
Abstract
The inherent instruction-level parallelism (ILP) of

current applications (specially those based on floating
point computations) has driven hardware designers and
compilers writers to investigate aggressive techniques for
exploiting program parallelism at the lowest level. To
execute more operations per cycle, many processors are
designed with growing degrees of resource replication
(buses and functional units). However, the high cost in
terms of area and cycle time of this technique precludes
the use of high degrees of replication. An alternative to
resource replication is resource widening, that has also
been used in some recent designs, in which the width of
the resources is increased.

In this paper we evaluate a broad set of design
alternatives that combine both replication and widening.
For each alternative we perform an estimation of the ILP
limits (including the impact of spill code for several
register file configurations) and the cost in terms of area
and access time of the register file. We also perform a
technological projection for the next 10 years in order to
foresee the possible implementable alternatives. From this
study we conclude that if the cost is taken into account,
the best performance is obtained when combining certain
degrees of replication and widening in the hardware
resources. The results have been obtained from a large
number of inner loops from numerical programs
scheduled for VLIW architectures.

1. Introduction

The architectural models implemented in current
high-performance microprocessors are based upon
hardware and software techniques to exploit the inherent
instruction-level parallelism (ILP) of the applications.
These models make use of deeper pipelines that reduce the

cycle time and wider instruction issue units that allow the
simultaneous execution of several instructions per cycle.
As the number of transistors on a single chip continues to
grow, more hardware can be accommodated on a chip. It is
important to think of new processor organizations to take
advantage of the additional transistors that will be
available in the near future.

Very Long Instruction Word (VLIW) architectures are
oriented to the exploitation of ILP. In a VLIW architecture,
an instruction is composed of a number of operations that
are issued simultaneously to the functional units (i.e. the
scheduling is performed at compile time so the dispatch
phase is very simple). Although there exists a few number
of commercial VLIW machines, these architectures have
been the subject of research in the last few years and will
probably constitute the core of future designs [17].

The static nature of VLIW schedulings require good
compilation techniques to effectively exploit the ILP
available in real programs. Software pipelining [9] is a
compilation technique that extracts ILP for the innermost
loops by overlapping the execution of several consecutive
iterations. In a software pipelined loop, the number of
cycles between the initiation of successive iterations
(termed Initiation Interval) is bounded either by the
recurrences in the dependence graph or by the resource
constrains of the target architecture [5, 20, 21].

The performance of loops bounded by resources can be
improved by increasing the number of resources available
in an architecture (replication technique). Using this
technique we increase the number of operations that can
be simultaneously executed over independent data. As an
alternative to replication, the width of the resources can be
increased (widening technique[11, 12]). Using this
technique the same operation can be performed over
multiple data. Both techniques can be combined in the
same processor design.

The use of replication and widening allow us to have a
scalable architecture in which we can add hardware to

Widening Resources: A Cost-effective Technique for Aggressive ILP Architectures

David López, Josep Llosa, Mateo Valero and Eduard Ayguadé

Departament d’Arquitectura de Computadors. Universitat Politècnica de Catalunya.

Campus Nord Mòdul D6, Jordi Girona 1-3, 08034 Barcelona, SPAIN.

{ david | josepll | mateo | eduard }@ac.upc.es

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

increase the number of operations performed per cycle.
Although replication has been extensively used in the
design of superscalar processors, only small degrees of
widening have been applied to buses in some of them
(IBM POWER2 [25]), and floating point units (FPU) in
vector processors (NEC SX-3 [24]) and multimedia
processors (AltiVec [18]).

This paper focuses on a cost-conscious evaluation of a
broad range of VLIW processor designs in which several
degrees of replication and widening are combined. For
each configuration we evaluate the ILP achievable in the
execution of a set of numerical programs. In order to
perform a fair comparison of the different alternatives, it is
mandatory to study the hardware costs for each
configuration in terms of area and cycle time. These costs
forces us to view the performance from a different
perspective

The area cost defines those configurations that could be
implemented in the next microprocessor generations,
according to the predictions of theSemiconductor Industry
Association [23]. For each generation we estimate the
performance of a set of implementable configurations
taking into account the number of cycles required to
execute the programs and the cycle time. From this study
we conclude that, for a given technology, the best
performance is obtained when replication and widening
are appropriately combined.

All the evaluations have been performed for VLIW
architectures and numerical programs. Our workbench is
composed of 1180 loops that account for 78% of the
execution time of the Perfect Club [3]. The loops have
been obtained using the experimental tool Ictíneo [2] and
software pipelined usingHypernode Reduction Modulo
Scheduling [15,16], a register pressure sensitive heuristic
that achieves near optimal schedules. Register allocation
has been performed using the wands-only strategy and the
end-fit with adjacency ordering [22]. When a loop requires
more than the available number of registers, spill code is
added and the loop is rescheduled [14].

