angle

ϕ at t̂0 can be obtained by calculating the angle between the eccentricity vector e1 of Sun-Earth

system and e2 of the Earth-Moon system.
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Because both ERTBP models are nonautonomous, after initializing the Patched ERTBP model,

the timeline of the two ERTBP models should always be synchronized according to the following

relationship

(t̂− t̂0)
ti·TUi↼−−−−−−−−−−−−−−−−⇁
t̂/TUi

ti
solving Kepler's equation
↼−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇁

simple convertion
fi, (7)

where t̂ denotes the dimensional time duration, TUi denotes the time unit and ti denotes the

normalized time in the ERTBP. As revealed by Eq. (7), the initial value of ti is t1.0 = t2.0 = 0 at

the epoch t̂0.

The Patched ERTBP is a model that only requires initial conditions, and does not depend on

external data �les like what the ephemeris model does. So the Patched ERTBP model is naturally

parallelizable. Although it is possible to parallel this kind of searching on CPUs on powerful and

expensive clusters, for researchers without access to clusters, it will be appealing to bene�t from

GPU parallel computing.

C. GPU implementation of Grid Searching in Patched ERTBP Model

Substituting the dynamic model in Section II by the Patched ERTBP model allows carrying

out a similar search for transfers from a lunar polar orbit to the Sun-Earth LPO region around L2

point. The grid searching methodology only requires a series of propagation in the Patched ERTBP

model starting with di�erent initial conditions. Since the model can be implemented on the GPU,

the searching methodology is now naturally a parallelizable problem with separated input data.

The remaining task to launch this search algorithm on a GPU card is to �nd a proper numerical

integrator. In fact, most numerical integrator based on serial operations can be directly migrated

onto the GPU, for example the popular Dormand-Prince integrators. A serial integrator usually

runs slower on a GPU then on a CPU due to the lower frequency of the GPU. But the GPU can be

more e�cient when there are a large amount of computations, because it can launch thousands of

integrators concurrently. In this paper, the numerical propagation algorithm implemented by ode45

in Matlab is modi�ed to run on a GPU core. This choice of ode45 provides an easy validation of

the computing accuracy of the GPU, by simply comparing the results of the regular ode45 and

the GPU-version ode45. The regular ode45 returns all the propagation history to users but the
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GPU-version ode45 only save a current step when looping the propagation iterations. However, this

is adequate for our grid searching in the Patched ERTBP model. The propagation history is not

required to calculate the total duration ∆t in the LPO region, because it is accumulated at each

propagation iteration, as elaborated in Section II.

Although Matlab has already provided a high-level access to exploit GPU parallel computing,

the limitations of GPU parallel computing still exist. The o�cial documents of the Matlab has

elaborated all the essentials. Here we only review some critical concepts based our programming

experiences, which are believed to be helpful to audiences with few GPU experiences. A Matlab

function or script that works on the GPU cannot use matrix indexing, cannot dynamically allocate

memories for variables, cannot use most high-level built-in functions in Matlab, and cannot use most

advanced data structures. A convenient way to write a Matlab GPU program is to assume that it

only supports the very basic element-wise program, similar as what the ANSI-C language supports.

For instance, the inner product of two vectors x and y ∈ Rn should be directly programed as an

element-by-element summation
∑n

i=1 xi yi, rather than using vectorized programming in Matlab.

Fortunately, all computations within the Patched ERTBP model can be implemented element-wisely

without using unsupported functions.

IV. Results and Discussions

In this section, the search results in the ephemeris model and the Patched ERTBP model are

demonstrated and compared in the �rst two subsections; the e�ect of the eccentricities of the two

ERTBP is analyzed in the third subsection; and at last a speedup analysis of the GPU parallel

computing on the transfer design problem is presented.

A. CPU search result in Ephemeris Model

We use the Chang'E-2 (CE-2) as an application example, and the Keplerian elements of the

orbit are listed in Table 1. The departure state Xd ∈ R6 at an epoch td before the lunar departure

maneuver ∆V are converted from the orbital elements.

