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Best-first search can be regarded as anytime scheme for producing lower bounds on the

optimal solution, a characteristic that is mostly overlooked. We explore this topic in the

context of AND/OR best-first search, guided by the MBE heuristic, when solving graphical

models. In that context, the impact of the secondary heuristic for subproblem ordering may

be significant, especially in the anytime context. Indeed, our paper illustrates this, showing

that a new concept of bucket errors can advise in providing effective subproblem orderings

in AND/OR search for both exact and anytime solutions.

 2017 Elsevier Inc. All rights reserved.

1. Introduction

An important problem in the field of artificial intelligence is the min-sum problem over graphical models, which includes

the most probable explanation, or maximum a posterior query over probabilistic graphical models [1]. This problem has nu-

merous applications including scheduling, genetic linkage analysis, and protein side chain prediction [2–4]. It is often solved by

search schemes such as depth-first branch-and-bound or best-first search such as A*. However, since it is too complex to be

solved exactly, research often settles on anytime schemes. Indeed, AND/OR Branch-and-Bound (AOBB) is one such anytime

algorithm that generates upper bounds through a sequence of improved suboptimal solutions over time [5,6]. However,

there has been little work on the symmetrical problem of generating lower bounds by search in an anytimemanner, which

is the focus of this paper.

We turn to best-first search for this task, which explores the search space in frontiers of non-decreasing lower bounds

and is thus inherently anytime for producing lower bounds. Specifically, we will explore AND/OR Best-First (AOBF) search,

guided by the mini-bucket heuristic, which is known to be a state-of-the-art algorithm for the min-sum task, but which has

been evaluated mostly on its performance for finding an optimal solution [7]. The scheme can be easily adapted to yield a

sequence of lower bounds by simply reporting the best heuristic evaluation it has seen so far. Indeed, this idea was used in

recent work to produce algorithms that give both upper and lower bounds on the optimal solution [8,9].

The focus of our paper is on the specific aspect of the impact of AND child node ordering on AOBF’s ability to generate

lower bounds in an anytime manner. AOBF is guided by two heuristic evaluation functions. In the AND/OR search space,

the “best” is a partial solution graph with the best potential solution according to a heuristic evaluation function f1 amongst

all partial solution graphs of the currently explored search space. A second heuristic f2 prioritizes which leaf (known as

* Corresponding author.

E-mail addresses: willmlam@uci.edu (W. Lam), kkask@ics.uci.edu (K. Kask), larrosa@cs.upc.edu (J. Larrosa), dechter@ics.uci.edu (R. Dechter).
1 Currently at Google Inc.

https://doi.org/10.1016/j.jcss.2017.10.003

0022-0000/ 2017 Elsevier Inc. All rights reserved.

© 2017 Elsevier . This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 



ARTICLE IN PRESS

U
N

C
O

R
R

E
C

T
E

D
P

R
O

O
F

Please cite this article in press as: W. Lam et al., Subproblem ordering heuristics for AND/OR best-first search, J. Comput. Syst. Sci. (2018),

https://doi.org/10.1016/j.jcss.2017.10.003

JID:YJCSS AID:3142 /FLA [m3G; v1.224; Prn:13/11/2017; 23:46] P.2 (1-22)

2 W. Lam et al. / Journal of Computer and System Sciences ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

Table 1

Notation on graphical models.

Xk , xk variable, assigned variable

f j , S f j function, scope

M= (X,D,F) graphical model

G = (V , E) primal graph

G∗(d) induced graph relative to order d

w∗(d) induced width relative to order d

tip nodes) of the current best partial solution graph should be expanded next. We call this the AND subproblem ordering.

Quoting Pearl (page 50) [10],

“These two functions, serving in two different roles, provide two different types of estimates: f1 estimates some prop-

erties of the set of solution graphs that may emanate from a given candidate base, whereas f2 estimates the amount of

information that a given node expansion may provide regarding the alleged superiority of its hosting graph. Most works

in search theory focus on the computation of f1 , whereas f2 is usually chosen in an ad-hoc manner.”

Indeed, in most current implementations of AOBF, f2 is simply chosen to be equal to f1 . We show in this paper that

the choice of f2 has a significant impact on the anytime performance of AOBF for finding lower bounds. In our analysis, we

show that a concept known as the residual, which captures a local accuracy of the heuristic evaluation function, is a natural

choice for f2 . In [11], it was shown that the residual of the mini-bucket heuristic can be approximated by its local errors.

We illustrate empirically that the local bucket errors can provide relevant information on the increase of the lower bound

due to a given node expansion. While we work in the AND/OR search framework in this paper, the connection to similar

search frameworks such as recursive conditioning [12] and backtracking with tree decomposition (BTD) [13,14] is clear.

Furthermore, [15] investigates subproblem ordering in the context of BTD, but for depth-first search only. To our knowledge,

this is a first investigation of subproblem ordering for best-first search in the AND/OR search space and among the first

investigations of anytime best-first search for generating lower bounds.

The rest of this paper is organized as follows: Section 2 presents the background on graphical models, the AOBF algo-

rithm, and mini-bucket heuristics. Section 3 analyzes the impact of subproblem ordering and illustrates it with an example.

Section 4 introduces the subproblem ordering heuristic based on residuals and local bucket errors and suggests a way to

approximate them. Section 5 presents the experiments and section 6 concludes.

2. Background

2.1. Graphical models

We will use Xk to denote a variable and Dk its domain. A generic domain value will be noted xk . A variable assignment

will be denoted (Xk, xk) or, when the context is clear, just xk . We will use f j to denote a function and S f j its scope, which

is the set of variables for which the function is defined (i.e., f j :
∏

Xk∈S f j
Dk → R). Table 1 provides a summary of the

notation. A graphical model is a collection of functions over subsets of variables,

Definition 1 (graphical modelM). A graphical model M is a tuple (X,D,F), where

1. X= {X1, . . . , Xn} is a finite set of variables

2. D= {D1, . . . , Dn} is a set of finite domains associated with each variable.

3. F= { f1, . . . , fm} is a set of local functions with scope S f j ⊆ X for all f j .

A graphical model represents a global function which is the sum of all the local functions, denoted
∑

f j∈F
f j(·). Graphical

models are used to model complex systems and their main virtue is allowing compact representation and their structure

can often allow efficient query processing. Our focus is on the min-sum problem, defined as follows:

Definition 2 (min-sum problem). Given a graphical model M= (X,D,F), the min-sum problem seeks an optimal assignment

of its variables that minimizes the global function. Namely, finding x∗ , satisfying,

x∗ = argmin
x

∑

f j∈F

f j(·)

Definition 3 (primal graph G). The primal graph G = (V , E) of a graphical model M= (X,D,F) has one node associated with

each variable (i.e., V = X) and edges (Xk, Xk′) ∈ E for each pair of variables that appear in the same scope S f j of some local

function f j ∈ F.
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Fig. 1. A primal graph of a graphical model with 7 variables.

Table 2

Notation on AND/OR search for graphical models.

T pseudo-tree (nodes correspond to variables)

X̄k pseudo-tree path from root to Xk

Tk sub-tree rooted by Xk

Tk,d sub-tree rooted by Xk with depth d

c(Xk, xk) cost of arc from OR node Xk to AND node xk
x̄k path from root to AND node xk

Fig. 2. A pseudo tree for the running example. Solid arcs form the main tree structure and dotted arcs the back-arcs.

Consider a graphical model with 7 variables indexed from A to G with binary functions F = { f (A), f (A, B), f (A, D),

f (A,G), f (B,C), f (B, D), f (B, E), f (B, F ), f (C, D), f (C, E), f (F ,G)}. The primal graph appears in Fig. 1 which has a node

for each variable and edges connecting variables which appear in the same function scope.

Definition 4 (induced width [1]). Given a primal graph G = (V , E), an ordered graph is a pair (G,d), where d= (X1, ..., Xn) is

an ordering of the nodes. The nodes adjacent to Xk that precede it in the ordering are called its parents. The width of a node

in an ordered graph is its number of parents. The width of an ordered graph (G,d), denoted w(d), is the maximum width

over all nodes. The width of a graph is the minimum width over all orderings of the graph. The induced graph of an ordered

graph (G,d) is an ordered graph (G∗,d), where G∗ is obtained from G as follows: the nodes of G are processed from last

to first along d. When a node Xk is processed, all of its parents are connected. The induced width of an ordered graph (G,d),

denoted w∗(d), is the maximum number of parents a node has in the induced ordered graph (G∗,d). The induced width of a

graph w∗ , is the minimum induced width over all its orderings.

The complexity of the min-sum problem for a given graphical model can be bounded by the induced width w∗ of its

associated primal graph [5,1].

2.2. AND/OR search for graphical models

In the context of graphical models, the conditional independencies in the model can be exploited via the AND structures

in AND/OR search spaces. AND/OR search spaces for graphical models are defined relative to a pseudo tree of the primal

graph [16].

Definition 5 (pseudo tree [16–18]). Given an undirected graph G = (V , E), a directed rooted tree T = (V , E ′) defined on all

its nodes is a pseudo tree if any arc of G which is not included in E ′ is a back-arc in T , namely it connects a node in T to

an ancestor in T . The arcs in E ′ may not all be included in E .

Fig. 2 shows a pseudo tree for our running example.

In general, an AND/OR search tree [19,10] has two types of nodes. OR nodes representing branching points where a

decision has to be made (i.e. choosing a value for a variable), and AND nodes representing sets of conditionally independent

subproblems that need to be solved. In mapping graphical models to AND/OR search, the children of OR nodes are AND
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Fig. 3. The same pseudo-tree as Fig. 2, annotated with contexts.

nodes, and the children of AND nodes are OR nodes. There is a cost associated with each edge between an OR node and its

child AND node extracted from the functions of the model.