The organization of the paper is as follows: Section 2
describes the replication and widening techniques and
outlines the advantages and drawbacks of both. Section 3
presents a study of the ILP achievable by both techniques:
first we study the peak performance for a broad set of
configurations (i.e. the performance assuming a perfect
schedule and an infinite register file), and then the
performance degradation due to the spill code added by
the compiler when a limited register file is used. Section 4
describes the models used to estimate the area and cycle
time cost of a configuration; these models are used in
Section 5 to estimate the performance of the
configurations under different technology limits. Finally,
Section 6 summarizes the main conclusions of this work.

2. Replication and widening: the techniques
and their implications

In order to increase the number of operations performed
per cycle, the resources of the processor must be
increased. In this section we describe two possible
techniques: replication and widening. Replication consists
of increasing the number of resources by adding more
independent functional units; widening consists of
increasing the number of operations that a single
functional unit can perform per cycle.

Figure 1 shows the use of replication and widening,
both for buses and FPUs. Figure 1a shows a basic
processor configuration with a single bidirectional bus and
a single FPU. In this case we can perform one memory
access and one operation per cycle. In order to issue two
memory accesses and two operations per cycle, one could
add another bus and another FPU (replication), as shown
in Figure 1b. An alternative could be to duplicate the
width of the bus, the register file and the FPU (widening)
as shown in Figure 1c. In this case, two consecutive words
in memory could be accessed and stored in a single
register (of width 2), and one operation could be
performed over registers of width 2. Replication is more
versatile than widening: while replication can access to
two independent words in memory or perform two
independent operations per cycle, widening requires that
the operations arecompactable [12] in order to perform
two operations in the same functional unit. For instance,
two independent memory accesses with a stride different
than one can be scheduled in the same cycle in a
configuration with 2 buses; a configuration with a simple
wide bus should schedule the two accesses in two different

FileRegister
File

B
U

S

FPU

Register
File

B
U

S

FPU

B
U

S

FPU

Register
File

B
U

S

a) b) c)

Figure 1: Several configurations: a) base
configuration with 1 bus and 1 fpu. b) The same
configuration after applying replication (i.e. 2
buses and 2 fpus) and c) the base configuration
after applying widening (i.e. 1 bus and 1 fpu,
both of width 2). Notice that the register file has
been also widened.

FPU
FPU

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

cycles unless stride 1 appears. However replication has, in
general, higher costs:

• Buses: widening affects the data bus, but not the
control and address buses. On the other hand,
replication increases all the buses between the register
file and the first-level cache, so it requires more ports
in the cache memory (multiported caches require
more area and have more access time [8]). Also,
widening requires the same number of address
translations, while replication requires more addresses
translated per cycle (this affects the number of ports
of the TLB, causing an increase in cycle time and die
area of the TLB [1])

• Register file (RF): in our proposal widening is applied
to the buses, the FPUs and the register file. Every
register in the RF increases its width in bits, but they
have the same number of ports per bit. Applying
replication increases the number of ports per bit. Both
techniques increase the RF area and cycle time, but
increasing the number of ports per bit has a higher
cost than increasing the number of bits per register, as
we show in Section 4.

• FPUs: both techniques require almost the same
hardware at the FPU level, because we need to
perform the same number of operations per cycle.

From the point of view of code generation, widening
can reduce the total number of instructions (a single wide
operation is the result of compacting multiple operations).
This reduction of the code size can reduce the miss rate of
the instruction cache and further improve performance.

3. Limits on ILP

In this section we study the maximum ILP achievable
under optimal conditions and show the effect of the size of
the register file. A baseline configuration, composed of 1
bus and 2 FPUs, all of width 1 (configuration named1w1)
is considered. This configuration has the following
characteristics: a store is served in 1 cycle; division and
square root are not pipelined and require 19 and 27 cycles,
respectively; the rest of the operations (load, add,...) are
fully pipelined and require 4 cycles to be executed. In this
study we increase the maximum number of operations
performed per cycle by factors of 2, 4, 8, 16, 32, 64 and
128 using replication, widening or a combination of the
two. The resulting configurations are labelled asXwY. An

XwY configuration has X buses and 2*X FPUs1, all of
them of width Y, and a register file in which every register
has a width of Y words.

1.Preliminary studies show that a relation of 2 FPUs for each bus is the
most balanced configuration. Also, we have based the cost
calculations on the MIPS R10000, which can issue 2 floating point and
1 memory operation per cycle.

