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ABSTRACT

This paper describes a two level Spanish Continuous Speech
Recognition System based on Demisyllable HMM modelling,
word-spotting and finite-state lexical and syntactic knowledge.
The first level, the word level, is based on a spotting algorithm
which takes as input the unknown utterance, the HMM of the
reference demisyllable and the lexical knowledge in terms of a
finite-state network. The output of the word level is a lattice of
word hypothesis [1]. The second level, the phrase level,
searches in a time-synchronous procedure the best sentence that
end at each time instant. It takes as input the word lattice and the
syntactic knowledge in terms of a finite-state network, giving as
output the best legal sentence. The proposal two-level system
was tested recognizing the integers from O to 1000 in a speaker
independent approach. We get a word accuracy of 93,2% with a
sentence accuracy of 84.5%.

Keywords: Speech Recognition, Hidden Markov Model, Fuzzy
Training, Demisyllable, Word-spotting, Multiple Hypothesis,
Finite State Networks.

1. INTRODUCTION

During the last years, many continuous speech recognition
systems have been proposed giving good results in different task
and vocabulary size. Attending to the use of the acoustic, lexical
and syntactic knowledge, the systems can be divided in two
groups, the integrated systems, where all the knowledges are
integrated in a large network to represent all possible sentences
in the task [2,3,4] or the multi-level systems, where each
knowledge source works with the results of the others [5,6]. Up
to now, the integrated systems get better results, but the multi-
level systems let apply the natural language advances easier,
being a good approach to understand the spontaneous speech.
Our current approach goes in that direction.

In this paper, we describes a two-level continuous speech
recognition systems based on separating the acoustic and lexical
knowledge from the syntactic knowledge. The first level makes
use of the acoustic and lexical knowledge to translate the speech
signal into a lattice of word hypothesis. We call this level ' word
level ', which works as an acoustic processor. The definition of
the word level for continuous speech recognition involves some
questions related with the language to be recognized and the
architecture of the system. The Spanish language has a syllabic
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character which suggests to use the demisyllable as phonetic
recognition unit. The inventory of Spanish demisyllables is
relatively small: less than 750 units. Thus, demisyllables afford a
convenient phonetic coding of Spanish utterances. The lexical
knowledge describes words in terms of demisyllables. This
information is compiled in a finite state network infered from the
word vocabulary. This approach provides a compact
representation of the lexical knowledge in terms of predecessors
and successors of the phonetic units. To locate the words of the
vocabulary in the speech signal, we make use of a word spotting
algorithm driven by the lexical knowledge. It takes as input the
unknown utterance, the HMM of the demisyllables and the
lexical knowledge. The output is a lattice of word candidates.

The second level of our approach is the phase-level which takes
as input the word lattice and the syntactic knowledge. In this
paper, the syntactic knowledge is given by a finite-state network
as in the lexical knowledge. The parser is a Viterbi search
algorithm which is controled by the syntactic knowledge and it is
time-syncronous with the ending time of the spotted words.

As the lexical and syntactic knowledges are compiled in a finite-
state network and the search procedures are based on the Viterbi
algorithm (word-spotting and parser), several words or sentences
can share some states of the network, thus , if we want to
generate the best word hypothesis or sentence hypothesis, it is
necessary to use a multiple hypothesis algorithm in the Viterbi
search[1,7].

The paper is organized in the following way: Section 2 describes
an overview of the system, in section 3 the word level is
described, section 4 describes the phrase level, section 5
provides the experimental results, and finally, sections 6 contains
the main conclusions.

2. SYSTEM OVERVIEW

Figure 1 shows a general block-diagram of the system
architecture. The system consists of a two-level process around
the spotting and the parser algorithm. In the training step, the
lexical and syntactic knowledge are infered, and the HMM are
estimated from the training data base.

2.1. Signal Processing

The speech signal is band-pass (100 Hz - 3400 Hz) filtered by an
antialiasing filter and sampled at 8 kHz. The utterance is isolated
by an end-point detection algorithm and pre-emphasized. A linear
prediction based parameterization follows: the signal is
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Figure 1. Two-level architecture

segmented into frames of 30 miliseconds by a Hamming
window at a rate of 15 miliseconds, and every frame is
characterized by a LP-fiter with 8 coefficients. Afterwards, 12
band-pass lifted cepstrum coefficients are computed; the energy
of the frame completes the parameterization. Before entering the
recognition algorithm, the system evaluates the spectral
difference with a time-average of 90 miliseconds [8]. In a similar
way, the energy difference is calculated. The spectral vector and
the spectral and energy differences are vector-quantized
separately; in that way, every frame of the speech signal is
represented by three symbols.