Definition 6 (AND/OR search tree [16]). Given a graphical model M= (X,D,F) and a pseudo tree T , its AND/OR search tree

consists of alternating levels of OR and AND nodes. OR nodes are labeled with a variable Xk ∈ X. Its children are AND nodes,

each labeled with an instantiation xk of Xk . Children of AND nodes are OR nodes, labeled with the children of Xk in T .

Each child represents a conditionally independent subproblem given assignments to their ancestors. The root of the AND/OR

search tree is an OR node labeled by the variable at the root of T .

The path from the root to an AND node xk represents a unique assignment to the variables in X̄k , that will be denoted

x̄k (see Table 2). In the AND/OR search tree, the costs of the OR-to-AND arcs denoted c(Xk, xk) (abusing notation, since they

are dependent on the path to xk) are defined as follows:

Definition 7 (arc cost c(Xk, xk)). The cost c(Xk, xk) of the arc (Xk, xk) along a path x̄k is the sum of all the functions whose

scope includes Xk that are fully assigned by the values specified along the path x̄k from the root to node xk .

For completeness, we define the costs of edges from AND nodes to OR nodes to be 0.

A more compact search space can be obtained if identical subproblems in the AND/OR tree are merged, producing an

AND/OR graph [16]. A class of identical subproblems can be identified in terms of their OR context,

Definition 8 (OR context). The OR context of a variable Xk in a pseudo tree T = (V , E ′) is the set of ancestor variables

connected to Xk or its descendants by arcs in E ′ .

Fig. 3 shows the same pseudo-tree in the running example with OR contexts.

Definition 9 (context-minimal AND/OR search graph [16]). Identical subproblems can be merged based on the OR context.

We can merge two nodes if they have the same assignment to the context variables. This yields a context-minimal AND/OR

search graph CT whose size can be shown to be bounded exponentially in the induced width of G along the pseudo-tree T .

A solution tree T of the AND/OR search tree or graph corresponds to complete assignments of the variables in the

graphical model, defined next.

Definition 10 (solution tree). A solution tree T is a subtree of the AND/OR search graph CT such that:

1. It contains the root node of CT ;

2. If it contains an internal AND node n, then all children of n are also in T ;

3. If it contains an internal OR node n, then exactly one AND node child is in CT ;

4. Every tip node in T (nodes with no children) is a terminal node of CT .

The cost of a solution tree is the sum of its arc weights associated with the arcs of CT .

The cost of a solution tree corresponds to the cost of the assignment it represents as given by the global function of the

model. Thus, for the min-sum problem, the optimal solution tree corresponds to the optimal solution.

Fig. 4 shows the corresponding context-minimal AND/OR search graph guided by the pseudo tree in Fig. 3. Since the

context of variable E is only over B,C , the corresponding OR nodes have been merged with respect to A, which is an

ancestor not in the context. Similarly, the OR nodes of G are merged with respect to B . The solution tree corresponding to

the assignment (A = 0, B = 1,C = 1, D = 0, E = 0, F = 0,G = 0) is highlighted in red.
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Fig. 4. Example AND/OR search graph. A solution tree is highlighted in red. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Table 3

Notation on AND/OR Best-First search.

G currently explicated search graph

T current best solution tree to G

r root of the search graph (initial node in G)

n node in G

l(n) current best lower bound on below n

succ(n) set of successors (children) of n

2.2.1. AND/OR best-first search

The AO* algorithm is a best-first search algorithm for AND/OR search spaces [19]. Our AOBF (AND/OR Best First) algorithm

is a variant of AO* specialized for graphical models [7]. In the following, we use the notation in Table 3. The algorithm works

by gradually expanding a portion (denoted G) of the context-minimal AND/OR search graph CT , always identifying the best

partial solution tree T in G . After node expansion, every node n ∈ G needs to be updated with its best lower bound based

on the current state of G , denoted l(n), which corresponds to the f1 evaluation function. As usual in AO* search, AOBF

[7], which explores the context-minimal AND/OR search graph, presented in Algorithm 1, interleaves a top-down expansion

step and a bottom-up revision step. The top-down expansion step generates the children of the next node to expand n

(initially the root r), which are appended to G (lines 4–13). Note that if an OR child of an AND node already exists, we

do not generate it again to ensure we are searching the search graph CT (line 9). A bottom-up revision step then updates

the internal nodes values that represent the current best lower bounds below them (lines 15–26). In this step, the values

of newly expanded children are propagated to their parents, and recursively up to the root (stored in l(n)). During these

value updates, the algorithm marks the best child of each OR node, which serves as a bookkeeping step to keep track of

the assignment corresponding to propagated values. In addition, OR nodes are marked solved if their current best child is

marked solved and AND nodes are marked solved if all of their children are marked solved. Subsequently, a new best partial

solution tree T w.r.t. f1 is identified by following the marked best children from the root. If the root r is not solved, then

the next node n to expand from T is determined by f2 . Otherwise, T is necessarily a full solution tree that corresponds to

the optimal solution, with a cost equal to value of the root node l(r). and AOBF terminates.

In earlier literature the algorithm is provided as a purely exact algorithm [19,7]. However, since lower bound values are

constantly updated as the algorithm searches, l(r) provides a anytime lower bound on the optimal solution (lines 22–23).

On the f2 function for selecting the next node to expand, it is common to choose an f2 which orders the non-terminal

tips using the f1 heuristic in ascending order. The focus of our work is in proposing a more informed f2 .
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Algorithm 1: AND/OR Best-First (AOBF) [7]

Input: A graphical model M= (X,D,F), pseudo-tree T , heuristic function h, ordering function f2 . ( f1 is defined by l(n), which depends on h)

Output: Lower-bound to solution of M

1 Create the root OR node r labeled by X1 and let G = {r}

2 Initialize value l(r)= h(r) and best partial solution tree T to G

3 n→ r // Initial node n to expand

4 while r is not marked SOLVED and memory is available do

// Expand

5 if n is an OR node (labeled Xk) then

6 Create AND node n′ for each xk ∈ Dk

7 if n′ is TERMINAL then mark n′ as SOLVED;

8 else if n is an AND node (labeled xk) then

9 Create OR node n′ for each child X j of Xk ∈ T if n′ /∈ G

10 foreach generated n′ do

11 succ(n)← succ(n)∪ n′

12 l(n′)← h(n′) // Initial lower bound is the heuristic

13 G← G ∪ {succ(n)}

// Revise

14 S←{n} // Set to keep track of nodes needing revision

15 while S 6= ∅ do

16 Select p from S s.t. p has no descendants in G ∩ S

17 S← S − {p}

18 if p is an OR node then

19 l(p)←minm∈succ(p)(c(p,m)+ l(m))

20 Mark k= argminm as the best successor of p

21 if k is SOLVED then mark p as SOLVED;

22 if l(p) changed and p = r then

23 Output l(p) // Report new lower bound

24 else if p is an AND node then

25 l(p)←
∑

m∈succ(p) l(m)

26 if ∀m ∈ succ(p) are SOLVED then mark p as SOLVED;

27 if l(p) changed or p is SOLVED then

28 S← S ∪ {parent(p)}

29 Update T to new best partial solution tree w.r.t. f1 by including all nodes visited by DFS on G that only includes the best marked AND nodes.

30 if r is not solved then

// Choose best tip based on f2 for next expansion

31 n← argmaxn∈tips(T ) f2(n)

32 return 〈l(r), T 〉

Table 4

Notation on bucket elimination for graphical models.

Bk , SBk
bucket associated to pseudo-tree node Xk , scope

Br
k

mini-bucket associated to pseudo-tree node Xk

λk→p message computed at Bk and sent to B p

h(x̄p) heuristic value of node x̄p

2.3. Mini-bucket elimination heuristics

A commonly used heuristic guiding AND/OR search is based on the MBE (mini-bucket elimination) algorithm [20], which

generates a lower bound on the optimal cost. It has a parameter known as the i-bound which allows trading off pre-

processing time and space for heuristic accuracy with actual search. MBE works relative to the same pseudo-tree T which

defines the AND/OR search graph. See Table 4 for a summary of the notation to follow.

Each variable Xk ∈ T is associated with a bucket Bk that includes a subset of functions from F. A function f j is placed

into a bucket Bk if Xk is the deepest variable in T such that Xk ∈ S f j . The scope of a bucket Bk (denoted SBk
) is the union

of the scopes of its functions. The overall idea is that each bucket Bk generates a message λk→p = minxk Bk , where p is

the parent of k in the pseudo tree T . Processing a bucket may require partitioning the bucket’s functions into mini-buckets

Bk =∪r B
r
k
, where each Br

k
includes no more than i variables. In this case, each mini-bucket is processed separately as if they

were associated with different variables. If no partitioning is necessary, then the message computed by the root variable is

the optimal cost. (The algorithm reduces to the exact bucket elimination algorithm [1] in this case.) Otherwise, it is a lower

bound.
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Algorithm 2: Mini-Bucket Elimination [20]

Input: Graphical model M= (X,D,F), pseudo tree T , bounding parameter i-bound

Output: Lower bound to min-sum on M and messages λs
q→k

1 foreach Xk ∈ X in bottom up order according to T do

2 Bk←{ f j ∈ F | Xk ∈ S j}

3 F← F− Fk
4 Put all generated messages λs

q→k
in Bk

5 Partition the Bk into mini-buckets B1
k
, . . . , Br

k
with scope bounded by the i-bound

6 foreach Bs
k
∈ B1

k
, . . . , Br

k
do

7 Let Xa be closest ancestor variable of Xk in the mini-bucket

8 Generate message: λs
k→a
←minXk

∑

f j∈B
s
k
f j

9 return All λ-messages generated (root message is the min-sum lower bound)

Fig. 5. Example of mini-bucket elimination on the running example using an i-bound of 3.