3.1 Maximum ILP achievable

The parallelism exploitable from a loop is bounded
both by the number of operations that have to be
performed and by the recurrences of its dependence graph.
For a processor configuration, loops can be classified into
resource-bound loops or recurrence-bound loops. A
resource-bound loop is a loop whose performance is
limited by the resources available. A recurrence-bound
loop is a loop whose performance is limited by the
recurrences so. Therefore, this type of loop will have the
same performance even with infinite resources.

Figure 2 shows the maximum performance achievable
using the described techniques under optimal conditions:
perfect scheduling, register file of infinite size and perfect
memory. From these plots, several conclusions can be
drawn:

• Configurations based on replication (i.e. configurations
Xw1, upper plot in Figure 2) show a progressive
performance degradation. This is because aggressive
configurations can easily convert resource-bound
loops into recurrence-bound loops, and these loops
can not benefit by an increase in resources.

• Configurations based on widening (i.e. configurations
1wY, lower plot in Figure 2) show even more
performance degradation due to non-compactable
operations. For instance, in a 1w8 configuration,
either 8 compactable operations or 1 non-compactable
operation can be issued per cycle; therefore, the
presence of non-compactable operations introduces an
enormous penalty on these configurations.

• Some of the intermediate configurations (i.e.
configurations where replication and widening
techniques are combined) also report good
performance. For example, the behaviour of the 2wY

x1 x2 x4 x8 x16 x32 x64 x128

5

10

sp
ee

d
-u

p

1w1

2w1 1w2

4w1 2w2
1w4

8w1 4w2
2w4

1w8

16w1 8w2
4w4

2w8

1w16

32w1 16w28w4
4w8

2w16

1w32

64w1 32w216w4
8w8

4w16

2w32

1w64

128w1
64w2
32w4
16w8
8w16

4w32

2w64

1w128

Figure 2: Speed-up for different configurations
xwy.

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

configurations saturates in the same way as the 1wY
configurations, but the saturation point is close to a
speed-up of 8 instead of 5. Also, the Xw2
configurations have performances very close to the
Xw1 configurations.

3.2 The effects of spill code on performance

Increasing the number of operations that can be
performed per cycle (by using either replication or
widening) can reduce the Initiation Interval (II) of a loop.
Regretfully, reducing the II can increase the register
requirements [13]. If the registers required to schedule a
loop on an architecture exceed the number of physical
registers, spill code must be introduced in order to free
some registers [14]. However, spill code increases the
memory traffic and can result in an increase of the II, with
the associated performance degradation.

When widening is applied, we have also a wide register
file (i.e. in a XwY configuration, all registers are of Y
words wide; in our case 64 bits times Y). For instance, a
32-RF 4w1 configuration can access to 32 registers of
width 1 (i.e. 64 bits) while a 32-RF 4w2 can access to 32
registers of width 2 (i.e. 128 bits). Notice that if we
schedule a loop with compactable operations in a 4w2
configuration, these operations produce 2 results that are
stored in a single wide register, so we have an additional
storage capacity; however, if the loop scheduled in the
4w2 configuration has no compactable operations, we do
not benefit from this additional capacity.

Figure 3 shows the performance when spill code is
taken into account. For each configuration, the loops have
been scheduled assuming 32-, 64-, 128- and 256-RF and

adding spill code when necessary1. Notice that the
configuration 8w1 does not have the 32-RF bar. This is
because a 8w1 configuration can produce 24 results per
cycle (8 memory + 16 FPU), and we consider a 4-cycle
latency configuration. In this case, the register pressure is
so high, that the scheduler fails to produce a valid schedule
with the available registers. This is the reason why we do
not present, with this latency model, configurations with a
factor higher than 8.

The results show that when the configurations become
more aggressive, the need for spill code increases,
reducing the performance. For example, configuration
4w2 has a performance of 2.25 (with 32-RF), 3.28
(64-RF), 4.39 (128-RF) and 4.76 (256-RF), while the 1w2
configuration achieves almost its maximum performance
with a 64-RF.

1.The baseline is a configuration 1w1 with a RF of 256 register file
because it does not require spill code, so it is similar to the baseline of
Figure 2 (1w1 with an infinite RF).

The additional RF capacity of a configuration where
widening has been applied reduces the need for spill code.
For example the 8w1 configuration has a theoretical
performance greater than the 4w2 configuration, but figure
3 shows that the configuration 4w2 with 64-RF has a
performance greater than the 8w1 64-RF configuration,
and the same happens with a 128-RF. Only with a 256-RF
does the 8w1 have better performance than 4w2. Looking
at the results, we can conclude that the additional capacity
of the register file obtained when the widening technique
is used, has an important impact on the final performance.

4. Design considerations

4.1 Area cost

To estimate the area cost, we take into account the SIA
Semiconductor Industry Associationpredictions [23] for
the technology size (λ) and the chip size in order to

compute the number ofλ2 per chip for the next five
generations (Table 1).