Using the approach developed in Section II, we have investigated the transfers from the lunar

polar orbit used by the CE-2 spacecraft to an LPO around the Sun-Earth L2 point. A Runge-Kutta
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Table 1 Lunar orbital elements of CHANG'E-2 at epoch 55656.0 MJD [5].

a(km) e i(◦) ω(◦) Ω(◦) M(◦)

1838 0.003 86 323 259 152

7/8-order integrator has been used to propagate the trajectories with a maximum local truncation

error of 10−13 in the nondimensional unit. Gravitational attractions of the Moon and all major

planets in the solar system are included, with their positions provided by the DE405 ephemeris

data. The searching program is written in FORTRAN77 language and carried out on a Linux

cluster with Intel Xeon CPUs. The CPU parallel computing is manually carried out by dividing the

whole searching to multiple threads.

The grid size of the departure epoch td is set as 10 minutes, and the grid size of ∆V is set

as 0.0004 km/s. The departure state Xd is converted from the CE-2's orbital elements in Table 1

to Cartesian coordinates in the inertial frame. Since the CE-2 departed from the lunar orbit on

June 9th, 2011 [13], we explore the departing epochs td within the whole year of 2011, i.e., between

2011/01/01 and 2012/01/01. The magnitude ∆V of the departure maneuver is chosen in the range

of [0.640, 0.720] km/s. This interval is designed to be large enough to �ll up the gap in the Sun-

Earth CRTBP model between the Jacobian constant JC of the CE-2 orbit and the JC of a potential

LPO. In the parameter space (td,∆V ), a complete grid searching for feasible transfers that stay in

the LPO region for more than 450 days is performed. The successful grid points are recorded as

initial conditions for feasible transfers, including the modi�ed departure maneuver ∆V , �ight time

before entering LPO region tFT, and other useful information for program diagnostics.

The searching procedure has detected a huge number of transfer candidates ful�lling the above

requirements. We will consider the feasible transfers with tFT ≤ 43 days in following studies, which

are displayed in Fig. 5. The horizontal axis represents the departure epoch td in year 2011, and the

vertical axis represents the magnitude of the departure maneuver ∆V . Dots of (td,∆V ) in each

subplot are colored according to their �ight time tFT, as shown by the colorbar.

In Fig. 5, there are two di�erent families of transfers with tFT ≤ 43 days: Family I in the

lower part of the plot, and Family II with parabolic boundaries in the upper part. The pattern of

both families is repeated with a periodicity about 28 days. Figure 6 shows a time interval of initial
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Fig. 5 Distribution of feasible transfers in the year of 2011.

Fig. 6 Examples of transfers in Families I (left) and II (right) colored from 15 to 45 days.

The red asterisk stands for the initial condition corresponding to the CE-2 [13]. The black

curves displayed along with transfers in surrounding subplots represent the lunar orbit. It

also re�ects the relative size of the �nal LPOs.

conditions of feasible transfers around the departing epoch of the CE-2 (June 9th, 2011) with more

details. Four transfer examples from each families are demonstrated on two sides of the distribution

plot, whose corresponding departure conditions are shown by squares in the plot. The transfers in

Family I usually take longer �ight times, but do not always require smaller ∆V than the one used

by the transfers in Family II. The transfer examples in Family I (the left column in Fig. 6) show

that the trajectory will slightly return to the Moon after the initial departure, while the examples
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in Family II (the right column) directly enter the LPO region. These di�erent behaviors can explain

the lower ∆V cost required by some transfers in Family I, because the Moon provides additional

gravitational assistances to them.

The departure condition of the CE-2 is represented by the asterisk in Fig. 6, departing on

June 9 with a departure maneuver of approximately 0.690 km/s [13]. Therefore, the CE-2 probe

actually exploited a transfer in Family II. As shown in the �gure, leaving aside practical operational

constraints, a transfer with less ∆V or smaller tFT can be designed. So, in practical mission design,

it is always helpful to perform a high-�delity searching to either discover new opportunities or

validate preliminary designs.