We provide details in Algorithm 2. The main loop (lines 1–9) partitions and generates the λ messages which are prop-

agated upward. The time and space complexity is O (nrki), where r is the maximum number of mini-buckets for any

variable [1].

We provide an example in Fig. 5 for our example problem. Here, we use an i-bound of 3. In this case, starting with

variable D , we have its bucket which contains the functions f (A, D), f (B, D), f (C, D) that all contain variable D . However,

the total scope size here is 4, which exceeds the i-bound of 3. Therefore, we partition it into two mini-buckets and each

generates a separate λ message, as if they were separate variables. For the rest of the variables, the i-bound is satisfied, so

there is no need to partition them.

MBE messages can be used to construct a heuristic for search [21]. These heuristics are referred to as static heuristics

since they are pre-compiled before search starts. During search, they can be extracted efficiently by table lookups.

Definition 11 (MBE heuristic). Let x̄p be a partial assignment and X̄p be the set of corresponding instantiated variables.

λs
k→q

(x̄p) denotes the message sent from Bk to Bq . (We abuse notation here by stating its argument as x̄p , though it may

only contain a subset of x̄p .) The heuristic value for x̄p is given by:

h(x̄p)=
∑

Xk∈Tp

∑

s∈1,...,rk|Xq∈ X̄p

λs
k→q(x̄p) (1)

where Xk ∈ Tp denotes the set of variables in the pseudo subtree rooted by Xp , excluding Xp and rk denotes the number of

mini-buckets for variable Xk .

Example In the example, (see Fig. 5), the heuristic function of the partial assignment (A = 0, B = 1) is h(A = 0, B = 1)=

λD→A(A = 0)+ λC→B(B = 1)+ λF→B(A = 0, B = 1).

2.3.1. Residuals and local bucket error

Look-ahead is a method of improving accuracy of the heuristic value for a given node n by expanding the search tree

below a node to a certain depth d and backing up the heuristic values of descendant nodes in the search space. This

improved heuristic is denoted hd(n). The residual is the gain produced by look-ahead:

Definition 12 (residual). The depth d residual of a node n is

resd(n)= hd(n)− h(n) (2)
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The notion of local bucket error was introduced as a function that captures the local error induced by mini-bucket elim-

ination [11]. It was introduced to capture the heuristic error and was shown to be identical to the depth 1 look-ahead

residual. The bucket error is the difference between the message that would have been computed in a bucket without par-

titioning (called an exact bucket message µ∗
k
) and the message computed by the mini-buckets (called a combined mini-bucket

message µk).

We define these notions below.

Definition 13 (combined bucket and mini-bucket messages). Given a mini-bucket partition Bk = ∪r B
r
k
, we define the com-

bined mini-bucket message at Bk ,

µk(·)=
∑

r



min
xk

∑

f ∈Br
k

f (·)



 (3)

In contrast, the exact bucket message without partitioning at Bk is

µ∗k (·)=min
xk

∑

f ∈Bk

f (·) (4)

Note that although we say that µ∗
k
is exact, it is exact only locally to Bk since it may contain partitioning errors intro-

duced by messages computed in earlier processed buckets. We now define the local error for MBE,

Definition 14 (local bucket error of MBE [11]). Given a completed run of MBE, the local bucket error function at Bk denoted

Ek is

Ek(·)=µ∗k (·)−µk(·) (5)

The scope of Ek is the set of variables in Bk excluding Xk .

An alternative measure is the relative local bucket error, computed by dividing each Ek(·) term by the exact bucket message

µ∗
k
(·). This serves as a way to normalize the error with respect to the function values, which can vary in scale amongst the

bucket errors in practice.

Algorithm 3: Local Bucket Error Evaluation (LBEE).

Input: A Graphical model M= (X,D,F), a pseudo tree T , i-bound

Output: Error function Ek for each bucket Bk

Initialization: Run MBE(i) w.r.t. T .

foreach Bk, Xk ∈ X do
Let Bk =∪r B

r
k
be the partition used by MBE(i)

µk =
∑

r(minxk

∑

f ∈Bk
f )

µ∗
k
=minxk

∑

f ∈Bk
f

Ek =µ∗
k
−µk

return Ek functions

Algorithm Local Bucket Error Evaluation (LBEE) 3 (LBEE) computes the local bucket error for each bucket. Follow-

ing the execution of MBE(i), a second pass is performed from leaves to root along the pseudo tree. When processing a

bucket Bk , LBEE computes the combined mini-bucket message µk , the exact bucket message µ∗
k
, and the error function Ek .

The complexity of processing each bucket is exponential in the scope of the bucket after the execution of MBE(i). The

total complexity is therefore dominated by the largest scope of the output buckets. This number is called the pseudo-width,

defined next.

Definition 15 (pseudo-width(i)). Given a run of MBE(i) along pseudo tree T , the pseudo-width of Bk , psw
(i)

k
is the num-

ber of variables in Bk after all messages have been received. The pseudo-width of T relative to MBE(i) is psw(i) =

maxXk
{psw

(i)

k
}.

Theorem 1 (complexity of LBEE). The time and space complexity of LBEE is O (nkpsw(i)), where n is the number of variables, k bounds

the domain size, and psw(i) is the pseudo-width along T relative to MBE(i).
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Fig. 6. A simple graphical model over 3 variables with two functions. Shown above are the primal graph (also a valid pseudo-tree in this case), the function

tables, and the associated AND/OR search space with weights labeled. The optimal solution tree is highlighted and has a cost of 11.

3. Illustrating the impact of subproblem ordering

We will now show that the f2 heuristic can have a potentially large impact on AOBF performance, starting with an

example. In order to reason about the sequence of expansions that occur during AOBF, we define the notion of a profile of

f2 relative to f1 . In the following, T i refers to the best partial solution tree after the i-th node expansion of AOBF.

Definition 16 (profile). Given a primary and secondary heuristic function f1 and f2 respectively, the sequence p f2 =

{ f1(T i)|i = 1 . . . j} produced with a particular f2 when f1 is kept fixed, is the profile of f2 , under f1 .

The sequence of f1 values seen at each step yields lower bounds on C∗ , the optimal cost, whose quality increases with

steps (for a monotone heuristic function). At termination, we get the cost C∗ . Yet, one sequence may be superior to another.

Proposition 1. Given AOBF using an evaluation function f1 , there exist two tip node evaluation function f2 and f ′2 such that the

profiles p f2 and p f ′2
under f1 differ.

Proof of Proposition 1. We prove this by construction. Fig. 6 depicts a graphical model defined over variables A, B,C

having two functions f (A, B) and f (A,C). The full AND/OR search space is shown explicitly and the optimal solution

(A = 1, B = 1,C = 0) is marked in red. Assume that our heuristic evaluation function is a constant 0. Assume two f2 eval-

uation functions: f2 which orders the subproblems by from left to right (B ≺ C ), while f ′2 reverses the orderings from

right to left. The profile of f2 under f1 is: (0,1,5,11), while the profile of f ′2 is: (0,6,11). In particular, with f2 the algorithm

explores all solution subtrees while with f ′2 , it will never expand node B under A = 0, since expanding C proves that the

A = 0 branch has a cost of at least 20. We would never return to the A = 0 branch since the A = 1 branch never exceeds a

cost of 20 at any point. In fact, it yields the optimal solution. Clearly, profile p f ′2
dominates that of p f2 in this case. ✷

In the following we show further that the choice of f2 can, in the worst case, make an exponential impact on the number

of expansions needed in order to cross a given lower bound threshold L.

Theorem 2. Given a weighted AND/OR search graph, a heuristic evaluation function f1 , and two secondary f2 and f ′2 functions, there

exists an AND/OR search graph and a threshold L where the profile until reaching L for p f2 is exponentially longer than for p f ′2
.

Proof. Let T be a partial solution tree of an AND/OR search tree that is currently selected for extension. Let C = f1(T )

where C < C∗ . Assume that T cannot be extended to an optimal solution, namely f ∗1 (T ) > C∗ . Let A and B be two variables

labeling OR tip nodes of T which are direct child nodes of an AND parent X = 0.

Let a subtree below a variable X be denoted as tX and the d-depth truncated subtree be denoted as tdX . Assume that the

best extension of T into tB has f1 smaller than C∗ . Furthermore, we want to force all of the nodes in tB to be explored

by AOBF in order to establish the optimal cost in tB . This can be accomplished if the arc costs in tB are monotonically

increasing along a breadth-first ordering of the arcs in tB . In contrast, assume that t1A (tA truncated to depth 1), provides an

extension to T having f1 > C∗ , namely f (T ∪ t1A)≥ C∗ .

Under these assumptions, an f ′2 that prefers expanding all of tB before any of tA (and such exists) will yield a profile

with more nodes than that of an f2 that expands tA first. Since f (T ∪ t1A) ≥ C∗ , it will never expand any of tB . Therefore,

p f ′2
would be exponentially longer than p f2 for the threshold of C∗ . ✷

4. Local bucket errors for AOBF

The overall target for an effective subproblem ordering heuristic should be to select the subproblem which increases the

lower bound the most. Assume a greedy scheme where given a frontier of tip nodes, we choose the node which would lead



ARTICLE IN PRESS

U
N

C
O

R
R

E
C

T
E

D
P

R
O

O
F

Please cite this article in press as: W. Lam et al., Subproblem ordering heuristics for AND/OR best-first search, J. Comput. Syst. Sci. (2018),

https://doi.org/10.1016/j.jcss.2017.10.003

JID:YJCSS AID:3142 /FLA [m3G; v1.224; Prn:13/11/2017; 23:46] P.10 (1-22)

10 W. Lam et al. / Journal of Computer and System Sciences ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

to the largest increase in f1 in a single expansion. We will show that this largest increase in f1 is the residual, and therefore

we can use look-ahead as a guide to decide which subproblem to expand next. Therefore, the pre-computed (Algorithm 3)

local bucket error functions which are identical to the residual can be used to order tip node expansion.