1998 2001 2004 2007 2010

λ (µm) 0.25 0.18 0.13 0.10 0.07

Size (mm2) 300 360 430 520 620

λ2 per chip (x106) 4800 11111 25443 52000 126530

λ2 / mm2 (x106) 16 30.86 59.17 100 204.08

Table 1: Semiconductor Industry Association
(SIA) predictions in 1994

2w1 1w2 4w1 2w2 1w4 8w1 4w2 2w4 1w8
1.0

2.0

3.0

4.0

5.0

6.0

sp
e
e
d

-u
p 32

64
128
256

Figure 3: Performance/cost trade-off taking spill
code into account for some configurations XwY
with FPUs latency=4. Baseline: configuration
1w1 with a 256-RF.

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

We have estimated the area of a general purpose
floating point unit (FPU) using the MIPS R10000
processor as a reference. The R10000 processor FPU
includes a multiplier, an adder and a divider. We consider
these components as the basic components of a general
purpose FPU. With a 0.25µm technology, the R10000

FPU requires 12 mm2 of area [19]. So we assume the area

of a FPU as 12 mm2 x 16x106 λ2/mm2 = 192x106 λ2.
The overall size of a register file is determined mainly

by the size of a register cell. The other components that are
needed to access the register file typically represent less
than 5% of the area required by the register cells [10].

To access the register cell of a multiported RF, each
port requires one transistor, a select line and a data line. In
addition, a write port requires a second access transistor
and a data line. The area of the register cell grows
approximately as the square of the number of ports added
because each port forces the cell to increase both the
height and the width. Each additional port (read or write)
adds one select line to the height of the cell. With respect
to the width, each additional read port requires another
data line and another access transistor, and each additional
write port requires two data lines and two access
transistors [7, 10, 11]. Table 2 shows the dimensions of
several multiported register cells.

To illustrate the cost difference between replication and
widening, Table 3 shows the area cost of configurations
4w1, 2w2 and 1w4 for a 64-RF. Each configuration
requires 2 read plus 1 write port per FPU and 1 read plus 1
write port per bus, so configuration 1w4 (2 FPUs and 1
bus, all of width 4) requires 5R+3W ports. Doubling the
replication degree doubles the port requirements. Notice
that these 3 configurations have the same area cost due to
the FPUs (all of them require the same hardware to
perform 4 floating point operations per cycle).

Ports 1R, 1W 2R, 1W 5R, 3W 10R, 6W 20R, 12W

W x H 50x41 64x41 162x81 316x145 568x257

Area (λ2) 2050 2624 13122 45820 145976

Relative 1 1.28 6.4 22.35 71.21

Table 2: Dimensions of several multiported
register cells.

Configura-
tion

Ports
Area of one

memory cell (λ2)
Bits per
register

Total RF

area (λ2)

4w1 20R+12W 145976 64 598x106

2w2 10R+6W 45820 128 375x106

1w4 5R+3W 13122 256 215x106

Table 3: RF area cost for some configurations.

Figure 4 summarizes the area cost of the different
configurations tested. We assume that it is reasonable to
use between 10% and 20% of the chip area for the
functional units and the register file. These limits are
shown by the five horizontal bands, one for each of the
SIA predictions (notice that the vertical axis has
logarithmic scale).

The area cost forces us to view the performance from a
different perspective. For example, with a 0.10λ
technology we can build a 8w1 configuration with 128-RF
but not with 256-RF. The same technology allows us to
build a 4w2 configuration with 256-RF, which has better
performance than 8w1 128-RF (see Figure 3). The reader
can find a more detailed study of the area requirements of
these techniques in [11].

4.2 The register file access time

A multiported register file follows the scheme shown in
figure 5. The access time model used in this paper is based
on an adaptation proposed [6] for the register file of the
CACTI memory model [26]. In the model, the access time
of the register file is assumed to be governed by the read
time, and can be written as the sum of the following terms:

• Decoder time: time to decode the register being
accessed and select its wordline. This time depends
mainly on the number of registers available.

• Wordline time: is the time required to drive the select
line. It depends on the length of the line (that depends
on the size in bits of every register and on the width of
every register cell).

• Bitline time: is the time delay between the wordline
going high and the sense amplifier being able to detect

1w1 2w1 1w2 4w1 2w2 1w4 8w1 4w2 2w4 1w8 16w1 8w2 4w4 2w8 1w16

configuration

100

1000

10000

a
re

a
*
1
0
^

6
*
la

m
b

d
a
^

2

256
128
64
32

0
.2

5
0
.1

8
0
.1

3
0
.1

0
0
.0

7

Figure 4: Area cost (register file plus FPUs)

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

the state of the cell. This delay depends mainly on the
height of the cell and on the number of registers.

