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Resumen

La obtencidn de soluciones para problemas de
localizacidn de plantas con restricciones de capacidad de
una forma eficiente, requiere habtualmente el desarrollo
de un software <especifico, sobre todo cuando los
problemas son enteros puros, dado que los cbddigos
estandar para programacidén matemdtica son muy poco
eficientes con este tipo de problemas. La formulacidn
ordinaria de eta clase de problemas incluye algunas
restricciones que son de tipo knapsack. Este hecho puede
uttlizarse aprovechando los procedimientos desarrollados
por Balas, Padberg y otros, para calcular caras de los
correspondientes politopos de kanpsack. Este trabajo
recoge la experiencia de cdlculo obtenido utilizando
tales procedimientos en combinacibén con un cddigo
estandar para programacidn matemidtica.
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Abstract

The efficient solution of capacitated plant location
problems usually requires the development of specific
software mainly when the problems are pure integer ones,
standard mathematical programming codes being highly
inefficient. The normal formulation of these problems
includes different kinds of <constraints which are of
knapsack type. This fact can be used in connection with the
procedures developped by Balas, Padberg and others, of
computing facets of the kanapsack polytopes. Procedures
which can be used with a standard mathematical programming
code are described and computational experience is
reported.

(*) This research was carried out between June and August,
1983, at the Department of Mathematics of the
Technological Institute of Linképing, Sweden, and was
supported by a Grant of the Margit and Folke Pehrzon
Foundation. A first version was presented at the 11th
IFIP. Conference, held in Copenhagen, July 25-29, 1983.



A BRANCH AND BOUND APPROACH FOR THE CAPACITATED PLANT
LOCATION PROBLEM USING CUTS FROM THE PARTIAL CONVEX HULL.

1. INTRODUCTION

Many different algerithms fer capacitated plant lecatienn
preblems have been developed lately, and fer soeme ¢f them
the cemputational results reported leek very promissing
(Christefides and Beasley, /5/, Geoffrion and McBride, /11/,
Guignard and Spielberg, /12/, Nauss, /13/, Van Roy, /17/,
Barceld and Casanovas, /3/, etc.). Anyway, from the peint of
view of the possible user, that is te¢ say: the decission
maker responsible ef the opening ef the new warehauses  er
plants, all appreaches used in dmplementing the above
referenced algerithms have a cemmen disadvantage: all of
them require the development of a specific seftware with the
consequent penalties in cest and vime.

Usvally the companies and the deparitments din +the Public
Administratien which -are faced such 1ocatien preblems, have
thetr own computatienal rescurces including seme commercial
mathematical pregramming codes or have access te some
computer facilities that pesess such a kind of package. So
the most natural tendence is trying te¢ selve the locatien
preblem expleting the features ¢f the mathematical
pregramming cede at hand.

The experience uses teo be discouraging, mainly when the
proposed location preblem 4s a pure &nteger ¢ne. The
classical branch and bound appraches, using the erdinary
tinear pregramming relaxatien, are usually htghly
¥nefficient even when they include sephisticated techniques
¢f cemputing pseudocests er powerful branching procedures
based en the special e¢rdered sets.



FProm such empiric results artses the questien of whether
er net exists a complementary algevrithmtc teel which could
be used in cennection %Te a standard mathematical pregramming
cede at a lew cempuiatienal coest, in erder te zmpreve its
performance in solving  this class of mathematical
pregramming problem, in such a way that they could be seilved
directly.

Our research werk has been eriented te¢ trying te answer
this question. The first step in leeking for a seluticn was
trying te understand why the classical branch and beund
approach. was sc¢ inefficient when applied to +hzs class cof
mathematical progvammlng preblems. '

Prem an empirical poeint of view one can verify easily
that a typical capacitated lecatien preblem shews a large
dualtty gap, *that very often reaches values abeut 10% ef the
optimal cne, and even larger amounts in case o¢f pure integer
capacitated leocatioen probl ms, fer which he duality gap
could llv, on an average in the range between 20% and 30%.

