
A Multi-version Algorithm for Cooperative Edition of Hierarchically-Structured Documents

Josep M. Rib6
Universitat de Lleida(UdL)

C. Jaume II,69
E-25001 Lleida (Catalunya, Spain)

josepma@eup.udl.es

Abstract

Seveml cipprociclies do e.x-ist to solve tlie problem of
editing a text rlocurnent cooperatively in r e d time. We
believe that those approaches coicld be irnpro\wl i n (rcw
ways: (I) preserving tlie intention of tlie peirticiprints in ci

better manner and (2) beneji'ting from N liierurcliicnl
clocurnent structure (as in X M L) . This urticle presents uti

cilgoritlitn for cooperative edition of clociirneiits that (I)
achieves intention preservation />y keeping cliflererir)'er-
sions of the concurrently accesseel clociitnent f r u g r n c ~ n t s
and tlint (2) rudrices concurrency cotlflicts b! restrictin<q
them to hiercirchically rlependent j~c ig t i ients .

1. Introduction

The cooperative edition of a text document consists in
the edition of a document simultaneously by several users
(sites), possibly located in geographically different places,
in such a way that any site can see the actions of the oth-
ers in real time.

Clearly, several concurrency problems arise when such
an edition system is to be designed. 1131 establishes the
three properties that any cooperatively edited document
should keep in order to be considered free of concurrency
problems: convergence, cuiiseilit~ preservation and inten-
tion preservation. These properties mean the following :

Convergence: When the same set of operations have
been executed at all sites, all copies of the shared docu-
ments are identical.

Causality preservation: For any pair op,, op2 of opera-
tions such that op, depends on op, (i.e. op, was performed
having seen the result of op,), then op, is executed before
op2 at all sites.

Intention presetvation: For any operation op, the ef-
fects of executing op at all sites is the same as the inten-
tion of the site that executed op locally, and the effect of
executing op does not change the effects of independent
operations (i.e. each one of them has not seen the effect of
the others).

This article focuses on presenting an algorithm for co-
operative edition of documents within a client-server
paradigm that keeps the above-mention properties. Spe-

0-7695- 135 1-40 1 S 10.00 0 200 1 E E E

Xavier Franch

c/ Jordi Girona 1-3 (Campus Nord, C6)
Universitat Politkcnica de Catalunya (UPC),

E-08034 Barcelona (Catalunya, Spain)
franch 0 Isi .upc.es

cifically, intention preservation is achieved by keeping
different versions o f the concurrently accessed document
fragments. In addition, the algorithm is able to deal with a
hierarchical document structure.

This article does not address the general problem of
semantic consistency in a cooperative editing system (i.e.
meaning of the document. crossed references...). As [131
points out, the maintenance of semantic consistency can-
not be solved without the intervention of the people in
collaboration. We are not aware of any cooperative edit-
ing system that attempts to solve this problem.

Section 2 overviews other approaches to the same
problem, and states the features of our solution. Section 3
provides the necessary framework to understand the co-
operative algorithm given later. Section 4 defines pre-
cisely the consistency model of ou r solution. Section 5 is
the core of the article since i t presenls the algorithm for
cooperative edition of a text document. Finally. section 6
shows a detailed example.

2. Related work and features of our
approach

In the last decade, several approaches have been taken
in order to solve the problem of the cooperative edition of
a text document by keeping the above-mentioned proper-
ties. Some of those approaches were hascd on ordcr-tak-
ing, serialization. locking or causal-ordering 12, 4, 6,
14 ...I but either they did not succeed in achieving all the
three correctness properties or they presented some
concurrency problems (see [131 for an overview).

[I] took a different perspective and introduccd the idea
of operation trunsfiirtncctions, according to which, a set of
concurrent (and hence, possibly independent) operations
can be properly transformed before their execution so that
they lead to the same final document state in all siteh,
regardless the order in which they have been executed.

This idea has been widely exploited by [9, 10, 12, 131
in order to keep intention prcservation (which is the most
difficult property to achieve). Although they have used

154

different strategies, they have got similar results. How-
ever, we strongly believe that their approaches suffer
from two important problems:

They do not actually achieve intention preservation.
Let us consider the following example: a document
contains the word ‘pace’ and two sites modify i t con-
currently: site 1 inserts ‘e’ at position 2 (meaning
‘peace’); site 2 inserts ‘s’ at position 5 (meaning
‘paces’). Clearly, they have two different (and irrec-
oncilable) intentions. The final result, according to
the mentioned approaches will be ‘peaces’ which
does not conform with either of the two intentions. It
seems clear that a better solution would involve cre-
ating two different versions of this word in the docu-
ment: ‘peace’ and ‘paces’.
They do not provide a hierarchical view of the

document, which has, at least, two drawbacks: (I)
Any pair of independent operations that are per-
formed at any part of the document collide (i.e. the
conflict unit encompasses the whole document), even
if those operations were performed at very distant
parts of the document; and (2) they do not provide a
direct way to perform operations on non-atomic parts
of the document (i.e. copy of a whole paragraph).