• Sense time: is the time delay through the sense
amplifier.

• Outdrive time: is the time required to drive the read
data onto the internal bus to the ALU.

• Precharge time: is the time to precharge the bitlines,
comparators and internal decoder bus.

To summarize, the access time is governed by the
number of registers, the width of every register and the
size of every register cell (which depends on the number
of read and write ports). Table 4 shows the relative access
time for different configurations varying the number of

Configuration
Register file

32 64 128 256

1w1 1 1.05 1.18 1.34

2w1 1.49 1.54 1.70 1.87

1w2 1.10 1.15 1.29 1.45

4w1 2.44 2.51 2.69 2.90

2w2 1.65 1.72 1.87 2.06

1w4 1.22 1.27 1.43 1.60

8w1 4.32 4.41 4.61 4.87

4w2 2.75 2.82 3.00 3.23

2w4 1.85 1.92 2.09 2.29

1w8 1.39 1.45 1.62 1.80

16w1 8.04 8.15 8.39 8.72

8w2 4.89 4.99 5.20 5.48

4w4 3.10 3.18 3.38 3.61

2w8 2.12 2.20 2.38 2.60

1w16 1.68 1.75 1.93 2.14

Table 4: Relative register file access time
(baseline: 1w1 32-RF)

Register
request

Register
request

Wordlinesregister
cell

bitlines

Sense amplifier

D
ec

od
er

D
ec

od
er

Output driver

Figure 5: Multiported register file structure

registers (32, 64, 128 and 256), the width of every register
(64 bits times the width degree) and the size of the register
cell. In order to consider the access time independent of
the technology used, all times have been normalized with
respect to the time of the 1w1 32-RF configuration.

To reduce the access time, a register file can be
partitioned into several RF, maintaining copies of all the
data [4]. For example, the RF of a configuration 8w1 can
be implemented on a single RF where each cell requires 40
read plus 24 write ports (8R+8W for the 8 buses and
32R+16W for the 16 FPUs). This RF can be also
implemented by two identical copies, where all functional
units can write in both copies of the RF, but only 4 buses
and 8 FPUs read each copy. In this case, 20R+24W ports
are required for each copy. This means an increase of the
RF die area, but the access time has been reduced. The
configuration 8w1 can be partitioned in 1, 2, 4 or 8 blocks,
having the relative area increase and cycle time decrease
shown in Figure 6. Notice that the behaviour of area
growth is exponential while the decreasing of the access
time is logarithmic. A small partitioning, like a
2-partitioning has a slight increase in area and an
important decrease in access time.

4.3 Code size

In a VLIW architecture, the instruction word has
several atomic instructions (load, add,...). Using widening,
one atomic instruction must specify several basic
operations. For example, configuration 4w1 requires an
instruction word long enough to fit 4 memory accesses and
8 floating point operations, while in configuration 2w2, the
instruction word must fit up to 2 memory accesses and 4

1 2 4 8
0.0

0.5

1.0

1.5

2.0

area
access time

Figure 6: Behaviour of the RF area and
cycle time of a 8w1 64-RF configuration
with RF partitioning in 1, 2, 4 and 8 blocks.

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

Configu-
ration

32 registers 64 registers 128 registers 256 registers
1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

1w1 ✓ ✓ ✓ ✓
2w1 ✓ ✓ ✓ ✓ ✩ ✩ ✩ ✩
1w2 ✓ ✓ ✩ ✩
4w1 ✩ ✩ ✩ ✩ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ✻
2w2 ✩ ✩ ✩ ✩ ❏ ❏ ❏ ❏
1w4 ✩ ✩ ✩ ❏
8w1 ❏ ❏ ❏ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ● ● ● ● ● ●
4w2 ❏ ❏ ❏ ❏ ❏ ✻ ✻ ✻ ✻ ✻ ✻ ●
2w4 ❏ ❏ ❏ ❏ ❏ ❏ ✻ ✻
8w1 ❏ ❏ ❏ ❏
16w1 ● ● ● ● ✕ ● ● ● ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕
8w2 ✻ ✻ ✻ ● ● ● ● ● ● ● ● ✕ ✕ ✕ ✕ ✕
4w4 ✻ ✻ ✻ ✻ ✻ ✻ ● ● ● ● ● ●
2w8 ✻ ✻ ✻ ✻ ✻ ✻ ● ●
1w16 ✻ ✻ ✻ ✻

Table 5: Implementable configurations with a technology of 0.25 (✓), 0.18 (✩), 0.13 (❏), 0.10 (✻)
and 0.07 (●). The white cell means that this RF partitioning is not applicable to this
configuration. Symbol ✕ means not implementable with any of the considered technologies.

floating point operations (but in the best case, both can
perform the same number of basic operations). So the
instruction length required by configuration 4w1 is 2 times
the length required by configuration 2w2 and 4 times the
length required by configuration 1w4. However,
configuration 2w2 can require more instructions to
perform a loop than configuration 4w1 because it is less
versatile.