This big duality gap ceuld give a first explanatien ef
the branch and beund inefficiency. Obvieusly such a big
dvaldéty gap would require a big branching effert, befere
being reduced to size allewing the relaxed subproblems give
selutiens meaningful encugh. That is, selutions whese value
ks clese enocugh to that of the net relaxed subpreblem.

Once verified this fact #t seems reaseonable to think that
veduction #&n duality gap could preduce the deszired
¥mprevement #n the branch and beund efficiency.

In a foermer work Spielberg, /16/, vrecommended, alse from
an empirical expertence, fermulating <+the preblem #p a
desagregated way, including the redundant censtratnts:

X,. -m_ Ly <=0
1] iJ 3

where #ndex % tdentifies %he plant er warehouse, (being T

the tndex set ef potential lecatiens fer them), index j



#dentifies +the demand center te be supplied from the
selected plant, (being J the index set of demand centers),
the deciston variables xj5 and y; represent the ameunt of
demand of the center j Satisfited frem plant i and the
dectston of opening the i-th plant (y. = 1), er net (y, =
. 0); and the coefficient mj: = min { djf'q_}, where d is %he

amount of demand of center j, and b the tetal capacity of
plant #.

Later en, Guignard and Spi#elberg, /12/, insist again on
the importance of such desagregated formulatien (which #n
the uncapacitated location case leads to the se called

"streng  linear ' relaxatien", - Cernuejels et al., ~/6/, -

Erlenketter, /8/), but Geeffrien and Mc Bride, /11/, where
these who explatned why this apparently redundant
censtraints were so impertant, by showing that they
characterize a part ef the convex hull ¢f the capacitated
plant lecatioen preblem and thus by including them 3in the
problem fermulatien +the dualiéty gap was reduced and
consequently the relaxed subpreblems provide better beounds.
However this approach has the disadvantage of increasing
encrmously the size of the LP proeblems te be selved, and #t
oeks computationaly efficent enly when the preblem is
seived by means of other procedures than the simplex, as fer
#nstance the decempesiticn precedures (Van Roy, /17/), er
the lagrangean techniques (Geoffricn and Mc Bride, /11/).

Remembering that our purpese 4is +trying te solve
capacitated plant lecati¥en preblems using oenly erdinary
mathematical programming toels, +the questicn at the
beginning can be restated in the fellewing terms: starting
frem an agregated fermulation ef the preblem, (in erder to
keep the size as small as poessible), are we able ts
characterize efficiently and cheaply some facets of the
coenvex hull witheut significantly increasing the size of the
problem?



2. PROBLEM FORMULATION

To start with, we have choesen the problem fermulatien as
a pure #nteger -capacitated lecation preblem, alternative
which had been studied befers by e¢urselves from a heuristic
rangean appreach in a fermer werk (Barcelé and Casancvas,
? With this fermula%tioen the problem is stated as:

[ MIN] z r c,.x..+ I f£.vy. (1)
ier e 13 13 jer 1 71 .
c.o=1 s €

g3 oy i3 T b Vi3S9 (2)

(P) Iy, <K ' (3)
i€T

I d. x,.S b, v. i €I 4

jGJ 3 ij i er Vl (4)

x4 € {0,1}, Vie€e1, V57 (5)

y; € {o,1} Vier: ‘ (6)

where as usually ci5 are the supplying cests from plant & teo
center j, f;j. are %hn fixed coests of ¢pening a plant at the
pétential site i, +the coenstraints set (2) assures that the
demand of all centers will be satisfied frem enly a plant,
constraint (3) limets the number of plants t6 be opened te a
maximum o6f K and the censiraint set (4) prevents urjzng to
supply a center from a net opened plant (yi = 0 =>xy
j €4J), and does nct allow the supply of mere than thg tetal
capactty ef the plant when %t s epened. /
Prem this foermulatien a first possrbllvty ¢f describing
partially +the cenvex hull is given by <the capacity
constraints (4), assuming the decdiésion of epening the #-th
plant, y; = 1, the corresponding censtraint is

r d, x.. € b, 7
B T (7)



which &s a knapsack censtraint.