Some approaches do exist that create multiple versions
of objects in the framework of drawing environments: [7,
111. However, they have some drawbacks: [7] fails to
achieve causality preservation. [1 I] allows the application
of conzpatible operations on the same object without
generating a new version, but in our opinion, this leads to
problems in preserving intention. Let us consider the
following example: two incompatible operations (op,,
op,) performed on the same object obj have generated two
different versions of it (obj,, obj,). After that, a third op-
eration (op,) performed on obj is brought up by a site that
has seen the effects of both op, and op,. Consequently, the
intention of this site was to apply op, either to obj, or to
obj, (not to both of them!). However, according to [I 11’s
policy, both obj, and obj, will be updated with op$.

We are not aware of the existence of any multi-version
approach in the cooperative text edition field.

Neither [7] nor [I 13 use hierarchical document struc-
ture. This issue is addressed in [SI, although their solution
is quite restrictive since only two sites can access concur-
rently to the same node and only operations to in-
seddelete characters are considered (no operations are
defined on higher document levels).

Features of our approach
Our approach tries to present a proposal to improve some
of the above-mentioned limitations. Specifically, i t is
based on the following features:

1.

2 .
3.

4.

S .
6.

7.

Provision of a quick responsiveness to local site’s
operations (operations are executed locally at once).
Sites may reside in geographically different places.
Any site can perform operations on the document at
any time. All the operations are processed and take
effect into the document. (no locking policy. No dis-
carded operations).
Ability to deal with a hierarchical document structure
(sections, subsections, paragraphs, words...).
Convergence and causality preservation are kept.
Intention preservation is kept by means of a multi-
version approach.
Use of a server that processes and broadcasts opcra-
tions generated by the sites.

Features 4 and 6 are the most important ones since, to
our knowledge, they have not been addressed before in
the field of cooperative text edition or have been ad-
dressed only partially.

The hierarchical document structure allows us to have
smaller conflict units in processing concurrent opcrations.
as in [5] (i.e. operations are not performed on the whole
document but on a specific document fragment. In thc
case of [SI, this fragment is a word). In addition, our
approach can deal with multiple-level conflict units (i.e.
we provide a set of operations that may be applied, with-
out restriction, to different levels of the document struc-
ture, like a word or a paragraph). This makes i t more
natural to perform operations that are applied to non-
atomic document fragments.

Concerning our multi-version approach, i t has two im-
portant advantages:

It preserves sites’ intentions in a better way, by cn-
suring that each operation will be performed at all
sites on a document fragment identical to the one on
which i t was intended originally. Hence, during the
generation of a document, and before it gets into a co-
herent state, various different condirional versions of a
document fragment may coexist. In the end, some sort
of negotiation between sites will be necessary so that
only one version of each fragment remains.

Users will be able to decide on which existing ver-
sion of a document fragment they want to perform
their operations, allowing them to incorporate in for-
mation to the document that will only make sense if,
eventually, that version remains in the document.

Our approach to cooperative editing is a part of a more
general project in the framework of Software Process
Modelling called PROMENADE ([15, 161). Within this
project, the existence of a server that centralizes site’s
operations is natural and even necessary (shared docu-
ments are kept in a common reservoir).

155

3. Solution framework

In this section, we present some aspects concerning the
solution framework (document structure and operations
allowed to sites) and we outline the solution itself.

3.1 Document structure

We take thc XML notion of document. In XML, docu-
ment structure can be defined by means of a schema
written using either DTDs o r XML Schemas [3].

Scheinas usually present the structure of a document in
a hierarchical way (e.g. a document is made out of sec-
tions. Each section has subsections and so on).

Using this view, a specific document may be seen as a
trce. Each level rcpresents an element of the hierarchy
(e.g. a section). The nodes in a level represent all the
instances contained by the document at that level (i.e. a
node is an instance o f a section, a subsection, a paragraph,
a word...).

A node may have different versions. A new version of
a node is created by the server when a conllict occurs (see
below). Since diflcrent versions of the same node may
coexist in a particular document, we organize documents
more appropriately as trees of puirs <node-number, ver-
sioii_,irrr,ibc,r>. All pairs that contain an instance of the
same node will have a common node-number (and a
different r~ersio,r_nrirnber-). Two identical pairs cannot
coexist in the same document.

Two attributes are relevant for a pair <nor/e,version>:
The site that has generated the conflicting operation

which has resultcd in the creation of the new version and
whether that version i s deleted' or not.
Notice that the creation of a new version of a node in-

volvcs creating a new version of all its subnodes. Figure 1
shows an example of document with a hierarchical struc-
ture.