We summarize three key features of the variation of all feasible transfers with �ight time less

than 43 days: 1) there are two families of transfers; 2) the �ight time tFT in di�erent families has

di�erent distribution; and 3) the two families have a monthly variation within a year. These features

should be captured by the approximate models used in designing transfers from lunar orbits to the

Sun-Earth LPO region, such as the Patched ERTBP model introduced in Section III.

B. GPU search results in Patched ERTBP model

The computation is performed on two platforms. The �rst one is a laptop with one NVIDIA

GeForce GTX850m GPU card. This GPU has 640 CUDA cores with a graphics clock of up to 902

MHz. This card is mainly designed for visualization but is also capable of GPU parallel computing.

The second platform is one node of a cluster with one NVIDIA Tesla K20m GPU card. This GPU

has 2496 CUDA cores with a clock of 706 MHz. The search algorithm is �rst developed on the

laptop platform without any settings of GPU, then it is directly sent to the cluster without settings

for the change of platforms. This is a particular interest of this paper to show that high performance

computation on GPU carried in Matlab requires only a little programing experience. Our simulation

results show that both platforms have generated the same result.

Figure 7 shows the search results in the ephemeris model (top plot) and the Patched ERTBP

model (bottom plot). Each dot represents a feasible transfer departing on td with a tangential

maneuver of magnitude ∆V , and the dot is colored by its corresponding �ight time tFT which is
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Fig. 7 Distribution of feasible transfers detected in Ephemeris model (top) and Patched

ERTBP model (bottom) where e1 = 0.0167 and e2 = 0.0554.

less than 43 days. The feature of the two families are well captured by the Patched ERTBP model,

using which the separations of Family I and II are clear and same to the result in the ephemeris

model. The distributions of the color that represents tFT for the ephemeris model and the Patched

ERTBP are also very close to each other. The approximate model would inevitable bear model

errors. Two minor di�erences we observed are: 1) the red part of Family I is sparser in the Patched

ERTBP model than in the ephemeris model, which means transfers of Family I detected in the

Patched ERTBP model has relative shorter �ight time tFT; and 2) at the beginning part of Family

II around 02/01, the patched model shows less red dots than the ephemeris model, which means

transfers in this part of Family II detected in the Patched ERTBP model have shorter �ight time

tFT.

The resulted ∆V in the Patched ERTBP model has been uniformly displaced by +0.0125 km/s

along the vertical axis when being demonstrated in Fig. 7, such that the patterns are close to those in

the ephemeris model. This constant bias of ∆V in the Patched ERTBP model is calibrated through

a trail-and-error process, by directly comparing the results in the ephemeris model and the Patched

ERTBP model. The model error leading to this bias of ∆V can be caused by many facts, such as the

ignored obliquity of the moon path, the complex lunar motion, and the parameters chosen for the

two ERTBP models patched together (like semimajor axes, eccentricities, and periods). However,

from a practical point of view, as long as the bias can be calibrated priorly, the search result we
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obtained in the Patched ERTBP has guidance signi�cances for trajectory design in the ephemeris

model.

C. E�ect of Eccentricities in Patched ERTBP model

Next, we demonstrate another bene�t of using the Patched ERTBP model. We can control all

settings of the model, which is not feasible when working in the ephemeris model. By simply setting

the Sun-Earth or the Earth-Moon eccentricity to be zero, i.e. e1 = 0 or e2 = 0 in Eq. (1), we can

carry out similar searches in the new Patched ERTBP models on a GPU card. These experiments

could all be done very e�ciently on a regular laptop. We remark that in the ephemeris model it is

not possible to directly study the e�ect of a parameter on the result in such a way.

Fig. 8 Distribution of feasible transfers detected in Ephemeris model (top) and Patched Sun-

Earth ERTBP and Earth-Moon CRTBP model (bottom) where e1 = 0.0167 and e2 = 0.

In Figs 8 and 9, the search results by setting e2 = 0 and e1 = e2 = 0 in the Patched ERTBP

model are demonstrated respectively. The eccentricity of the Earth-Moon ERTBP e2 is set as zero

in Fig. 8, so we are actually using a patched Sun-Earth ERTBP and Earth-Moon CRTBP model.