Clearly, this greedy scheme may be too greedy. For example, consider a tdX having d > 1 and f1(T ∪ t
d
X ) > C∗ . To illustrate

where the 1-level greedy scheme may fail, we consider the situation where f1(T ∪ t
1
X )= f1(T ). Using a greedy f2 , X would

be ordered last because its depth-1 residual is zero, yet a greater increase in f1 may occur with a deeper look into the

subproblem rooted by X .

The actual quantity of interest is the exact residual.

Definition 17 (exact residual). The exact residual res∗(n) is defined as h∗(n)− h(n).

The exact residual is equal to a d-level residual when d is the depth of the search space below node n. Computing the

exact residual res∗(n) is equivalent to full look-ahead. Since this is computationally too expensive, we propose to approxi-

mate this by a sum of depth-1 residuals over all the nodes in the look-ahead subtree. This can be accomplished by adding

up all the local bucket errors of all variables in the subtree, a quantity we call subtree error. Two specific approximations for

these quantities will be explored.

4.1. A constant measure for average subtree error

The first approach is to use the average local bucket error defined here:

Definition 18 (average local error [11]). The average local error of Bk given a run of MBE(i) is

Ēk =
1

|DScope(Bk)|

∑

x̄k

Ek(x̄k) (6)

It is the average of the local bucket error values. Whenever the scope of the local bucket error function is too large, we

can sample it, using the empirical average as an estimator. Computing this quantity is linear in the number of samples. It is

easy to see that the empirical average is an unbiased estimate of the average local bucket error. The average subtree errors,

denoted Ēt
k
, is the sum of the average local bucket errors over all the variables rooted by Xk in the pseudo-tree T . In the

following, desc(Xk) and ch(Xk) denote the descendants and children of Xk in T , respectively. Namely,

Definition 19 (average subtree error). Let Ẽk be the average local bucket error for Xk . The average subtree errors, denoted

Ē T k is defined by:

Ē T k = Ēk +
∑

j∈desc(Xk)

Ē j (7)

and it can be expressed recursively:

Ē T k = Ēk +
∑

c∈ch(Xk)

Ē T c (8)

4.2. A functional measure for subtree error

We next propose a more refined function-based subtree error. We will use the following elimination operator.

Definition 20 (average elimination operator �). Let f (·) be a function with scope S f j , and S ⊆ S f j , and DS be the domains

of the variables in S . The average elimination �S of f (·) is defined by

�S f (·)=
1

|DS |

∑

S

f (·) (9)

Definition 21 (subtree error function). Let Ek(·) be the local bucket error function of Xk . The subtree error function relative

to a pseudo-tree T is

ETk(·)= Ek(·)+
∑

c∈ch(Xk)

�(S Ec−S Ek
) ETc(·) (10)

A discounted version is defined, using discount factor γk ≤ 1,
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ET k(·)= Ek(·)+ γk ·
∑

c∈ch(Xk)

�S Ec−S Ek
ET c(·) (11)

We can view each element of the summation over the children as a message computed by averaging out the variables

which are not present in the parent’s bucket. Each message computed at a node c can be interpreted as the expected error

of the subproblem rooted by Xc as a function of its ancestor variables. In the discounted version the contribution of errors

from variables that are far away from the current variable are discounted.

Algorithm 4, which we call Bucket Error Propagation (BEP), generates the subtree error functions starting from the local

bucket error functions as input. We denote by λe
c→k

as the message sent from child node c to k.

Algorithm 4: Bucket Error Propagation (BEP).

Input: A Graphical model M= (X,D,F), a pseudo-tree T , local bucket error functions Ek(·), discount factors γk

Output: Subtree error functions ETk(·)

1 Initialize, for all leaves u of T , ETu(·)= Eu(·)

2 Compute bottom-up over T , for each variable Xk :

3 ETk(·)= Ek(·)+ γk ·
∑

c∈ch(Xk)
λe
c→k

(·)

λe
k→pa(k)

(·)=�SEk−SEpa(k)
ETk(·) ; // Compute message

4 return ETk(·) for each variable Xk ∈ X

Proposition 2 (complexity of BEP). The time and space complexity of algorithm BEP is O (nkpsw(i)).

Proof. Computing the subtree error messages generated by a subtree error function ETk(·) requires enumeration over all

the assignments of its scope, which is bounded by O (kpsw(i)) time. Incorporating a message into a function ETk(·) from

a child is also bounded by O (kpsw(i)) time. Since we have n variables, the total time complexity is O (nkpsw(i)). The space

complexity is also O (nkpsw(i)), since the scopes of ETk(·) are the same as the scopes of Ek(·). ✷

Thus, the complexity of BEP is dominated by the complexity of LBEE.

4.3. Approximating the error functions

The main advantage of using the average subtree error rather than the subtree error function explicitly is a matter of

memory usage). Since the complexity of BEP is dominated by LBEE, BEP may not be feasible if the pseudo-width is large.

Thus, we consider additional simplification to provide a finer level of control of this trade-off by modifying LBEE.

4.3.1. Scope bounding

We can bound further the complexity of the error functions by truncating the scopes of the local bucket error functions

and aggregating over the eliminated variables.

Definition 22 (scope-bounded bucket error function). Given the bucket error function Ek , the scope-bounded bucket error

function, denoted EBk relative to S ⊆ S Ek is defined by

EBk(·)=�(S Ek
−S) Ek(·) (12)

We can bound the scope size of S by an integer s, which we call the s-bound. Typically the s-bound is smaller than or

equal to the i-bound of the MBE heuristic. We select the bounded scopes by eliminating variables from S Ek that are closest

to Xk in the pseudo-tree T , until |S| ≤ s.

Algorithm 5 presents the modified version of LBEE, called SB-LBEE, to account for the bounded bucket errors. It differs

from LBEE (Algorithm 3) in having an s-bound parameter (line 4). If s= 0, the errors reduce to the average local bucket error.

Proposition 3 (complexity of SB-LBEE). Given an s-bound, and an i-bound for MBE, the time complexity of SB-LBEE is O (nkpsw(i))

and the space complexity is O (nks), where n is the number of variables, k bounds the maximum domain size, psw(i) is the pseudo-

width along T relative to MBE(i).

Proof. The time complexity for each variable is dominated by computing the exact (s-bounded) bucket message µb∗
k

(·).

Although the resulting scope is bounded by s using the � operator, the min-sum computation over the bucket variables

is still bounded by the scope size of Bk at the time of processing, which is the pseudo-width. Therefore, processing each

bucket is bounded by O (kpsw(i)) time, yielding a total time complexity of O (nkpsw(i)). For space complexity, the messages

and error functions are bounded by s by design, thus for each variable, the algorithm needs O (ks) space, yielding a total

space complexity of O (nks). ✷
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Algorithm 5: Scope-Bounded Local Bucket Error Evaluation (SB-LBEE).

Input: A Graphical model M= (X,D,F), a pseudo-tree T , i-bound, s-bound

Output: Scope-bounded error function EBk(·) for each variable Xk

1 Initialization: Run MBE(i) for M w.r.t. T

2 foreach Xk ∈ X do

3 Let Bk =∪r B
r
k
be the partition used by MBE(i) for Xk

4 Choose S s.t. S ⊆ SBk
, Xk ∈ S , and |S| ≤ s+ 1

5 µb
k
(·)=�(SBk−S)

∑

r(minxk

∑

f ∈Br
k
f (·))

6 µb∗
k

(·)=�(SBk−S) minxk

∑

f ∈Bk
f (·)

7 EBk(·)=µb∗
k

(·)−µb
k
(·)

8 return EBk(·) functions

Since the space complexity of BEP (Algorithm 4) depends on the maximum scope size of the error functions, which is

the pseudo-width, we can replace the full local bucket error functions Ek(·) with the scope-bounded versions computed by

SB-LBEE to generate s-bounded subtree error functions.

4.3.2. Sampling

Since the time complexity of SB-LBEE is bounded by O (nkpsw(i)) primarily due to the computation of the bounded exact

bucket message µb∗
k

(·). Given a scope S ⊆ SBk
, we can write the argument explicitly, yielding

µb∗
k (x̄S)=�(SBk

−S) min
xk

∑

f ∈Bk

f (x̄S , x̄SBk
−S)=

1

|DSBk
−S |

∑

SBk
−S



min
xk

∑

f ∈Bk

f (x̄S , x̄SBk
−S)



 (13)

We now define the following estimator for µb∗
k

(x̄S ) by sampling over DSBk−S .

µ̂b∗
k (x̄S)=

1

m

m
∑

i=1



min
xk

∑

f ∈Bk

f (x̄S , x̄i)



 x̄i ∼ U (DSBk
−S) (14)

where m is the number of samples and U (DSBk−S ) is a uniform distribution over its argument SBk
− S , the set of variables

we need to eliminate by averaging. It is easy to see that µ̂b∗
k

(x̄S ) is an unbiased estimator of µb∗
k

(x̄S ). Since we sample m

times for each of the ks instantiations over n variables, the time complexity of this sampling procedure is O (nmks), which

carries over to SB-LBEE.

4.4. Algorithm: Subtree Error Compilation

Algorithm 6: Subtree Error Compilation (SEC).