3.2 Operations

Unlike other approaches (and due to our hierarchical
approach), the operations allowed by the algorithm of
cooperative edition are applied to document nodes (more
specifically, to document pairs). The following set of
operations are considered:

insertCliaracter(<n,v>,p,c) and deleteCharac-
rer(<ti,v>,p). insertCharacter inserts the character c
in the position p of a pair <n,v> that represents a

' A pair may be ticked as 'deleted' if there has been a conflict between
two independent operations (one of which has removed it). In this
case. that pair will still appear in the document but conveniently
marked as deleted.

word, while deletecharacter removes the plh charac-
ter of the word identified by <n.v>. Except for the
pair parameter, these are the usual operations offered
by many cooperative algorithms ([5 , 10, 13 ...I).
insertNode(x,loc) and removeNode(<n,v>). These

operations may be applied to any kind of node (not
only to words). Therefore, they allow us to work at
any level of the document. Specifically, insertNode
inserts a new node (which is given a distinct
node-number and version-number=]) with contents
x at the location loc of the document and removeNode
removes the pair identified by <n,v> from the docu-
ment. Some specific examples of these operations
may be the removal of a paragraph or a section; the
move of a paragraph (i.e. cut-and-paste, which will
involve the use of both remove and insert operations);
the copy of a section to some other place (i.e. copy-
and-paste).

Because of the hierarchical organization of the docu-
ment, an operation may collide with others that have
been carried out on different (but dependent) pairs. For
instance, at the same time that a site U, modifies a word
of the document, another site u2 may remove the whole
paragraph in which that word is located. However, if two
operations are applied to independent nodes (e.g. two
different paragraphs or two different words within the
same paragraph) they do not collide.

3.3 Overview of the solution

The solution we propose to the cooperative edition of a

The participant sites perform their operations locally
as soon as they generate them (to get a quick respon-
siveness).
After that, they send a request to the server with the
operation they have performed along with the last
global state that they have received from the server.
This request is queued in the server.
The server maintains a sequence of the global states
that the document has gone through. Queued requests
are processed sequentially. Each request is trans-
formed in such a way that the operation it contains
can be applied to the last global state of the server
maintaining the intention of the site that has gener-
ated it. This transformation may involve creating new
versions of some nodes in order to avoid conflicts.
The server broadcasts the transformed requests to all
the sites which apply them locally. In this way we as-
sure that all the sites see exactly the same sequence
of operations, hence they converge.

text document consists globally in the following:
1 .

2 .

3.

4.

156

The main goal of this article is to present the algorithm
performed by the server, which is outlined in step 3. This
is done in section 5.

3.4 Example overview

To get an overview of our approach, consider the fol-
lowing example: A document consists of one paragraph
(/ I) , which contains two words (w,=“abce“ and w2=”efgh”.
Sec figure I (a)). Sites 1 1 , and i i 2 begin to modify the
document:

First of all, they modify tv, and \v2 respectively (1 1 ,

inserts ‘ I ’ to r v , ; 1 1 , inserts ‘2’ to w,). No conflict
occurs (concurrent modification of independent
nodes. See figure 1 (h)).

document documcnt
I I

I lahclcl\\, Iefd11\\2: l~l,,~,,lc,c,l,

(d)
Figure 1 . Exainplc ovcrvicw

11: modifies w, without having seen the last 11,‘s op-
eration to t ~ ’ , (I t , inserts ‘3’ IO t ~ , ~) . A conflict occurs.
Another version of N’, (< L I . ~ , I , , , , ~ >) is created with
the exact contents that i f , had seen. I I ? ’ S operation is
applied to <rv, , v w , ~ > . See figure l(c).
1 1 , reinoves the whole paragraph p (without having
seen any of the 11,’s operations on r v , or rvJ. A con-
flict occurs. Another version of / I (<p,v2>) is cre-
ated with exactly the contents that I I , has erased.
This ncw version is labeled as ‘deleted’ (figure
I(d)).

This example will he developed in more detail in section 6.

4. Consistency model

As we have said, the consistency of a document which is
edited cooperatively by various sites following a policy
What You See Is What I See is defined by using the prop-
erties of Convergence, Causality preservation and Inten-
tion preservation.

We keep the same definitions for the first two proper-
ties as those given in [13]. We diverge, however, in the
interpretation of intention preservation. We have noticed
in section 2 that the idea of intention preservation intro-
duced in [I31 could lead to unsatisfactory outcomes. In
order to avoid those problems we say that a document
preserves the intentions of all the participant sites, if each
site’s operation on the document is performed precisely
o n the same document node which the site intended to. As
an immediate consequence of this, if two sites perform
two operations concurrently on the same document ele-
ment, two different versions of that element are to be
created. These two element versions will coexist in the
same document.