2.2. Phonetic unit

Demisyllables afford a convenient phonetic coding of Spanish
utterances, according to the syllabic character of this language.
In order to define the demisyllable set, every possible syllable
was divided by the strong vowel into an initial demisyllable and
a final demisyllable; accordingly, we distinguished between
stressed final demisyllables and unstressed final demisyllables.
The main cues of prosodic stress in Spanish are pitch, loudness
and syllable length; as pitch and loudness information are not
considered in our system, the main difference between stressed
and unstressed final demisyllable is the length of their
references.

2.3. HMM demisyllable units
The structure used for the HMM is the typical left-to-right

structure, that allows to skip one state when the model makes a
transition between states. The emission of symbols is associated
to the states, that issue three independent symbols (spectrum,
spectrum difference and energy difference) when they are
visited. Finally, each demisyllable reference is composed by a
HMM and the mean and variance of the length of the
demisyllable.

2.4. Data bases

Two data bases have been used for testing and training the
system:

DB1) 40 strings of integers uttered by ten speakers (SO
to S9, 5 male and 5 female), for example, 25011/96,
1019/05/70. This data base was segmented by hand into
demisyllables and used for training the HMM of the demisyllable
units. The articulation rate of speech spanned from 5 to 7
syllables per second.

DB2) 44 integers from zero to one thbusand uttered by
ten speakers (SO to S1 and S10 to S17, 6 male and 4 female),
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for example, 495 /four hundred and ninety five/. This data base
was used for testing the system. The vocabulary is composed by
32 words with 66 demisyllables (Table 1). The articulation rate
of speech spanned from 4 to 7 syllables per second.

0 cero (0), uno (1), dos (2), tres (3), cuatro (4), cinco (5),
9 seis (6), siete (7), ocho (8), nueve (9)

10 diez (10), once (11),doce (12), trece (13), catorce (14),

quince (15), dieci (1*), veinte (2*), treinta (3*),
cuarenta (4*), cincuenta (5*), sesenta (6*), setenta (7%),
99 ochenta (8*). noventa (9%)

100 | cien (100), ciento (1**), cientos (1**), quinientos (5**),

1000] sete (7**), nove (9%*), mil (1000)

Table 1. Vocabulary words
2.5. Discrete Fuzzy HMM training.

Each model was trained independently of the others. Once the
samples of every demisyllable were collected from de utterances
of DB1, the Baum-Welch estimation algorithm was applied. At
the same time, the mean and the variance of the length of the
demisyllable was computed. We use three independent
codebooks of 64 codewords for the two codebooks dedicated to
spectral information and 32 codewords for the codebook
devoted to energy differences.

Every frame of speech was vector-quantized with the three
nearest codewords, during the training phase; so, for one frame
of speech the probabilities of three codewords could be trained.
The contribution of a codeword appearance to the probability
estimate was weighted inversely with respect to the distance
between the frame and the codeword. Thereby, the model
estimation and the model smoothing were carried out
simultaneously. During the recognition phase, the speech frames
were vector-quantized with the nearest codeword only.

2.6. The lexical and syntactic knowledge.

The lexical knowledge inference compiles all expected phonetic
realizations of the vocabulary words in a network. The syntactic
knowledge inference compiles all correct sentences in a network.
Thus, our approach is based on the use of finite-state networks
to represent the lexical and syntactic knowledge. The lexical
knowledge is described in terms of lexical units (states of the
network) and the predecessor states of all of them. Defining the
phonetic unit as every demisyllable used to consider the
different sounds in the language, a phonetic unit can have
associated several states in the lexical network which form the
lexical units. The syntactic knowledge is describe in terms of -
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syntactic units (states of the network) and the predecessors states
of all of them. We infer both finite-state networks by means of
an automatic inference algorithm [10]. Thus, the word level
makes use of the lexical knowledge in terms of a lexical tree with
the pronunciation of the words for retrieving words and a
compiled version of this tree in a finite-state network suitable for
driving the spotting algorithm. The phrase level makes use of the
syntactic knowledge in terms of a finite-state grammar.

We classify the lexical units in start units, inside units and end
units. The start units are the subset of lexical units that can be
the first demisyllable of a word, the end units are the subset of
lexical units that can be the last demisyllable of a word and the
inside units are the rest of lexical units.