Figure 7 shows a comparison between the code size of
different configurations that have the same peak
performance. This is an extra advantage of the widening
technique even though it does not affect our study because
we consider a perfect memory.

2w1 1w2 4w1 2w2 1w4 8w1 4w2 2w4 1w8

1.0

0.5

0.25

0.125

Figure 7: relative code size comparison

5. Performance/cost trade-offs under a
technology limit

In this section we present a study of the best
configurations for some technology generations
considered. The methodology used is the following: we
first select the configurations that can be implemented for
each technology according to the SIA predictions and the
area models in section 4. For each implementable
configuration XwY(Z:n) (i.e. X buses and 2*X FPUs, all
of width Y, with a RF of Z registers of width Y, partitioned
in n-blocks) we calculate its cycle time, assuming that the
cycle time is the RF cycle time. We adapt the latency of
the FPUs to match this cycle time and we perform the

scheduling to find the cycles required1. The cycles
required to execute all the loops times the cycle time give
us the final performance.

5.1 Implementable configurations for a given
technology

We consider that a configuration is implementable, for a
given technology, if the area cost of the FPUs and the
register file is smaller than 20% of the total chip area
available (see table 1). We have calculated the area for 32-,
64-, 128- and 256-RF, with all possible partitions. Table 5
shows the implementable configurations for each
technology generation. A generation can implement all the
configurations implementable by the previous generation
plus the new ones listed in the table.

1.The cycles required are calculated as the cycles per iteration
(Initiation Interval) times the number of iterations performed in the
original loop execution.

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

a) b) c) d)

Figure 8: effects of a) increasing the number of registers in the RF b) replication, c) widening and
d) different ways to implement a configuration with a peak performance of 8. All areas are in millions
of λ2.

2.50 3.0

speed-up

5000

10000

15000

a
re

a

1w8(128:1)
2w4(128:2)

4w2(128:4)

8w1(128:8)

1.50 2.0

speed-up

5000

10000

15000

a
r
e
a

1w1(128:1)
2w1(128:2)

4w1(128:4)

8w1(128:8)

1.0 1.50 2.0

speed-up

1000

2000

3000

4000

a
r
e
a

1w1(128:1)

1w2(128:1)

1w4(128:1)

1w8(128:1)

0.75 1.0 1.25

speed-up

350

400

450

500

550

600

a
re

a

1w1(32:1)

1w1(64:1)

1w1(128:1)

1w1(256:1)

5.2 The floating-point units latency

Each FPU requires an amount of time to perform one
operation; its latency in cycles depends on the processor
cycle time. This is important because it determines the
scheduling of the loops. For this reason, we propose to
compare configurations adapting the latency of the FPUs
to the processor cycle time. The 4 cycle models we have
tested are listed in table 6.

We assumed the 4-cycles model for configuration 1w1.
Each configuration considered can be classified into a
cycle model depending on its relative (from the 1w1
configuration) cycle time. A configuration with a relative
cycle time Tc belongs to the z-cycles model, where
z=����4/Tc. For example, the 2w4(32:1) configuration has a
relative cycle time of 1.85 (i.e. 3-cycles model) while
2w4(128:1) configuration has a relative cycle time of 2.09
(i.e. 2-cycles model); and 2w4(128:2) configuration has a
relative cycle time of 1.80 (i.e. 3-cycles model).

cycle model
cycles of operations

store +,*, load div sqrt

4-cycles 1 4 19 27

3-cycles 1 3 15 21

2-cycles 1 2 10 14

1-cycle 1 1 5 7

Table 6: Cycles/operation for the cycle models
tested. Operations div and sqrt are not pipelined,
other operations are fully pipelined.

5.3 Performance evaluation

In this section we first discuss the individual effects of
some parameters on the configurations evaluated. After
this discussion, we show the best configurations for each
technological limit. In all cases, we use a fixed timing
model based on technology parameters forλ=0.25. We do
not attempt to factor-in reductions in cycle time due to
future technology generations.

Figure 8a shows the performance/cost ratio when we
increase the number of registers available in the register
file, for configuration 1w1. This configuration has
negligible need for spill code when a 64 (or bigger) RF is
available, so an increase of the RF does not affect the
cycles required, but increases the RF cycle time. For this
reason, the performance of RFs greater than 64 registers
declines.