Input: A Graphical model M= (X,D,F), a pseudo-tree T , i-bound, s-bound, discount factors γk

Output: s-bounded Subtree error functions EBTk(·)

1 Initialize: Run MBE(i) for M w.r.t. pseudo-tree T

2 Generate s-bounded bucket error functions EBk(·) with SB-LBEE (possibly an estimator using sampling)

3 Generate s-bounded subtree error functions EBTk(·) for each variable Xk ∈ X with BEP using scope-bounded EBk(·) and discount factors γk

4 return EBTk(·)

We summarize the approach in Algorithm 6. Before search begins, we compile the subtree errors with SEC (Algorithm 6),

which includes the standard procedure of compiling the MBE heuristic, then we subsequently use SB-LBEE to generate the

scope-bounded bucket error functions. The algorithm then uses BEP (Algorithm 4) to generate the subtree error functions.

Note that SB-LBEE reduces to computing average local bucket errors when s= 0. The subtree error functions are exactly the

average subtree errors described in section 4.1, but with the discount factors applied.

During search, for any current assignment of the partial solution tree T , AOBF selects a tip node of T having the largest

value according to its corresponding subtree error function. Namely it selects Xk by argmaxk∈tips(T ) EBTk(x̄T ), which defines

the f2 ordering function. Since the error functions are compiled before search, evaluating ETk is a lookup with constant

complexity.

5. Experiments

We experimented with 4 variants of our error functions, formed by using either constant or scope-bounded errors (de-

noted Const and ScpBnd respectively), and absolute or relative errors (denoted Abs and Rel respectively). Thus, the 4 variants

are named Const-Abs (C-A), Const-Rel (C-R), ScpBnd-Abs (SB-A), and ScpBnd-Rel (SB-R).
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Table 5

Benchmark statistics for. # inst – number of instances, n – number of variables, k – maximum domain size, w∗ – induced width, h – pseudotree height,

|F | – number of functions, a – maximum arity. The top value is the minimum and the bottom value is the maximum for that statistic.

Benchmark # inst n k w∗ h |F | a

Pedigree 13 387 4 16 58 438 4

1006 7 39 143 1273 5

Promedas 34 661 2 31 66 669 3

1911 2 94 165 1928 3

Type4 65 3907 5 21 300 5749 4

9838 5 68 1535 14765 4

Using Algorithm 6, the Const variants set s = 0, while otherwise we use a default s = 10 for the ScpBnd variants. (In

practice, we found s= 10 to give a reasonable balance between efficiency and overhead.) The absolute error Abs computes

each error function value exactly as described in the previous section. We also consider the relative error Rel (see Defini-

tion 14), which normalizes the error values to express them as a percentage instead. In all variants, for each variable Xk ,

γk =
1
|Dk|

. Intuitively, this is the branching factor Xk and thus we proportionally penalize the error for each assignment

of Xk .

We compare against the baseline subproblem ordering that uses the heuristic evaluation function, f1 (denoted Heur (H)

in the experiments). We will generally refer to the 4 variants as error-guided orderings and we break ties using the baseline

ordering. For all experiments, we use the mini-bucket elimination with moment-matching (MBE-MM) heuristic [22]. We

used the MinFill variant of the iterative greedy variable ordering algorithm [23] to pre-compute elimination orderings used

for pseudo-tree construction. In practice, strong heuristics are preferred for search (i.e. using the highest possible i-bound

given a memory bound). This is an easy decision for depth-first search algorithms that use linear memory. However, since

best-first search uses exponential memory, the optimal trade-off is problem dependent and thus non-trivial. In our setup,

we varied the i-bound in a way to focus on how the results depend on the levels of heuristic error. For i-bounds less than

10, we set the s-bound to be equal to the i-bound. Whenever necessary, we used a maximum sample size of 105 shared

across the entire scope-bounded error function. In preliminary experiments with computing bucket errors in our previous

work [11], we found that 105 was a reasonable bound to keep the pre-processing time low relative to the time spent

with constructing MBE heuristics. In some cases, the number of possible assignments to a particular scope-bounded error

function exceeds 105 . Since the sampling procedure requires at least one sample per assignment, we reduce s for these cases

until this condition is satisfied. Given these settings, the memory used by the pre-compiled error functions were no greater

than that of the MBE heuristics (i.e. MBE dominates the space complexity for anything computed during pre-processing).

We experimented with benchmarks from genetic linkage analysis [24] (pedigree, type4), and medical diagnosis networks

[25] (promedas). We included only instances that had a significant amount of search. In particular, having more than 105

nodes expanded when using the baseline ordering with the lowest i-bound. Overall we report results on 13 pedigrees, 34

promedas networks, and 65 type4 instances, yielding a total of 112 problem instances. Based on the fixed variable orderings

computed for each instance and their resulting induced width, the benchmarks represent a variety of problem difficulties

ranging from easy to hard and are presented in that order. Table 5 provides ranges of the various benchmark parameters.

The implementation is in C++ (64-bit) and was executed on a 2.66 GHz processor with 24 GB of RAM, which was

shared between AOBF and MBE-MM.

5.1. Evaluating for exact solutions

Tables 6, 8, and 10 report the pre-processing time for compiling the MBE heuristic and subtree error functions (in

seconds), total CPU time including pre-processing (in seconds), and number of OR nodes (in thousands of nodes) expanded

for a subset of the problems which could be solved exactly by AOBF over the benchmarks. For each instance we also

mention the problem’s parameters such as the number of variables (n), maximum domain size (k), induced width (w∗),

and pseudo-tree height (h). Each column is indexed by the i-bound of the MBE-MM. Each row for each instance shows

the various subproblem ordering schemes we experimented with. Additionally, we summarize over all of the problems that

could be solved, by i-bound, for each benchmark in Tables 7, 9, and 11.

We aim to assess whether an ordering strategy had a positive impact in terms of the number of nodes expanded and

whether the impact is cost-effective time-wise.

Pedigree. Table 6 shows the results for four different i-bounds for selected instances from the pedigree benchmark. At

an i-bound of 6, we see that for 2 of the instances (pedigree9 and pedigree33) AOBF runs out of memory when using the

baseline ordering. For pedigree20, we see when using the Const-Rel heuristic, the number of nodes expanded is a about

half of that of the baseline. Still, the baseline can be better (e.g. see pedigree39). Moving to higher i-bounds, we see that for

instances other than pedigree39, the error-guided orderings usually result in fewer nodes expanded at termination which

usually translates to improved runtime, except at the highest i-bounds. This is due to the small difference in the number

of nodes expanded relative to the extra pre-processing time. For example, on pedigree9 with i = 18, although Const-Abs
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Table 6

Exact evaluation for pedigree instances. The best times and node counts are bolded per i-bound and the best times and node count overall for a given

instance are also underlined. If the optimal solution was not found, then we report ‘oom’ to denote that the experiment ran out of memory. We also report

the pre-processing time to the left of each total time. n – number of variables, k – maximum domain size, w∗ – induced width, h – pseudo-tree height.

instance

(n,k, w∗,h)