In order to define precisely our consistency model, the
following definitions are given:

Global state.The contents of the document at a given
instant as it has been recorded by the server. The server
creates a new global state for each operation performed
by a site on the document. Therefore, a sequence of
global states is kept by the server. A specific global state
IS identified by an ordered natural number (starting from
0) .

The contents of thc document at any site k may differ
from the last global state $received by k (from the server)
only in those operations performed by k that the server
has not included in S, (because i t has not processed them
yet o r has processed them in a state posterior to S,).

Temporal dependency of operations?. An operation op,
(performed by site i at state Si) is temporally dependent
o n an operation up2 (performed by site J at state S,) if
either:
(N) i=j and op, has been performed after opI or
(b) i;’j and when i performs op, i t has already received

the effect of opI,
If neither op, is temporally dependent on 01’. nor op? is

temporally dependent on opl, we say that op, and op2 are
temporally independent operations.

In the remainder of the article we will abbreviate tertlporo!
dcpwderic.y of operotions to tlepetideric.v i!f operutions.

157

Dependency of pairs. A pair < I I .V> is dependent on
another pair < I I , , I ~ , > if <I I . I '> belongs to the tree rooted at
< I I . , I ~ , > . . (in particular, a pair is dependent on itself).

Convergence and causality preservation. We keep the
same definitions given in section 1,

Intention preservation. As we have said, the definition
of i r l r cwr ior i pwsrnmiorl given in section 1 needs to he
adapted to our multi-version approach.

A document conforms with the property o f intention
preservation if uny operation op performed by a site k on
:i pair < I I . I ' > at stiite S, is performed ;it a11 sites on ;I ver-
sion of ,I with exactly the satlie contents that <n.i'> hiid :it

site /i lit the inonient of generating o p ,
As a consequence o f this property, a i operation opi

made by a site k on a pair < I I . I ' > may lead to ;I contlict in
the case that some other operation op. which i s independ-
ent on op,, has been already performed 011 ;I pair < U ~ , I . , >

with some dependence with < 1 1 . 1 9 .

Whenever such a contlict is detected. in order to keep
the intention preservation property. ii new version of the
most general of nodes 11 and 1 1 , will he created with the
same contents seen by k immediately hefore op , was per-
formed. The operution op, will be performed on thiit iicw
version.

Consistent document. A document which is being edited
cooperatively is said to he consistent if i t keeps the
properties of coii i~rrgc~ncr. crrrrstrliry p r e s ~ ~ n ~ r u i o / l and
l l l r ~ l l r i o l l / ~ r l ~ s l ~ l l ~ r / / i o l l .

Coherent document.
A coherent document is :i consistent document thnt has
only one version for each node (i.e. all pairs of ;i coherent
document have a different t t o t / c ~ _ t l r r t i t h l ~ r .) .

5. The algorithm

In this section we present the algorithm run hy the server
to achieve the cooperative edition o f :I document alonp
with some necessary definitions.

5.1
between states

Sequence of global states and transitions

The sequence of global states is created by the server and
contains the states through which the document has
passed. along with the transitions between those states.

The states are identified by increasing naturals. A tran-
sition from the state s, to the state s,+, is a tuple [op.
<II , v> , r r] , where:

o p is the operation to be performed t o pass from S, to

< I I , I ' > is the pair on which op is applied.
I I is the site that has generated op.

SI+,

The last state of the sequence represents the current
global state of the document. After generating :I state. the
server hroaclcasts the last transition (the one that gcncr-
Lites that state) to all the sites.

5.2 Requests

When a site wants to perform x i operation. first of all i t
carries i t out locdly and then. sends ;I request to the
server in order to he processed. added to the sequence o f
global st;ites and hroadcast to the other sites.

A request is ;I tuple: [op. 11 . S,, < I I . I . >] . where:
op is the operLition t o he performed.
ri is the site performing the operation,
S, is the last global state received by 1 1 from the

<u,i.> is the pair on which the operation t;ikes pI;icc.
server before performing op.

5.3 Conflicting transition

Given a request VCY/=[O/J . 11. S,, < I J . I . > ~ and ;I sequcncc o f
glohiil states
s=(S,, . SI ._... S, ..._. S,) held by the server.

conI'lictinp with i t :
(a) / I # / / ,

(h) i 5.j < k
(c) < / I . , I ' . > i s depcndcnt on < I I , I ' > or < I I . ~ ' > i s clcpcndent

on <11 . .1 ' .> .

That is . ;in operation o p iilreiidy performed hy ii site r r ,
(different from r r) u t state S, causes a cont1ic.t with the
request containing op i f op, hiis been performed on a pair
which i s not independent with < I I . I ' > arid the rcsuli of o p ~
has not been seen hy 1 1 .