3. WORD LEVEL: SPOTTING ALGORITHM

The heart of the word level is the spotting algorithm. It takes as
input the unknown utterance, the HMM of the demisyllables and
the lexical knowledge. The spotting algorithm is a one-step time-
synchronous Viterbi algorithm which gives for each input frame
the likelihood that each word of the vocabulary ends in that
frame. Each input frame could be a starting point of a path in the
Viterbi decoding, that is, the starting constraint of the time-
synchronous algorithm is relaxed [1].

To spot a word, the Viterbi path has to go from a start unit to an
end unit. That means that we have to define a between-unit
transitions which are controled by the lexical network. The last
state of each HMM has associated a duration probability which
determines the transition probability between units. Due to the
fact that a lexical unit can be shared by several words, we have
to modify the time-synchronous algorithm to generate multiple
hypothesis in the between-unit transitions [7]. That modification
implies to keep the N-best sequence of lexical units in each
transition.

HMM of

A lexical units N paths
Between unit

HMM
le'irn/!
transition

HMM The N paths are

Within_ unit O/_/Promgated together

/ta/- transition
N P“V The N best paths
are chosen ...
HMA
MM /_d:hs

-le'n/

Time
Figure 2. Multiple hypothesis algorithm.

We use a simplified implementation of the general problem of
generating the N best hypothesis (figure 2). Our multiple
hypothesis algorithm is based on chosen the N best paths in each
between unit transition. Thus, in the first state of an unit, we
take the N best paths which can make the transitions between
units. If the highest probability of these N paths is greater than
the highest probability of the within-unit path, we decide that a
transition is made and then we propagate the probabilities of the
N paths together. Thus, the best path decides when a between-
unit transition takes place and the rest of the algorithm decisions
are made under the best path hypothesis.

Finally, for each input frame, a probability measure can be
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obtained in the last state of each end unit which gives the
probability that each word of the vocabulary ends in that frame.
A pruning strategy is used to keep only the M-best word
probabilities and a backtrack procedure over the lexical units is
done to find the M-best words that end in each frame. Once, all
the frames of the unknown utterance have been processed, a
merging procedure is actived to build the lattice of word
hypothesis. The merging procedure compacts the output
information of the word spotting algorithm selecting the most
probable location of a word when it has been detected in
successive starting and ending frames. Figure 3 shows an
example of the spotting results that provides the merging
procedure. For each word, the system gives the following
information: word recognized, the best location with its
probability and the variation in the starting and ending point. For
instance, "(-1)2(0)/cien/(-16)23(7)" means: the word recognized
was /cien/, the best location (-3.5 of probability) was between
the frames 2 and 23, but the same word can begin 1 frame
before the best location and can end 16 frames before the best
ending point and 7 after the best ending point.

0 time 65
)] :
ciento/(-9)33(26) :
(0)32(0)/doce/(-10)61(4) :
,,,,,,,,,,,,,,,,,,,,,,, :
(0)2(0)/cientos/(-8)35(26)
(-5)32(0)/dos/(-10)49(4)
RR——

Log(Probabity)

3.9 il
(-2)12(0)/diez/(-3)19(4) :
—2} e & (0)40(0)/cero/(-3)65(0) ¢

~00

Figure 3. Spotting results analizing the number /ciento doce/
(one hundred and twelve).

4. PHRASE LEVEL: PARSER ALGORITHM

Taking as input the word lattice and the finite-state grammar, the
parser algorithm gives the best legal sentence. To achieve this
purpose, we process time-synchronous the word lattice with the
Viterbi algorithm, thus, for each time instant and state of the
grammar we get the best sequence of words from the beginning
of the utterance.

First, the parser identifies the words of the lattice with the
syntactic units, giving a search space defined by the time axe
and the syntactic unit axe. Once the search space has been built,
the lattice is parsed time-synchronous. The Viterbi algorithm
works time-synchronous with the ending time of the spotted
words and the search is driven by the predecessors of each
syntactic unit. If CP(s,m) is the cumulative probability for the
sequence of words ending at time m in the syntactic unit s with a
set of predecessors p, the cumulative probability is computed as

CP(s,m) = rrllax [P(s,1,m) + CP(p,1)]
P

where P(g,l,m) is the log-probability that the syntactic unit s
starts at time | and ends at time m. Once the word lattice has
been processed, a backtracking process retrieves the sentence.