Figure 8b shows the performance/cost ratio when only
replication is applied. Notice that a small degree of
replication produces good performance (better than
widening when we must schedule loops with
non-compactable operations). However, configurations
with a high degree of replication can become
unimplementable (they occupy more than 20% of the total
chip area) or suffer a decrease in performance because a
small increase in IPC (instructions per cycle) is
counteracted with a high increase of cycle time (like
configuration 8w1 in Figure 8b).

On the other hand, Figure 8c shows the
performance/cost ratio when only the widening technique
is applied. A small degree of widening produces an
increase in the area cost and cycle time that is smaller than
what was noted with the replication technique. Also, the

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

1.50 1.75

speed-up

5

10

15

20

%
 d

ie
 a

re
a 2w1(32:1)

2w1(32:2)
2w1(64:1)

1w2(32:1)

1w2(64:1)

1.75 2.00 2.25 2.50

speed-up

5

10

15

20

%
 d

ie
 a

re
a

1w2(64:1)

2w2(64:1)
2w2(64:2)

1w4(64:1)

1w4(128:1)

2.25 2.50 2.75

speed-up

5

10

15

20

%
 d

ie
 a

re
a 4w1(128:4)

2w2(64:2)

2w2(128:2)

2w4(128:1)

2w4(128:2)

2.75 3.00

speed-up

5

10

15

20

%
 d

ie
 a

re
a

4w2(128:2)

4w2(128:4)

2w4(128:1)
2w4(128:2)

2w4(256:2)

2.75 3.0

speed-up

0

2

4

6

8

10

%
 d

ie
 a

re
a

4w2(128:2)

4w2(128:4)

4w2(256:4)

2w4(128:1)
2w4(128:2)

a) b) c)

d) e)

Figure 9: Top five configurations for technology a) 0.25, b) 0.18, c) 0.13, d) 0.10 and e) 0.07.
In all cases, the possible increment of the clock speed has not been taken into account

increase of storage capacity due to applying the widening
technique to the register file reduces the need for spill
code, resulting in a good performance ratio. Nevertheless,
there is a point at which the increment in IPC is so small
that performance degrades due to increases in cycle time
(like configuration 1w8 in figure 8c).

We conclude that combining a small degree of
replication and widening can result in the best
performance. This point can be observed in Figure 8d,
which shows several configurations with the same peak
performance.

Figure 9 shows, for each technology, the five
configurations that achieve the best performance. In each
plot of Figure 9, none of the most aggressive
configurations are in the top-five configurations due to
their high cost.

6. Conclusions

The inherent ILP of numerical applications requires an
increase in the number of operations that can be performed
per cycle. Two alternatives have been studied in this paper:
replication and widening, for which we have done a
performance/cost study. The results have been obtained
using a large number of software pipelined loops from the
Perfect Club benchmarks assuming a VLIW architecture.

We have proposed to combine replication and widening
in the design of VLIW processors. We applied widening to
the floating-point functional units, the register file and the
buses between the register file and the first-level data
cache. We have presented a study of the ILP limits of each
configuration in optimal conditions, concluding that
applying only the replication technique offers the best
theoretical performance. However, when a limited register
file is used the increase of storage capacity due to wider
registers can reduce the need for spill code. The results
show that this additional capacity has an important impact
on the final performance (e.g. with a 128-RF, configuration
4w2 achieves better performance than configuration 8w1,
whereas the latter has the best theoretical performance).

Taking into account that the replication technique is
more expensive than the widening technique in terms of
area cost and cycle time, we have estimated the cost of the
configurations considered. We compare the performance
of the configurations that can be built in the next processor
generations (according to the SIA predictions). The
performance has been calculated using the register file
cycle time. To perform a realistic comparison, the RF
cycle time has been reduced using the RF partitioning
technique and the FPUs latency has been adapted to the
cycle time.

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

From this study we conclude that, for a given
technology, the best performance is obtained when
combining a small degree of replication and widening in
the hardware resources. For example, a 4w2 configuration
with a 128-RF offers a speed-up of 1.66 with respect to a
8w1 configuration with a 128-RF, and occupies only 81%
of the area.

Acknowledgements

The authors would like to thank the anonymous
reviewers for their fruitful comments that undoubtedly
have contributed to improve the quality of this paper. This
work has been supported by the Ministry of Education of
Spain under contracts TIC 429/95 and TIC 98-0511, by
CEPBA (European Center for Parallelism of Barcelona),
and by ESPRIT LTR Project No 24942 (MHAOTEU).

References

[1] T.M. Austin and G.S. Sohi. High-bandwidth address
translation for multiple-issue processors. InProc. of the
ISCA-23,pp 158-167. May 1996.

[2] E. Ayguadé, C. Barrado, A. González, J. Labarta, J. Llosa,
D. López, S. Moreno, D. Padua, F. Reig, Q. Riera and M.
Valero. Ictíneo: A tool for Instruction-Level Parallelism
Research. Res. Rep. UPC-DAC-1996-61. December 1996.