heur i = 6

pre / time / nodes

i = 10

pre / time / nodes

i = 14

pre / time / nodes

i = 18

pre / time / nodes

pedigree9 H 0 / oom / – 0 / 154 / 4137 1 / 14 / 512 6 / 10 / 193

(935,7,25,137) C-A 0 / 602 / 6368 1 / 73 / 1741 3 / 12 / 350 8 / 11 / 133

C-R 0 / 673 / 6361 1 / 72 / 1751 3 / 11 / 350 8 / 11 / 134

SB-A 0 / oom / – 1 / 448 / 9241 3 / 18 / 617 8 / 13 / 216

SB-R 0 / 588 / 6355 1 / 119 / 3034 2 / 10 / 350 8 / 11 / 133

pedigree20 H 0 / 85 / 2678 0 / 28 / 1019 0 / 16 / 595 6 / 6 / 5

(387,5,21,58) C-A 0 / 78 / 1933 0 / 24 / 812 2 / 16 / 503 7 / 7 / 5

C-R 0 / 58 / 1523 1 / 28 / 833 1 / 15 / 505 7 / 7 / 5

SB-A 0 / 232 / 5521 – / – / err 1 / 22 / 831 7 / 7 / 4

SB-R 0 / 57 / 1579 0 / 24 / 818 1 / 15 / 512 7 / 7 / 4

pedigree33 H 0 / oom / – 0 / 11 / 448 1 / 4 / 163 6 / 6 / 28

(581,4,24,116) C-A 0 / 576 / 10568 1 / 13 / 392 4 / 8 / 160 8 / 9 / 26

C-R 0 / 503 / 10498 1 / 13 / 434 4 / 7 / 156 8 / 9 / 26

SB-A 0 / 452 / 10527 1 / 10 / 380 3 / 6 / 145 8 / 8 / 26

SB-R 0 / 514 / 10513 1 / 13 / 415 3 / 7 / 159 8 / 8 / 26

pedigree39 H 0 / 146 / 3869 0 / 11 / 490 0 / 0 / 3 6 / 6 / 1

(953,5,20,82) C-A 0 / 230 / 4964 1 / 17 / 604 1 / 1 / 2 6 / 7 / 1

C-R 0 / 223 / 4921 0 / 15 / 604 1 / 1 / 2 6 / 7 / 1

SB-A 0 / 217 / 4974 0 / 15 / 605 1 / 1 / 2 6 / 6 / 1

SB-R 0 / 220 / 4920 0 / 15 / 593 1 / 1 / 1 6 / 6 / 1

pedigree41 H 0 / oom / – 0 / oom / – 2 / oom / – 34 / 180 / 4995

(885,5,33,100) C-A 0 / oom / – 3 / oom / – 6 / 487 / 13188 39 / 166 / 3942

C-R 0 / oom / – 3 / oom / – 6 / oom / – 39 / 168 / 3942

SB-A 0 / oom / – 2 / oom / – 5 / oom / – 38 / oom / –

SB-R 0 / oom / – 2 / oom / – 5 / oom / – 38 / 167 / 3967

pedigree42 H 0 / 23 / 935 0 / 28 / 1113 12 / 15 / 130 170 / 170 / 20

(390,5,21,67) C-A 0 / 20 / 671 2 / 22 / 780 14 / 16 / 83 171 / 171 / 14

C-R 0 / 20 / 679 2 / 22 / 780 14 / 16 / 123 173 / 174 / 14

SB-A 0 / 40 / 1109 2 / 30 / 986 13 / 15 / 83 171 / 171 / 12

SB-R 0 / 20 / 675 2 / 29 / 1053 13 / 16 / 102 171 / 171 / 15

pedigree44 H 0 / oom / – 0 / 664 / 12209 1 / 36 / 1254 4 / 9 / 223

(644,4,24,79) C-A 0 / oom / – 1 / 388 / 9683 3 / 36 / 1230 6 / 11 / 221

C-R 0 / oom / – 1 / 412 / 9783 3 / 35 / 1138 6 / 11 / 221

SB-A 0 / oom / – 1 / 336 / 9117 3 / 35 / 1154 6 / 10 / 213

SB-R 0 / oom / – 1 / 497 / 11041 2 / 36 / 1175 6 / 11 / 213

Table 7

Summary for exact solutions on pedigree instances: win counts of instances that the ordering heuristic had a lower time or lower number of nodes than

the baseline. The number of instances solved by any heuristic (including the baseline) is shown under each i-bound label. Each number in parentheses is

the percentage of solved instances that performed better for that particular i-bound.

Win counts for pedigree instances

heuristic i = 6

(solved= 6)

i = 10

(solved= 7)

i = 14

(solved= 8)

i = 18

(solved= 11)

wins by

time (%)/nodes (%)

wins by

time (%)/nodes (%)

wins by

time (%)/nodes (%)

wins by

time (%)/nodes (%)

C-A 4 (66.7)/4 (66.7) 4 (57.1)/5 (71.4) 4 (50.0)/8 (100.0) 2 (18.2)/7 (63.6)

C-R 4 (66.7)/4 (66.7) 4 (57.1)/5 (71.4) 3 (37.5)/7 (87.5) 3 (27.3)/7 (63.6)

SB-A 1 (16.7)/1 (16.7) 2 (28.6)/3 (42.9) 1 (12.5)/4 (50.0) 0 (0.0)/4 (36.4)

SB-R 4 (66.7)/5 (83.3) 3 (42.9)/5 (71.4) 3 (37.5)/7 (87.5) 2 (18.2)/7 (63.6)

expands 60K fewer nodes, pre-processing took 2 seconds longer compared with the baseline, resulting in a total time that

is 1 second worse.

Table 7 shows the win counts for time and nodes expanded for each of the error-guided orderings relative to the baseline.

Examining the number of wins based on nodes expanded, more than half of the instances that could be solved benefited

from error-guided ordering (excluding ScpBnd-Abs). For example, at an i-bound of 10, every method except ScpBnd-Abs

has fewer nodes expanded than the baseline on 71.4% of the solved instances. At the lower i-bounds of 6 and 10, we see

that the savings in the number of nodes translates to savings in time as well in most cases. However, this decreases as
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Table 8

Exact evaluation for promedas instances. The best times and node counts are bolded per i-bound and the best times and node count overall for a given

instance are also underlined. If the optimal solution was not found, then we report ‘oom’ to denote that the experiment ran out of memory. We also report

the pre-processing time to the left of each total time. n – number of variables, k – maximum domain size, w∗ – induced width, h – pseudo-tree height.

instance

(n,k, w∗,h)

heur i = 12

pre / time / nodes

i = 14

pre / time / nodes

i = 16

pre / time / nodes

i = 18

pre / time / nodes

or_chain_25.fg H 0 / oom / – 0 / 239 / 10020 0 / 164 / 7009 1 / 319 / 13152

(1075,2,43,80) C-A 2 / oom / – 3 / 172 / 6686 4 / 115 / 4629 4 / 161 / 6225

C-R 2 / oom / – 3 / 175 / 6668 4 / 117 / 4671 4 / 159 / 6226

SB-A 2 / oom / – 2 / oom / – 3 / 117 / 4678 4 / 163 / 6225

SB-R 2 / oom / – 2 / 170 / 6670 3 / 115 / 4657 4 / 161 / 6224

or_chain_40.fg H 0 / oom / – 0 / oom / – 1 / 195 / 8642 2 / 109 / 5084

(988,2,43,87) C-A 2 / oom / – 3 / oom / – 5 / 168 / 7039 6 / 60 / 2550

C-R 2 / oom / – 3 / oom / – 5 / 144 / 5721 7 / 60 / 2550

SB-A 2 / oom / – 3 / oom / – 4 / 302 / 12748 5 / 231 / 9579

SB-R 2 / oom / – 3 / oom / – 4 / 152 / 6151 6 / 61 / 2550

or_chain_63.fg H 0 / 42 / 2036 0 / 11 / 563 0 / 7 / 349 1 / 9 / 411

(731,2,38,81) C-A 1 / 31 / 1391 2 / 10 / 350 3 / 8 / 226 4 / 8 / 251

C-R 1 / 32 / 1391 2 / 10 / 350 3 / 8 / 244 4 / 9 / 251

SB-A 1 / 52 / 2266 2 / 15 / 608 3 / 10 / 382 4 / 12 / 467

SB-R 1 / 44 / 2038 2 / 10 / 361 3 / 7 / 230 4 / 9 / 273

or_chain_80.fg H 0 / 128 / 5374 0 / 80 / 3398 1 / 47 / 1977 2 / 46 / 1904

(840,2,50,108) C-A 2 / 112 / 4550 4 / 75 / 3019 5 / 47 / 1724 7 / 42 / 1443

C-R 2 / 99 / 4550 4 / 76 / 3029 5 / 47 / 1738 7 / 41 / 1443

SB-A 2 / 248 / 9001 3 / 174 / 6222 5 / 83 / 3108 6 / 84 / 3127

SB-R 3 / 114 / 4551 3 / 76 / 3018 4 / 46 / 1724 6 / 40 / 1444

or_chain_94.fg H 0 / 74 / 3659 0 / 58 / 2945 1 / 45 / 2498 1 / 28 / 1582

(762,2,32,97) C-A 1 / 39 / 1690 3 / 32 / 1416 4 / 28 / 1318 4 / 21 / 937

C-R 1 / 35 / 1690 3 / 32 / 1416 4 / 28 / 1298 4 / 21 / 937

SB-A 1 / 370 / 12931 2 / 206 / 8068 3 / 114 / 5048 4 / 59 / 2787

SB-R 1 / 37 / 1624 2 / 30 / 1357 3 / 27 / 1307 4 / 21 / 931

or_chain_140.fg H 0 / 108 / 5103 0 / 79 / 3946 1 / 41 / 2224 1 / 32 / 1714

(1260,2,32,79) C-A 2 / 121 / 4943 3 / 66 / 2913 4 / 51 / 2290 4 / 55 / 2448

C-R 2 / 133 / 5633 3 / 66 / 2934 4 / 49 / 2288 4 / 69 / 3328

SB-A 2 / 132 / 4979 2 / 70 / 2962 3 / 43 / 2008 4 / 51 / 2240

SB-R 2 / 132 / 5442 2 / 65 / 2944 3 / 47 / 2119 4 / 67 / 3220

or_chain_178.fg H 0 / oom / – 0 / 284 / 13893 1 / 253 / 14811 1 / 231 / 11752

(1012,2,35,97) C-A 2 / 265 / 11758 3 / 134 / 6389 5 / 145 / 6958 5 / 114 / 5339

C-R 2 / 264 / 11724 3 / 133 / 6390 5 / 254 / 12591 6 / 111 / 5339

SB-A 2 / oom / – 3 / oom / – 4 / oom / – 5 / oom / –

SB-R 2 / 300 / 12810 3 / 157 / 7303 4 / 278 / 13411 5 / 113 / 5461

or_chain_199.fg H 0 / 33 / 1677 0 / 42 / 2259 0 / 33 / 1850 1 / 20 / 1098

(917,2,33,79) C-A 1 / 29 / 1332 2 / 43 / 2094 3 / 30 / 1496 4 / 20 / 971

C-R 1 / 39 / 1708 2 / 71 / 2921 3 / 30 / 1498 4 / 20 / 971

SB-A 1 / 93 / 3330 2 / 79 / 3048 2 / 70 / 3050 3 / 34 / 1527

SB-R 1 / 39 / 1693 2 / 58 / 2596 2 / 38 / 1789 3 / 22 / 1065

or_chain_212.fg H 0 / 103 / 5031 0 / 60 / 3110 0 / 43 / 2382 1 / 17 / 911

(773,2,33,79) C-A 1 / 55 / 2476 2 / 33 / 1569 3 / 26 / 1165 4 / 14 / 549

C-R 1 / 55 / 2476 2 / 33 / 1570 3 / 26 / 1164 4 / 14 / 549

SB-A 1 / oom / – 2 / 282 / 12138 3 / 215 / 9986 3 / 86 / 4305

SB-R 1 / 66 / 2830 2 / 35 / 1670 3 / 31 / 1399 3 / 14 / 566

or_chain_226.fg H 0 / 197 / 8434 0 / 212 / 9580 1 / 75 / 3443 2 / 34 / 1528

(735,2,42,87) C-A 2 / 156 / 5322 4 / 90 / 3330 5 / 45 / 1611 6 / 28 / 921

C-R 2 / 154 / 5320 4 / 104 / 3905 5 / 45 / 1611 5 / 26 / 976

SB-A 2 / 291 / 11595 3 / 346 / 15606 4 / 117 / 4854 5 / 62 / 2525

SB-R 2 / 159 / 5482 3 / 98 / 3663 4 / 46 / 1697 4 / 25 / 976

the i-bound increases, due a combination of the pre-processing overhead of the computing the error-based heuristics and

the relative ease of the benchmark problems using stronger heuristics. Overall, the error-guided orderings demonstrate their

moderate impact on a variety of i-bounds here, but their overhead prevents them from being useful in situations where

problems are already easy to solve with the correct f1 heuristic and the baseline orderings.