The eccentricities of the Sun-Earth e1 and the Earth-Moon ERTBP e2 are both set to be zero

in Fig. 9, so we are actually using a Patched CRTBP model. It can be observed that all models

generate similar results as shown in Figs 7 to 9, capturing most of the features of the result in the

ephemeris model. Therefore we can conclude that the eccentricity is not a factor signi�cant enough

to vary the distribution of transfers we investigate in this paper.
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Fig. 9 Distribution of feasible transfers detected in Ephemeris model (top) and Patched

CRTBP model (bottom) where e1 = e2 = 0.

Fig. 10 Transfer opportunities in the ephemeris model and three patched models from June

5 to 15 in 2011.

A more detailed comparison is shown in Fig. 10, which is an enlarged plot concentrating on

the Family II in June. The dark square represents results in the Ephemeris model, the red circle

represents in the Patched ERTBP, the blue triangle represents in the Patche ERTBP and CRTBP

model, and the green cross in the Patched CRTBP. On a larger scale, the results cover the same

region with minor deviations. However, a comparison between the Patched ERTBP and CRTBP

model (blue triangles) and the Patched CRTBP model (green crosses) reveals that they always

appear as pairs with the blue triangle slightly above the green cross. Therefore, introducing the
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Sun-Earth eccentricity e1 will slightly increase the transfer cost but can be ignored in a preliminary

study. A comparison between the Patched Patched ERTBP (red circles) and other two analytical

models shows clear di�erences. It means the introducing of the Earth-Moon eccentricity will change

the distribution signi�cantly, rather than only a minor displacement.

Fig. 11 Deviations of search results in three patched models with respect to that in the

ephemeris model.

In Fig. 10, it seems that the Patched ERTBP model is not much improved compared with other

two Patched models. However, in Fig. 11, we overlap the result in each three patched models (red

dots) by the result in the ephemeris model (green dots), such that the less non-overlapping red dots

observed the more accurate the model is. As shown in the �gure, the Patched ERTBP model has

obvious less non-overlapping regions, especially in the three boxed regions (blue) in each plot. So the

Patched ERTBP model captures the distribution of the result in the ephemeris model better. For

example, in the rightmost boxed regions, two patched models using CRTBP models both capture

non-existing transfers in the ephemeris, which are correctly rejected by the Patched ERTBP model.

There are remaining deviations between the ephemeris model and the Patched ERTBP model, which

is understandable because the Patched ERTBP model is only expected to be a good approximation,

by ignoring many perturbations.
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As revealed above, it is bene�cial to consider the eccentricities in preliminary studies. Although

the theoretical studies and topics in the ERTBP model are much more complicated than that in the

CRTBP model [23, 24, 31], from a point view of numerical studies, the ERTBP model introduces

almost no more di�culties than the CRTBP model. Therefore, the Patched ERTBP model is a

better choice.

D. Speedup Analysis

In this section, we present the performance enhancement we have achieved by using the GPU

parallel computing. Di�erent searches of transfers are carried out by using di�erent models. Similar

results have been achieved, as discussed in the previous sections. The computation time of above

searches are summarized in Table 2. The second column �Platform� gives speci�c information about

the hardware and software used in each case. The fourth column �Grid Num.� gives the total

number of computations performed.

Table 2 Computation time on di�erent platforms.

Case Platform Model Grid Num. Computation Time [hrs]

1 laptop.Matlab.GPUa Patched ERTBP 13,192,560 8.36

2 cluster.Matlab.GPUb Patched ERTBP 13,192,560 11.65

3 cluster.Matlab.GPUb Patched CRTBP 13,192,560 11.21

4 cluster.Fortran.CPUx16cEphemeris DE405 13,300,992e 12.5 (12.0∼13.4)f

5 cluster.Fortran.CPUx8d Ephemeris DE405 13,300,992e 17.1 (16.6∼17.9)f

a With Intel Core i5-4210M CPU, and NVIDIA GTX 850M GPU 902 MHz.

b With Intel Xeon E5-2670 CPU, and NVIDIA Tesla K20m GPU 706 MHz.

c With 2 Intel Xeon E5530 CPUs. Each has 4 cores and supports 8 threads.

d Thread number limited to the core number 8.

e A little bit more grids used, in order to equally divide among threads.

f Average time among threads, along with the minimum and maximum in parenthesis.