Given a request r.rq=[op. 11. < ~ i ' > , S,] and a sequence of
global states

uith Iyq i s the transition for which (a), (b) and (c) hold
and that is performed on the lowest possible global state.

Notice that the hierarchical document structure allows
conflicts to he restricted to those operations that occur on
dependent pairs. Therefore, unlike other approaches, no
tirne-consuming proccssing and transformations will be
necessary for most operations (which will be applied to
independent nodes).

A transition t = [O / J . . < I i . . i . . > . r r , I . . . pcrformetl ;it st:itc S) is

. .
. .

s=(s,, , s, ,. . .. s, ,. . .. s,). thcJ ji:r.sr collf/ic~rirl~g rr~rll .Y;r;oll

The proper definition of contlict is given at section 5.3

158

5.4 Creation of a new version and tree of node
versions

The creation of a new version of <n,v> (namely, <n,v’>)
at state Si as a result of a conflict arised by an operation
generated at site U consists in creating a copy of the con-
tents of the tree rooted at <n,v> at state Si and inserting it
as the next child of <n,v> ’s parent.
The tree of node versions for a specific n keeps track of
the history of versions of n, along with which site and at
which state that version has been generated (see figure 2).

<n,V >

the site U, at global state S, from

<n,v,> < n , v >

Figure 2. Tree of node versions associated to node n

An important property of the tree of node versions is
the following: Any node of the tree cannot have two chil-
dren created by the same site.

5.5 Getting the last node version

In the algorithm that will be presented in next section, i t
will become necessary to get the last version of a node
<n,v> that has been created as a result of an operation
raised by site u.. This last version can be obtained fol-
lowing this sequence:

1. Find the pair <n,v> in the tree of node versions asso-
ciated to n

2. Find the only (at most) child of <n,v> generated by
site U . Call it <n,v’>

3. Repeat step 2 on <n,v’> while there exists such
<n,v’>

As we have stated in last section, at step 2, there can be
at most one child generated as a result of a U ’ S operation.

5.6 Algorithm description

Recall that the overall editing process consists in the fol-
lowing: Each operation on the document is performed
locally in the site that has generated it (in order to keep
short response times). After that, a request with the op-
eration is sent to the server, which will be in charge of
processing and broadcasting it to the other sites.
The algorithm presented in this section describes how the
server processes a request from a site while keeping the
document consistency (i.e. keeping the properties of con-

vergence, causaliq preservation and inrention preserva-
tion). The achievement of the first two properties is a
direct consequence of the approach taken (the server, in
fact, serializes the requests and broadcasts them, which
make it possible to achieve convergence and causality
preservation). Intention preservation is kept by request
processing in the server, which is explained in this sec-
tion.

S,, <n,v>] reaches the
server (which keeps a sequence of global states s=(S,, ...,
S, ,..., SI), the objective is to transform that request applied
locally at state S, into a transition that will be applied to
the state S, and will generate S,,,. I n order to do so. the
following actions are performed:

When a request req=[op, i f ,

1. Find O L ~ I on which specific version of ti, op initst he
performed: <n,v ’>.
Since op is performed locally at site I f , i n order to
keep intention preservation, we have to ensure that
the server will apply o p exactly to the same version
of n as i t has been applied locally.

This version will be v in the case that no previous
request rey2=[op2,u,S,,,, <n ’,L->], (in 5 i) has creatcd
a new version v’ of n (i.e. v’ will be creatcd if a con-
flict comes up when processing req,, in ordcr to keep
intention preservation)?. If such a version (v ’) has
been created when processing r q : , i t becomes the
version of n corresponding to <n,v> for subsequent
U ’ S requests.

Rewests Global Requests
penerated states at the generated
- at uI Server a&

I

req,=[op,. U,. S,,,<n,v>l

U , has jienmrted ti iirw
version of c i i . v>:<i i ,y ’>

rq , ’= [op , , u,.S,.<n,v’>]
req,’ conf7ict.s wI:h
A new version of’ <n.v’>
i s jirriercitrd: <ii ,v”>

Figure 3. Multiple versions generated by U, operations

Notice that n and n’ should not be necessarely the same node.
In general, they should be dependent nodes.

159

In the general case, several conflicts may have oc-
curred when processing requests raised by U leading
to the creation of new versions of n (see figure 3).
Therefore, the correct version to which op should be
applied (namely v’), is the last version of n that U has
created starting from <n,v> (the algorithm for ob-
taining v’ has been described in section 5.5).

The request req will now be transformed into an
equivalent request req’. in which op is applied to v’:

Sr is the global state in which <n,v’> was created
req ’ = [0 / 7 , U,S,, <n, V ’>I,

(i<r<k) . S,=S, in the case that v’=v.