To deal with the concatenation of the words of the lattice, we
relax the beginning and ending time of each word, penalizing the
temporal difference by a factor. The beginning and ending time
of the sentence is relaxed to the 10 % of the sentence length. The

1201



search space could be reduced by using a beam search heuristic '

and driven the Viterbi algorithm with the successors of each
syntactic unit. :

5. EXPERIMENTAL RESULTS

5.1. word level results.

The performance of the word level in a speaker independent
approach was tested with the DB2 data base. Two experiments
were carried. The first experiment use the finite-state lexical
network without multiple-hypothesis in the between-unit
transitions (1 choice) and the second experiment use the finite-
state lexical network with multiple-hypothesis (N choice). Over
the lattice of words, we define the top hypothesis levels as the
position, in probdbility order, of the correct word in its correct
position in the utterance. Figure 4 shows the recognition rates.
The accuracy of word spotting was about 82% for the first top
hypothesis level, 95% for the five top hypothesis levels without
multiple hypothesis (1 choice) and 99% for the five top
hypothesis levels with multiple hypothesis (N choice, where N
depends on the units with more predecessors, in this experiment
N=4). The average number of words in each sentence (integers
from 0 to 1000) is 2.56.

100 +
/
98 —
°/° 96 / \/
5 gg %;7 = z
e 90 /; ‘¢~ N choice
88
.° 86 S/ ‘©©- 1 choice
84 I
820 $
1 2 3 4 5

Hypothesis levels

Figure 4. Recognition rates of words for the data base of
numbers (DB2) (N=4).

5.2. Two-level results.

In this experiment, we test the performance of the two-level
system under the following conditions. At the word level, the
multiple hypothesis spotting algorithm is used. The pruning
procedure selects the 5-best words at each frame and the
merging procedure compact the word lattice with a maximum of
30 word hypothesis. Usually, the words in the lattice have a
fixed starting point and a great variability at the ending time.
Thus, at the phrase level, the starting time of each word is
relaxed by a 20 % of the best location length, penalizing the
temporal difference between the relaxed starting time and the
best starting time by a factor of 0.1. The temporal difference
between the ending time and the best ending time is penalized by
a factor of 0.05 when it is greater than the 10 % of the best
“location length. Table 2 summarizes the results under these
conditions for the ten speakers of DB2 data base (speakers SO
and S1 are in the training data base). The final word error is
7.54% and the word recognition is 93.17%. Nevertheless, in
almost all cases (99.5%), the right word was in the word lattice.
‘We want to point out that although we have to recognize only 32
words, they are highly confusables. The final sentence accuracy
is 84.5%. An analysis of the errors shows that it is necessary to
improve the processing at the phrase level of the concatenation
of words (starting and ending time relax).
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Word Recognition Performance Sentence

correct | Subs Dels Ins error Accuaracy

S0 |98,80% | 1,19% - 0,80% 1,99% || 97,08%

S1 [196,46% | 3,53% - - 3,54% || 91.30%

S10 [|93.46% | 5,60%| 0,93% - 6,54% | 84,00%

. S11 [187,85% | 10,28% | 1.87%| 1,.87%] 14,02% | 70,45%
S12 [9720% | 2,80%| - - 2,80% | 93,18%

813 [191,16% | 8.84% - 1,36%| 10,20% { 75.86%

$14 {1 94,39% | 4,67%| 0,93% - 561% || 88,64%

s15 [ 7944% [19.62% | 0.93% | 1.87%] 22,43% | 56,82%

$16 [192,52% | 7,48% - - 7.48% | 81,82%

S17 [193.46% | 6,54% - 093%| 7.48% | 81.82%

TOTAL| 93,17% | 6,42%| 0.39%| 0,71%| 7,54% | 84.52%

Table 2. Two-level results for each speaker (S0-S17)

6. CONCLUSIONS

We have developed a two-level Spanish continuous speech
recognition system based on the separation of the acoustic-
lexical knowledge ( word level) from the syntactic knowledge (
Phrase level). The word level is based on a HMM multiple
hypothesis spotting algorithm and demisyllables as phonetic
units. The lexical knowledge is-given by a finite-state network
for driving the spotting algorithm and a lexical tree for retrieving
the words. The phrase level parsers the word lattice time-
synchronous by means of the Viterbi algorithm and a finite-state
grammar. The results show a good performance of the word
level, 99 % for the five top hypothesis levels and 93.17% of
word accuracy with a finite-state grammar in the Phrase level.
The sentence recognition rate is 84.5%. Further studies will
include an improvement on the criterion to relax the
concatenation of words. :
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