For Cases 1 to 3, the GPU parallel computing is triggered through Matlab on either a laptop or a

cluster, with the same Patched ERTBP model and exactly the same code. Comparing between Case

1 and Case 2 indicates that the GPU card with higher frequency have a better performance for the
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search of transfers, as Case 1 requires only 71.8% of the computation time of Case 2. Comparing

between Case 2 and Case 3 indicates that although the Patched ERTBP is more complex as it

considers the perturbation, it leads to only 3.9% more computation time due to the e�cient GPU

parallel computing. Comparing between Case 1 and Case 4 shows that we can reach a speedup of

approximately 1.483 (use 13192560
13300992 ·

12.5
8.36 to eliminate the e�ect of excessive grids) through utilizing

the Patched ERTBP model and the GPU parallel computing. Here Case 4 is carried out on the CPU

with 16 threads. In the case access to a cluster is not available and the search has to be carried out

on the laptop platform of Case 1, the speedup ratio can be much larger because less CPU cores will

be available. Case 5 is carried out to examine the e�ect of the e�ect of the multi-thread technique

of Intel CPU we used. This technique allows one physical core of a CPU to handle two threads,

which acts like two physical cores to an operation system. Comparing Case 4 and Case 5 shows that

this multi-thread technique can provide a speedup ratio of 17.1/12.5 ≈ 1.368, less than 2, which

is the theoretical anticipation when doubling physical CPU cores. It is interesting that the best

performance for our study is obtained on the laptop platform, which is the least expensive platform.

Fig. 12 Transfer example used to analysis GPU parallel computing performance.

Since the above �ve cases have many di�erences among each other, including di�erent hard-

ware and programing language, it is di�cult to give a quantitative evaluation of the GPU parallel

computing strategy we used. So next, a direct comparison of CPU and GPU parallel computing is

performed on the laptop platform using Matlab, as adopted in Case 1 in Table 2. Additionally, di�er-

ent initial conditions will give di�erent transfers which require di�erent computation time, because

some will be rejected at the �rst-step searching but some others will be re�ned at the second-step
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bisection method. To eliminate the e�ect of these variable factors, we choose one feasible transfer in

the Patched ERTBP model, and reproduce it multiple times on both CPU and GPU to analyze the

speedup. The initial grid of the transfer chosen is td = 2455566.53472 Julian Day, and ∆V = 0.690

km/s. Starting from this initial condition, the two-step strategy generates a feasible transfer as

shown in Fig. 12, where the blue curve represents the transfer in the Earth-Moon ERTBP (within

the lunar 3BSOI), the red curve represents the trajectory in the Sun-Earth ERTBP, and the black

curve represents the orbit of the Moon.

Table 3 computation time of reproducing the transfer example multiple times on CPU and

GPU.

Number of orbit n
total time [s] average time [s] speedup

tCPU tGPU tCPU/n tGPU/n tCPU/tGPU

1 0.26 4.40 0.257 4.401 0.06

10 3.81 4.41 0.381 0.441 0.86

20 7.46 4.42 0.373 0.221 1.69

50 15.01 4.70 0.300 0.094 3.19

100 27.68 4.79 0.277 0.048 5.78

200 52.97 6.36 0.265 0.032 8.33

500 128.1 6.33 0.256 0.013 20.24

1,000 257.1 6.33 0.257 0.006 40.62

1,200 307.1 6.34 0.256 0.005 48.48

1,500 382.0 12.66 0.255 0.008 30.17

1,800 456.9 12.63 0.254 0.007 36.18

2,000 506.7 12.68 0.253 0.006 39.96

5,000 1,255.2 25.29 0.251 0.005 49.62

10,000 2,503.1 50.53 0.250 0.005 49.54

We compute the search procedure of this example multiple times serially by CPU, and record