2. Find our if there is any conjicting transition with

Before applying the request req’ we have to make
sure that the states S, ... S, do not contain any conflict-
ing transition with it. Recall that a conflicting transi-
tion with req’ will be a transition t=[op,,<n,,v,>,u,]
generated at some state S, (r Ij< k) by a site u,# U on
a node n, such that n, and n are dependent. If such a
transition does exist, this means that <n,v’> may
contain some modifications that U had not seen at the
moment of generating 01’. Hence, op cannot be ap-
plied to <n,v’> (if intention is to be preserved) and a
new version of the most general node between
in.! , , ’> and <n,,v,> has to be created (namely, nJ.
The new version of n p will have the value that i t had
at state S,

We will call r to the first contlicting transition with
req’ encountered within S,..S,; S, to the origin state of
such a transition and <nx, vx> to the pair containing
the node (nJ a new version of which will be created.

If such conflicting transition does not exist, req’

can be applied straight to S, in order to generate S,,,.

req ’.

3. the riiple (t,S,, <ne, vx>) has been found at step 2,
create a new version of ax!, ve>: vs’>

<ne, vl’> will be created with the value of <n8, vx> at
state S,. Section 5.4 describes how to proceed to cre-
ate a new version of a node at a given state.

4. If a new version <nl, vv’> has been creared at step 3,
app l~ ro ir all the U ’ S remaining operations

Subsequent states to S, may contain transitions per-
formed by U on some other pair of which <nd vx> is
an ancestor (see example in section 6). Since these
operations were performed locally by U before 017,

they have to be inclcded in the part of the document
rooted at <nl, vp’> before including op.

Hence, in this step, if a new version <ne vg’> has
been created in step 3, we apply to it all the opera-
tions coming from U, that have been performed at
states posterior to S, on any pair <rn,w> such that
<nR, v8> is an ancestor of <rn,w>.

5. Apply op to the right version of n at the state S, and
do the broadcast

If no conflict has been detected, the application of op
to <n,v’> (at state S,) will preserve the intention of U .

Hence, generate the transition t=[op, U, <n,v’>] and
apply it to S, in order to generate S,,,.

Otherwise op will be applied to the corresponding
version of <n,v’> within <n,“ vy’> (namely
<n,v”>)s. Hence, generate the transition t=[op, U ,

<n,v”>] and apply i t to S, in order to generate SA+,.

6. Broadcast t and the new generated version (i fany) to
all sites.

5.7 Algorithm for the sites

Although, clearly, the critical algorithm is the one that is
executed at the server, some aspects are worth noting
about the cooperative editing algorithm that must be run
at the different sites. This algorithm includes:

Updating the local instance of the document with the
transitions received from the server and
Applying the local operations to the local instance of

the document before sending them the the server .
It is important to keep at all instants the following

property: Two dependent pairs belonging to a local
document cannot contain at the same time: (a) an opera-
tion op that has been performed locally and has not yet
been confirmed by the server; and (b) an operation op’
performed remotely that has been received from the
server after the generation of op.

This conflict must be resolved by generating a new lo-
cal version of the corresponding node when a transition
containing such op’ is received from the server. Obvi-
ously, this new version will also be generated at the
server and, hence, in its due time, sent to the local site
where will be used to substitute the local one.

5.8 Algorithm correctness

The consistency of a document is achieved by keeping the
properties of convergence, causality preservation and
intention preservation.

Recall that e t g , vy> was either <n,v’> itself or one of its
ancestors.

160

Within the algorithm presented in this article, intention
preservation follows from the considerations made along
its description (see section 5.6). As a consequence of this
property, any document modification will be carried out
by the server into the same version which the local site
intended.

The achievement of convergence is clear since the
server broadcasts the same transitions to all the sites.
Hence, when all of them have been received, all sites will
have the same contents. There is, however, a minor point
concerning convergence achievement: sites will have to
substitute t h e operations they generated locally for those
(corresponding to the local ones) that will receive from
the server.

The global serialization attained by the server guaran-
tees that n o causality will be violated (i.e. every pair of
dcpendent operations will he executed in the same ordcr
in all the sites).

The document depicted in figure 4 and the requests
shown in table 1 are based on the example introduced in
section 3. Figures 5 and 6 depict the document at states S,
and S, respectively.

Document
level

Fipure 4: The document being edited at state SI,

5.9 Document Coherence

The coherence of a document is achieved when the
document contains just one version of every node. In
ordcr to achicvc coherence, a merging process between
all sites is requircd. Although this mcrging procehs usu-
ally involves some aspects that must be carried out manu-
ally, there exist a widc variety of tools and algorithms that
inay help in i t (e.g. automatic conllict detection, several
automatic or semi-automatic merging policies specified
hy users. assistance to conllict resolution...). [X I contains
a goocl overvicw of these issues.

r - l <n,.v.,z

Figure 5. Document at state S,

6 An example

This section presents an example 0 1 the behaviour 0 1
the algorithm described in the previous one. We edit the
document shown in figure 4. The node at the highest level
(U,) corresponds to the document level, the node at the
second level (ti,) represent a paragraph and, finally. 11, and
i i i correspond to words. This particular document contains
only one paragraph, with two words. A document struc-
ture can he defined in XML by means of DTDs and
XML schcmas. In this case a very simple structure has
hecn chosen. In general. a document could he composed
ol'chapters, sections, subsections ...