Promedas. Table 8 reports on a selection of promedas instances. We used higher i-bounds for this benchmark because

the instances are harder compared to the pedigrees. As in the previous benchmark, we observe that the number of nodes

expanded by an error-guided ordering is better than the baseline ordering in many cases. Notably, we see here for the high
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Table 9

Summary for exact solutions on promedas instances: win counts of instances that the ordering heuristic had a lower time or lower number of nodes than

the baseline. The number of instances solved by any heuristic (including the baseline) is shown under each i-bound label. Each number in parentheses is

the percentage of solved instances that performed better for that particular i-bound.

Win counts for promedas instances

heuristic i = 12 i = 14 i = 16 i = 18

wins by

(solved= 14)

time (%)/nodes (%)

wins by

(solved= 17)

time (%)/nodes (%)

wins by

(solved= 19)

time (%)/nodes (%)

wins by

(solved= 20)

time (%)/nodes (%)

C-A 10 (71.4)/10 (71.4) 11 (64.7)/12 (70.6) 11 (57.9)/14 (73.7) 12 (60.0)/16 (80.0)

C-R 8 (57.1)/8 (57.1) 10 (58.8)/12 (70.6) 10 (52.6)/13 (68.4) 10 (50.0)/14 (70.0)

SB-A 2 (14.3)/4 (28.6) 2 (11.8)/3 (17.6) 3 (15.8)/4 (21.1) 2 (10.0)/2 (10.0)

SB-R 7 (50.0)/7 (50.0) 10 (58.8)/11 (64.7) 9 (47.4)/15 (78.9) 10 (50.0)/14 (70.0)

Table 10

Exact evaluation for type4 instances. The best times and node counts are bolded per i-bound and the best times and node count overall for a given instance

are also underlined. If the optimal solution was not found, then we report ‘oom’ to denote that the experiment ran out of memory. We also report the

pre-processing time to the left of each total time. n – number of variables, k – maximum domain size, w∗ – induced width, h – pseudo-tree height.

instance

(n,k, w∗,h)

heur i = 14

pre / time / nodes

i = 16

pre / time / nodes

i = 18

pre / time / nodes

i = 20

pre / time / nodes

type4-haplo_100_19 H 4 / oom / – 9 / oom / – 23 / 2436 / 11898 61 / 208 / 1415

(3927,5,28,362) C-A 16 / oom / – 24 / oom / – 36 / 1965 / 10036 70 / 176 / 1231

C-R 16 / oom / – 25 / oom / – 35 / 2024 / 10036 70 / 177 / 1231

SB-A 14 / oom / – 21 / oom / – 33 / 2953 / 13625 68 / 222 / 1654

SB-R 14 / oom / – 21 / oom / – 33 / 2039 / 10343 68 / 175 / 1231

type4-haplo_120_17 H 3 / oom / – 7 / 568 / 1846 17 / 32 / 162 32 / 34 / 10

(4302,5,23,300) C-A 12 / oom / – 16 / 325 / 1823 21 / 29 / 155 34 / 34 / 8

C-R 12 / oom / – 14 / 311 / 1825 21 / 29 / 155 34 / 34 / 8

SB-A 10 / oom / – 14 / 211 / 1880 20 / 25 / 155 33 / 34 / 8

SB-R 10 / oom / – 14 / 338 / 1828 20 / 28 / 155 33 / 34 / 8

type4-haplo_170_23 H 2 / 1390 / 5299 3 / 41 / 300 8 / 12 / 21 13 / 16 / 6

(6933,5,21,396) C-A 9 / 3239 / 5820 11 / 31 / 359 11 / 12 / 16 14 / 14 / 6

C-R 9 / 3323 / 5821 11 / 32 / 385 11 / 12 / 16 14 / 14 / 6

SB-A 7 / 2046 / 6675 9 / 22 / 398 10 / 11 / 22 14 / 14 / 6

SB-R 8 / 2067 / 6484 10 / 31 / 383 10 / 11 / 16 14 / 14 / 6

type4b_100_19 H 5 / oom / – 11 / oom / – 30 / oom / – 101 / 880 / 7757

(3938,5,29,354) C-A 18 / oom / – 26 / oom / – 43 / oom / – 111 / 832 / 7664

C-R 18 / oom / – 26 / oom / – 43 / oom / – 111 / 678 / 7588

SB-A 16 / oom / – 22 / oom / – 35 / oom / – 109 / 973 / 7891

SB-R 16 / oom / – 22 / oom / – 40 / oom / – 109 / 634 / 7598

type4b_120_17 H 3 / oom / – 8 / 508 / 1956 22 / 24 / 119 38 / 39 / 48

(4072,5,24,319) C-A 11 / oom / – 16 / 336 / 1922 27 / 31 / 104 41 / 42 / 35

C-R 11 / oom / – 14 / 307 / 1919 27 / 31 / 104 41 / 42 / 35

SB-A 10 / oom / – 14 / 364 / 1937 26 / 29 / 103 40 / 41 / 38

SB-R 10 / oom / – 14 / 329 / 1919 26 / 30 / 105 40 / 41 / 37

type4b_170_23 H 3 / 382 / 2968 4 / 5 / 37 7 / 7 / 20 9 / 9 / 5

(5590,5,21,427) C-A 8 / 287 / 2879 9 / 10 / 36 8 / 9 / 6 9 / 10 / 5

C-R 8 / 333 / 2809 9 / 10 / 35 8 / 8 / 6 9 / 9 / 5

SB-A 7 / 176 / 2630 8 / 9 / 53 8 / 8 / 6 9 / 10 / 5

SB-R 7 / 281 / 2736 8 / 9 / 34 8 / 8 / 6 9 / 10 / 5

i-bound of 18, where the savings in nodes on a few harder instances translated well to savings in the runtime. For example,

on or_chain_25.fg, both the runtime and number of nodes expanded using any of the error-guided orderings were about half

of those of the baseline ordering. Still, the error-guided orderings may still be worse than the baseline (e.g. or_chain_140.fg,

but this is usually the exception.

Table 9 provides the win counts for each error-guided ordering heuristic. The ScpBnd-Abs heuristic is the worst per-

former, as we saw before. Both relative error base orderings (Const-Rel and ScpBnd-Rel) have similar positive performance,

demonstrating positive impact of the orderings on at least 50% of the instances across all i-bounds. Overall, Const-Abs was

best, yielding improvements on at least 70% of the instances. The time savings in nodes carries over to most cases using

lower i-bounds and slightly fewer at higher i-bounds. For example, at an i-bound of 12 using Const-Abs, 9 out of the 10

instances (90%) had a positive impact of ordering also had better runtime than the baseline. In contrast, at an i-bound of

18, only 12 out of the 16 instances (75%) had improved times.
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Table 11

Summary for exact solutions on type4 instances: win counts of instances that the ordering heuristic had a lower time or lower number of nodes than the

baseline. The number of instances solved by any heuristic (including the baseline) is shown under each i-bound label. Each number in parentheses is the

percentage of solved instances that performed better for that particular i-bound.

Win counts for type4 instances

heuristic i = 14

(solved= 2)

i = 16

(solved= 4)

i = 18

(solved= 5)

i = 20

(solved= 6)

wins by

time (%)/nodes (%)

wins by

time (%)/nodes (%)

wins by

time (%)/nodes (%)

wins by

time (%)/nodes (%)

C-A 1 (50.0)/1 (50.0) 3 (75.0)/3 (75.0) 3 (60.0)/5 (100.0) 3 (50.0)/4 (66.7)

C-R 1 (50.0)/1 (50.0) 3 (75.0)/3 (75.0) 3 (60.0)/5 (100.0) 3 (50.0)/4 (66.7)

SB-A 1 (50.0)/1 (50.0) 3 (75.0)/1 (25.0) 2 (40.0)/3 (60.0) 2 (33.3)/2 (33.3)

SB-R 1 (50.0)/1 (50.0) 3 (75.0)/3 (75.0) 3 (60.0)/5 (100.0) 3 (50.0)/4 (66.7)

Type4. Table 10 shows all the instances of the type4 benchmark that could be solved by AOBF with the given i-bounds.

This benchmark is the hardest of the 3 benchmarks and thus we used even higher i-bounds compared to the promedas

benchmark. Even then, only with an i-bound of 20 are we able to solve all 6 of the instances. Like with the previous two

benchmarks, we see that the error-guided orderings yield better performance on many instances. However, the variation is

smaller. For example, on type4-haplo_100_19 using an i-bound of 20, the number of nodes expanded using the Const-Abs

ordering is still about 87% of what the baseline ordering yields, compared with the lower 50% rates seen on some instances

in the other two benchmarks. On two of the instances here (type4-haplo_170_23 and type4b_170_23), there is no difference

in the number of nodes expanded, indicating that most of the errors likely evaluated to zero, thus falling back on the base-

line ordering. Still, we see improved runtime on the hardest of the instances here (type4-haplo_100_19 and type4b_100_19),

where any savings in the number of nodes expanded did carry over to overall savings in runtime.