the computation time tCPU. Then we launch GPU parallel search with the same number of orbits,

and record each computation time tGPU. The results are summarized in Table 3. Comparing tCPU

and tGPU, the GPU performs worse than the CPU when n < 20, but as n increases the GPU

soon wins over the CPU. For n = 10, 000 computations, the GPU costs only 50 seconds while the
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CPU requires 2,503 seconds, which is a reduction of almost 98%. The fourth column of average

computation time of CPU tCPU/n are almost the same, which meets the expectation that the total

time tCPU should be in proportion to the orbit number n. The �fth column of tGPU/n shows that

the average computation time of the GPU decreases rapidly as n grows, instead of being proportion

to n. This is the special property of GPU parallel computing due to its micro-architecture. The

speedup given by tCPU/tCPU is shown in the last column, the GPU parallel computing shows more

speedup ratio as n becomes large. For the last two rows, the speedup reaches almost 50, which

indicates that a cluster with 50 CPU cores could barely beat a laptop with an NVIDIA GPU card

when 10,000 trajectory searches are performed. We remark that in each previous searches there are

around 13 million grids being explored, so even greater speedups can be expected.

Fig. 13 Curves of computation time and speedup.

Figure 13 shows the logarithmic plot of the computation time tCPU and tGPU on the left axis,

and the corresponding speedup tCPU/tGPU on the right axis. tCPU is increasing linearly as n grows,

but tGPU shows staged growth and increases much slower than tCPU. The drop of speedup after

103 is caused by the staged growth of tGPU. Fundamentally, the GPU launches computations

concurrently, so the computation time tGPU will increase discretely as n increases. For example, if

a GPU can run maximumly Nmax computations concurrently, theoretically, when the computation

number is less than Nmax, the computations time will always be the same constant δtGPU, and the

computation time for Nmax + 1 to 2 ·Nmax computations will all be 2 · δtGPU. This feature of the
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GPU parallel computing is determined by its micro-architecture [18].

V. Conclusions

In this paper, e�cient numerical searches using GPU technique are presented to design trans-

fers from a lunar orbit to the Sun-Earth Libration Point Orbit (LPO). The numerical search is

�rst conducted with the ephemeris model, which serves as a baseline. Since the ephemeris model

cannot be directly implemented on the GPU, a Patched Elliptic Restricted Three-Body Problem

(ERTBP) model is established, where the Sun-Earth-Moon system is �rst decoupled into the Sun-

Earth ERTBP and the Earth-Moon ERTBP and then patched together through a lunar three-body

sphere of in�uence (3BSOI) centered at the Moon. Using the Chinese CHANG'E-2 (CE-2) exten-

sion mission as the testbed, the search results in the Patched ERTBP model are shown to capture

most of the features of the result in the ephemeris model, validating that the Patched ERTBP

model approximates the ephemeris model well enough for the design of transfer trajectories in the

Sun-Earth-Moon system. Moreover, we also �nd other alternative transfers for the CE-2 requiring

smaller departure maneuvers or less �ight time.

Controlled experiments can also be designed with the Patched ERTBP model. By comparing

experiments ignoring the eccentricities of the Sun-Earth system or the Earth-Moon system, we

discover that considering the eccentricities increases the accuracy of the preliminary trajectory

design, whereas only requires only 3.9% more computation time than a Patched CRTBP model.

However, the eccentricities will not change the general trend and the monthly variation of feasible

transfers within a year.

Another bene�t of this approximate model is that it can be conveniently implemented on a

GPU card. The speedup analysis demonstrates that great speedups can be achieved from GPU

parallel computing for space trajectory design. The greatest enhancement of computation in this

research is achieved on an inexpensive laptop. Moreover, compared with other studies utilizing the

GPU parallel computing that involve advanced programing skills with the CUDA, this research

demonstrates a new approach to use the GPU parallel computing with only a little learning cost by

using Matlab.
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