Table I shows thc requests that the server receives
from different sites (i n this case. sites (I , and U?), starting
from the initial state S,,. Each request (r) is transformed
i n l o a transition (t) that will be applied to the last global
state hold by the server and broadcast to all sites. The
application of a transition to a global state Sx generates a
new global state

Figure 6. Document at state S,

161

Table

=Lop,. u,.S,,.<n,.v,,>l

t=[op,. u,.<n,.v,,>J

r=[op?. u..S,,.<n,.v,,>l

r=[op,. ul.S,..<n,.v.,>l

S,:
r=[op.. u2.S,,.<ii..v,,>]

r'=[op . U .S .<I] .v >]

Example of development

r=Update of the word n (version v) by site
U . S being the last global state seen by U

at the instant of generating op,.
t=Update of the word <n ,v > by U . S is

obtained npplying t to S,,
All r a n d t along the ex:iniple are to he inter-
preted in the same way.
r=Update of <n..v.,> hy U:.

No contlict hetween <n,.v,,> niid <ti,.v.,>.

Explanation

r=Updiite of <n<.v%,> hy U, at state SI

N o conflict since U hiis seen the updates that
U: inade on <n..v.,>

r=Update of <I> .v > generated hy U with
Iw glohul state received =S,,

Strr,: r cx ises a coiitltct with op since U

had not seen the etfect of op on <t i .v > :it

the instant of y i e m t i n g op,.
m: A new version of 11 is cre:itcd with
the v:iIue of <n ,v > ;it S : <II .v > (se! fig.
5: the docunieril at state S ,) . m: t I S generated s.1. o p i s applied to
this new version.

> generated hy ti1 with hst
gloh:il state received = S,,

a: Since ;I new versioii of 11 hLis been
created (from <n.v >) ;is :I result of [he
processing of :I U request. :itid siiice t1i:it

cre:itioti is posterior to S,,. op. wll he :id-
dressed to this i i ew version (a i . v >). Hetice
rhr request r' wil l he y n e m t e d
S r o w 2, .?, 4, 5: N o contlict i s detected. t i s
getierated str;iiditfon\ iirdlv.
r=Upd.itc d <it .v >. ecncr:iied hy i t with
I:ist global st:ite received = SI. 11: IS ;I p x i -
eraph. op,, could he Itor iiisr:ince) the reiiiov:il
of the paragraph.

Str,,: N o other versioii of t i has hecii
cre;ited hy U:. N o t h t t i ~ t o do.
w: r c a w s a contlict wich up since. ar
the instant of generatinp o p , ti h;id not seen
the effect ofop; on <n,.v.,>.

m: A new versioii of n is created with
the value of<n..v.,> ~~ at S.: . . <n..vl:> (see fig. 6:
the document at state S,,)
&&: We have to apply to the subdocument
rooted at <n .v > the operations posteriors to
S that U has performed on any child of
<n .v >: op iitid op (see figure 6). op is not
applied since it was perfornied at S and.
therefore i t is already included in <n,.vll>.
-5: t is the transition generated and
hrondcnst.

7 Conclusions and future work

We have identified some drawbacks in current algo-
rithms for cooperative edition of text documents in real-
time (which are based on operation transformations): in
our opinion, they do not really achieve intention prescr-
vation and, on the other hand. transformations must he
performed on operations although they inay have been
performed on independent document points.

We have proposed a new algorithm that. in our opin-
ion, provides two improvements on the current ones:

I t achieves a better degree of intention preservation
by keeping different versions of the updated nodes.
The multi-version approach o f the algorithm also
makes i t natural for users to decide on which ver-
sion to work (i f several versions of a document
fragment coexist).

I t considers a hierarchical document structure which
m;ikes i t possible to reduce the concurrency co~i/Iicr
i r r i i r (a collision will only occur between dependent
nodes) and, :it the same time. to make i t easier and
quicker the statement of operations on non-atomic
nodes.

We are not aware of any other algorithm in the trame-
work of cooperative edition with both features.

Our algorithm uses a server to centralize sites' re-
quests. We have adopted this policy since i t is the most
natural one in the context in which we want t o use it.