[3] M. Berry, D. Chen, P. Koss and D. Kuck.The Perfect Club
benchmarks: Effective performance evaluation of
supercomputers. Tech. Rep. 827, CSRD, U. of Illinois at
Urbana-Champaign, November 1988.

[4] A. Capitanio, N. Dutt and A. Nicolau. Partitioned register
files for VLIWs: A preliminary analysis of tradeoffs. In
Proc. of the MICRO-25, pp 292-300, 1992.

[5] J.C. Dehnert and R.A. Towle. Compiling for Cydra 5. In
Journal of Supercomputing, 7(1/2):181-227, 1993.

[6] Keith I. Farkas.Memory-System Design Considerations for
Dynamically-Scheduled Microprocessors. PhD thesis, Dep.
of Elec. and Comp. Eng., U. of Toronto, 1997.

[7] R. Jolly. A 9-ns 1.4 gigabyte 17-ported CMOS register file.
IEEE Journal of Solid-State Circuits, V. 25(10):1407-1412,
October 1991.

[8] T. Juan, J.J. Navarro and O. Temam. Data caches for
superscalar processors. InProc. of the ICS-11, pp 60-67.
July 1997.

[9] M. Lam. Software pipelining: An effective scheduling
technique for VLIW machines. InProc. of the PLDI-88, pp.
318-328, June 1988.

[10] Corinna G. Lee. Code Optimizers and Register
Organizations for Vector Architectures. Ph. D. Thesis. U. of
California at Berkeley. May, 1992.

[11] D. López, J. Llosa, M. Valero and E. Ayguadé. Resource
widening vs. replication: Limits and performance-cost
trade-off. InProc. of the ICS-12, pp 441-448. July 1998.

[12] D. López, M. Valero, J. Llosa and E. Ayguadé. Increasing
memory bandwidth with wide buses: Compiler, hardware
and performance trade-off. InProc. of the 11th. Int. conf. on
Supercomputing (ICS-11), pp 12-19. July 1997.

[13] J. Llosa, E. Ayguadé and M. Valero. Quantitative evaluation
of register pressure on software pipelined loops. InInt. Jour.
of Parallel Programming, vol. 26 n. 2 pp. 121-142. 1998

[14] J. Llosa, M. Valero and E. Ayguadé. Heuristics for
Register-Constrained Software Pipelining. InProc. of the
MICRO-29, pp. 250-261, Dec 1996.

[15] J. Llosa, M. Valero, E. Ayguadé and A. González.
Hypernode Reduction Modulo Scheduling. InProc. of the
MICRO-28, pp 350-360, 1995.

[16] J. Llosa, M. Valero, E. Ayguadé and A. González. Modulo
Scheduling with reduced register pressure. InIEEE Trans.
on Computers, vol. 47 n. 6 pp 625-638, June 1998.

[17] Microprocessor Report vol 11, no. 14.Intel HP make EPIC
disclosure. October 1997.

[18] Microprocessor Report vol 12, no. 6.AltiVec vectorizes
PowerPC. May 1998.

[19] K. Olukotun, B.A. Nayfeh, L. Hammond, K. Wilson and K.
Chang. The Case for a Single-Chip Multiprocessor. InProc.
of the ASPLOS-VII, pp 2-11, October 1996.

[20] B.R. Rau. Iterative modulo scheduling: An algorithm for
software pipelining loops. InProc. MICRO-27, pp. 63-74,
November 1994.

[21] B.R. Rau and C.D. Glaeser. Some scheduling techniques
and an easily schedulable horizontal architecture for high
performance scientific computing. InProc. of the 14th Ann.
Microprogramming Workshop, pp. 183-197, October 1981.

[22] B.R. Rau, M. Lee, P. Tirumalai, and P Schlansker. Register
allocation for software pipelined loops. InProc. of the
PLDI-92, pp. 283-299, June 1992.

[23] Semiconductor Industry Association. The National
Technology Roadmap for Semiconductors. Semicond. Ind.
Assoc. , San Jose, California 1994.

[24] T. Watanabe. The NEC SX-3 supercomputer system. In
CompCon91 pp. 303-308, 1991

[25] S.W.White and S. Dhawan. POWER2: Next Generation of
the RISC System/6000 family.IBM J. Res. Develop. 38 (5),
493-502. September 1994.

[26] S.J.E. Wilton and N.P. Jouppi. CACTI: An enhanced cache
access and cycle time model.IEEE Journal of Solid-State
Circuits, Vol. 31(5):677-688, May 1996.

0-8186-8609-X/98 $10.00 (c) 1998 IEEE