Table 11 aggregates the results by win counts as before. Across the i-bounds, every error-guided ordering was better

on at 50–100% of the instances except for ScpBnd-Abs. Notably, improvement was achieved on all instances by these 3

orderings at an i-bound of 18 and a majority at the highest i-bound of 20. In terms of overall runtime improvement, most

instances also had better runtimes when their orderings were better in terms of node expansions.

5.1.1. Discussion on finding exact solutions

Our experiments, show that the error-guided orderings can benefit AOBF. For most combinations of benchmark and i-bound,

at least 60–70% of the solved instances had positive impact when using the error-guided orderings in terms of nodes

expanded, despite the multiple levels of approximation performed (summing 1-level residuals to approximate the exact

residual, bounding the scopes of the error functions, and sampling). Furthermore on the harder benchmarks (promedas

and type4), the superior orderings node-wise usually also carried over to improved overall runtime. Specifically, when

considering time on the same benchmarks, the percentage of instances that exhibited positive impact around 50–60%,

though in some cases, the error-guided orderings were only a bit slower, since the difference in pre-processing time is

usually in the order of a few seconds. For easy instances, the impact was negative in terms of the number of nodes (and

obviously time-wise). This is partly because on easy instances, the MBE-MM heuristic is strong and thus there are no errors,

thus making the error-guided orderings not cost-effective. Overall, all of the error-guided orderings (except ScpBnd-Abs)

have similar performance to each other.

5.2. Anytime lower bounding

Next, we will evaluate AOBF for generating lower bounds in an anytime fashion and the impact of the f2 ordering

heuristic on this anytime performance. Figs. 7, 9, and 11 report the lower bound obtained as a function of time for each

subproblem ordering f2 . A profile that is higher earlier in time is superior. The first point of each line is always the bound

returned by the MBE-MM heuristic itself, recorded whenever search starts following all pre-processing. If known, the exact

solution is also plotted as a dashed gray line. For each benchmark, we select 2 representative instances, one of which was

exactly solved and another which was not. For each instance, we show 4 different i-bounds. For pedigrees both instances

are exactly solved (Fig. 7). Each ordering is labeled with abbreviated names for clarity.

We also aggregated the results per benchmark in Figs. 8, 10, and 12. We normalized the time scale for each instance

to that of the baseline, ranked the bounds yielded by each variant across time, and aggregated across the instances by

averaging. The number of instances varies with the different i-bounds since for some large instances, compiling the MBE

heuristics at the highest i-bounds exceeds our memory limit of 24 GB.

Pedigrees. Fig. 7 shows the lower bounds as a function of time on 2 selected instances from the pedigree benchmark. First,

on pedigree9 (which is solved exactly). For the lower i-bounds of 6 and 10, all of the methods except ScpBnd-Abs perform

better early on. Since the problem is easy at higher i-bounds, AOBF quickly finds the optimal solution after the initial

bound generated by MBE-MM. Still, at an i-bound of 14, everything except ScpBnd-Abs improves over the baseline. At

the highest i-bound of 18, the pre-processing overhead makes the error-guided orderings not cost-effective. In pedigree51,

where AOBF ran out of memory before finding the exact solution, the lowest i-bounds of 6 and 10 also benefited from
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Fig. 7. Lower bounds as a function of time for two instances from the pedigree benchmark. Higher is better.

Fig. 8. Average rank of each ordering as a function of normalized time across all of the instances in the pedigree benchmark. Lower is better.
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Fig. 9. Lower bounds as a function of time for two instances from the promedas benchmark. Higher is better.

error-guided orderings. Increasing to the i-bound 14 yields marginally better performance compared with the baseline

(except for ScpBnd-Abs). Finally, at the highest i-bound the baseline performs best.

Fig. 8 presents the average ranks for each ordering heuristic based on normalizing the time across the instances and

averaging as explained earlier. As seen in the instance-by-instance results, all error-guided orderings except ScpBnd-Abs

outperform the baseline. As the i-bound increases the average rank of the baseline improves. For an i-bound of 18, only

ScpBnd-Rel ranks similarly to the baseline, but the baseline is better overall.

Promedas. Fig. 9 shows results on 2 selected instances from the promedas benchmark. For the first instance (or-chain-

178.fg), the error-guided orderings improve significantly over the baseline, except for ScpBnd-Abs across all i-bounds. Next,

on or-chain-108.fg, most of the error-guided orderings improve over the baseline at an i-bound of 12. Once we increase the

i-bound to 14, the baseline manages to get a profile that is more similar to the 3 dominating methods, but still falls short.

At i-bounds of 16 and 18, all methods that were performing well before show a better profile, generating a higher lower

bound early, as expected

Fig. 10 presents the ranking summary over this benchmark. For all i-bounds the baseline seems superior early on due

to the pre-processing overhead of the error-guided orderings. However, it is overtaken by the other methods eventually

at different points on the normalized time scale. At an i-bound of 12, the Const methods outrank the baseline early on.

Moving to i-bounds of 14 and 16, everything but ScpBnd-Abs approaches the baseline eventually and outrank it with time.

Finally, at the highest i-bound of 18, the ScpBnd-Rel method performs better early around 0.1 on the time scale, with the

Const methods overtaking the baseline at around 0.6 on the time scale.

Type4. Fig. 11 shows lower bounds over time for 2 instances of our last benchmark. The first instance (t4-haplo-100-19)

could not be solved at i-bounds of 14 and 16, but were solved with higher i-bounds. Once again, all of the error-guided

heuristics except ScpBnd-Abs improve performance over all i-bounds of 16 and up. At the lowest i-bound of 14, the per-
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Fig. 10. Average rank of each ordering as a function of normalized time across all of the instances in the promedas benchmark. Lower is better.

Fig. 11. Lower bounds as a function of time for two instances from the type4 benchmark. Higher is better.
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Fig. 12. Average rank of each ordering as a function of normalized time across all of the instances in the type4 benchmark. Lower is better.

formance is close to the baseline. Moving to t4-haplo-190-20 which was not solved, we have similar behavior. Specifically,

ScpBnd-Abs is slightly better than the rest at i-bounds up to 18, but performs significantly worse than both Rel methods

at the highest i-bound of 20.

Fig. 12 provides summary rankings of the orderings over normalized time for all of the instances that did not run out

of memory for each i-bound. Notably, the number of instances reported decreases significantly as we increase the i-bound

because we were unable to compile the MBE heuristics given our memory bound for many instances. At an i-bound of 14,

the baseline performs best. Many of the instances had a large number of variables, which substantially increased the time

and memory needed to compile the MBE heuristics. In turn, this extra cost carried over to increasing the pre-processing

time for the error-guided ordering heuristics, leading to a negative impact. For higher i-bounds, we observe the same

behavior as in the previous benchmark, where the baseline ordering is best initially. However, the error-guided orderings

other than ScpBnd-Abs dominate with more time. Notably, with the highest i-bound, the ScpBnd-Rel ordering outperforms

the baseline early and maintains its continuously.

5.2.1. Discussion on anytime performance

In contrast with the performance for finding exact solutions, we see that ScpBnd-Rel was overall the winning ordering

heuristic. This is illustrated by its ranking at the highest i-bound on the two harder benchmarks we evaluated (promedas

and type4). However, it was still outperformed by the baseline on the pedigree benchmark, though not significantly. Overall,

from the instance-by-instance lower bound plots ScpBnd-Rel was most consistent in producing superior lower bounds.

6. Conclusion

This paper focuses on the potential of using AND/OR best-first search for generating lower bounds in an anytime fashion.

Within this context, it explores the impact of subproblem ordering heuristics (the so-called secondary evaluation function

[10]) for both exact and anytime performance. We present new heuristics for subproblem ordering which are based on

pre-compiled information regarding the error associated with the primary heuristic, guided by a recently defined notion of

bucket error. In an extensive empirical evaluation, we showed that in the context of evaluating the exact solution, most of

our proposed error-based variants, were equally good, improving the runtime on 50–60% of the instances. This accounted

for most of the hard instances which had enough error to impact subproblem ordering. In the anytime evaluation, we found

that ScpBnd-Rel (the scope-bounded relative error functions) was the best scheme overall, illustrating the advantage of

having more informed functional error information over the constant-based ones.

Various issues remain to be explored. First, all averages are taken by enumeration or sampling and using a simple

average. However this assumes that each assignment has equal impact. Exploration into a weighted average estimate (i.e.

importance sampling) could potentially improve the estimates. Also, the method of truncating the scopes for the ScpBnd

methods is quite arbitrary. A more informed truncation procedure may reduce the loss of information. Lastly, we saw that

ScpBnd-Abs tended to be much inferior to all ordering heuristics in nearly all cases, which suggests that the truncation and

message passing process is sensitive to the scale of values. The relative error variant which expresses errors in terms of

percentages on the other hand, was informative.

As far as we know, there has been little focus on subproblem ordering in AND/OR Best-First search, our work illustrates

that there is potential to be realized by ordering the subproblems in an informed manner. The ideas presented here gen-
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eralize to any type of AND/OR search. In particular, various memory-efficient A* variants (e.g. IDA*, RBFS) [26,27] use the

idea of repeatedly deleting and re-expanding nodes, which would potentially also benefit from the savings yielded by better

subproblem orderings.
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Highlights

• Subproblem ordering impacts the performance of AND/OR Best-First search.

• Look-ahead (and thus MBE bucket errors) can be used to guide subproblem ordering.

• Several schemes to approximate bucket errors are proposed to deal with overhead.