We are currently working on the implementation of the
algorithm. We expect that the number of contlicts during
a cooperative editing session will keep relatively small
due to the fact that only temporally independent opera-
tions /wr:fiwmd o t i d q w r i d e i i r nntlc~s cause conflicts (i.e.
Several users inserting concurrently new words at dil'fer-
cn t p l u c c s will not c o l l i d e) . In c o n t r a s t . in the usua l t r ~ i n s -
formation-oriented approaches any pair of independent
operations caused a conflict and required a set of trans-
f u rm a t i on s .

If the number of conflicts is kept under control, the re-
sponse time will he low. The overhead introduced by the
c I i e n t - sc w e r arch i t ec t u re i s ncg I i p i b I e (j u st two add i t i o n a I
messages passing through the network lor each operation
performed at one site) compared to a peer-to-peer ap-
proach.

In the context of PROMENADE (in which we will ap-
ply the algorithm) the choice of a client-server architec-
ture is the most natural option. However, this kind o f
architecture raises the fault-tolerance problem. We are
working on an algorithm which i s able to choose a par-
ticipant to act as a server in the event of a server hreak-
down.

162

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Ellis, C.A., and Gibbs, S.J, "Concurrency Control in
Groupware Systems," Proc. ACM SIGMOD Confer-
ence on Management of Data, June 1989.

Ellis, L. and Gibbs, S. J . and Rein, G. L., "Group-
ware: Some Issues and Experiences", Communica-
tions of the ACM, Vol. 34, Iss. 1, pages 38-58, Janu-
ary 1991.

Extensible Markup Language (XML) 1 .O.
http:Nwww.w3.orglxml

Greenberg, S. and Marwood, D. (1994) "Real time
groupware as a distributed system: Concurrency
control and its effect on the interface." in Proccedings
of the ACM CSCW'94 Conference on Computer
Supported Cooperative Work, p?07--2 17, Chapel
Hill, North Carolina, October 22--26.

Ionescu, M.: Dorohonceanu, B.; Marsic I.:A Novcl
Concurrency Control Algorithm in Distributed
Groupware (2000) in Proc. of the International Con-
ference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA'2000) pp. 155 I -
1557. Las Vegas, NV, June 2000.

Knister, M.; and Prakash., A.: Issues in the design of
a toolkit for supporting multiple group editors. Com-
puting Systems -- The Journal of the Usenix Asso-
ciation, 6(2): I35--166, Spring 1993.

Moran, T.P.; McCall, K; et alt.: Some design prin-
ciples of sharing in Tivoli, a whiteboard meeting
support tool. In S. Greenberg, S. Hayne, and R. Rada,
editors, Groupware for Real-time Drawing: A De-
signer 's guide, pages 24--36. McGraw-Hill, 1995.

Munson, J. P.; Dewan, P.: A Flexible Object Merging
Framework. In Proc. of CSCW'94, pp. 231-241,
October, Chapel Hill, NC, ACM Press (1994).

Nichols, D. A.; Curtis, P. et alt. High-latency, low-
bandwidth windowing in the jupiter collaboration
system. In Proceedings of UIST '95, pages 11 1-120.
ACM, 1995.

Ressel, M.; Nitsche-Ruhland D.; Gunzenhauser, R.:
"An integrating, transformation-oriented approach to
concurrency control and undo in group editors," In
Proc. of ACM Conference on Computer Supported
Cooperative Work, pp 288-297, Nov. 1996.

Sun, C.; Chen, D. A Multi-version Approach to
Conflict Resolution in Distributed Groupware Sys-
tems in Proc. of the 20th IEEE International COnfer-
ence on Distributed Computing Systems, pp. 316-
325, April 10-14, 2000.

Sun, C.; Ellis, C. A.: "Operational transformation in
real-time group editors: issues, algorithms, and

achievements, " In Proc. of ACM Conference on
ComputerSupported Cooperative Work, pp.59-68,
Seattle, USA, Nov. 1998.

Jia, X. et alt.: "Achieving convergence,
causality-preservation, and intention-preservation in
real-time cooperative editing systems," ACM Trans-
actions on Computcr-human Interaction, 5(1), March

14. Sun, C.: Maheshwari P : An efficient distributed
single-phase protocol for total and causal ordering of
group operations in Proceedings of 3rd In(ernationa1
Conference on High Performance Computing,
Trivandrum India, 19-22 Dec. 1996, IEEE Computer
Society, 1996, pp295-300.

15. Rib6 J.M; Franch X.: PROMENADE, a PML intended t o
enhance standardization, expressiveness and modularity in
SPM. Research Report LSI-00-34-R, Dept. LSI, Politech-
nical University of Catalonia (2000).

16. Rib6, J.M.; Franch, X. Building Expressive and Flcxible
Process Models using a UML-based Approach. In Pro-
ceedings of the 8"' European Workshop in Software Proc-
ess Technology. Witten, 2001 (to appcar).

13. Sun, C.;

1998, pp.63-108.

163

http:Nwww.w3.orglxml