Balas, /1/, Balas and Zemel, /2/, Padberg, /14/, and
¢thers, have characterized many facets o¢f the knapsack
p¢lytepe, some of them not difficult te compute. Un the
other hand if P is the polytepe of problem (P), and P; is
the knapsack poelytepe cerresponding te the i-th knapsack
constraint, then the pelytepe P #s such that

PC NP,
e *

and it fellows that any characterization of the facets e¢f
the poelytepes Pj coentributes te¢ a partial facetital
descriptien of P. '

Censecquently it could be thought that any fermulation of
preblem (P) #ncluding seme faceis of the knapsack pelytopes
ef (4), would be a strenger fermulation, with a smaller
dvaléty gap, producing subpreblems which give better beunds.

The first cemputational research that we have carried sut
has been te study %the way of computing such facets and
vertfy their #nfluence in the branch and beund precedure.



3. COMPUTING FACETS OF THE POLYTOPE FROM THE CAPACITY
CONSTRAINTS

Before dealing with the family of censtraints defined by
(7). 1et us intreduce the fellewing netation, i#nduced frem:
Batas, /1/. :

Assume J and all of its subsets erdered se that

dy > diyy 4 3= 1,2,..., 0-l

2et. us define fer.every S& J, the extensioen of S te J as
E(S) = s v s

where
S ={j€J—Sldj > dx ,Vk € S}

and the elements

é

d = MAX 4

. d, =MAX d. , d
1 kes

k ’ i - 3 k
JET-E(S)

2

and amounts

A= 4. -b, ,A, =4d - 4, ,zsz =4 +4 -4
jE€s

Nete that with the c¢rdering in J, the elesments d§ and d
are respectively the first and secend elements in Sy di, is 2
the first element $n J-E(S), and 'd; ts the first (and
biggest) slement in J.

7~ With the help ef thi*s nétatten we can stablish the
follewing prepesitiens.



PROPOSITION 3.1

a) ITA> 0 then S #s a mintmal cever

b) IfA<=Aghen S is a strong minimal cever

.e) IfA<=Aghen 5§ x . <|Sl -1 #s a facet ef the
polytope j€E (s) 13

n
= . S Db,
P, conv {xij € {0,1}" | jéJ d. xij bl}

‘correspending te the #-th capacity cénstraint (7).
Cendition (a) follows directly from <%he definitioen of

minimal cever, Balas, /1/,. Te shew (b) it suffices to
verify that

A<D =1 g, -b, <4 -4 = | .
1 = 3 i kl i, _
£d, -4, +d, <ob,
jes J Ky 11 *

and then S satisfies the definitien eof streng minimal cover,
Balas, /1/, &f #n additien &saz one also has

. = b, + - ‘
jés dJ b, < dkl dk2 4, =
L 4, - (4, +d4d, ) + 4, < b,
j€s j kK, k2 1 i

then S satisfies the conditions of Balas theorem (Balas,
/1/, pg. 151), and thus



) x.. < sl -1
JEE (S)

s a facet ¢f P .
. PROPOSITION 3.2

Let S, be the subset of the h first elements of S & J, and
define” the subset J as:

Iy = {fieg!l ¢ dj <d, < dj}, h=1,...,18 -1
A ISy 3S5h41 |
Let dk, be the first element in J wifh the eovrder defined in
J. Theh if S defines a valid cut, (Balas, /1/), this #s a
facet of the polytope Pi #f

T d., + dk < bi , h=1,...,l8 -1 .
jes-sh+l h

The proef foellows directly:froem the fact that with the
erdering in J, d. >= 4, ,Vk € J_, thus
kh k h

+ -b. €
z dg + 4 <b, = I d, +d, < , Yk e g

e . k h
jea—Sh 1 h €S Sh 1

and then the coenditiens of Balas' theorem (Balas, /1/, pg.
156) held.

Preposttien 3.1 #&s the basis ef a search algertthm that
generates in a systematic way streng minimal cevers of the
poelytepe Pi, which are the input of a precedure designed . by
Balas, /1/, of generating wvalid cuts. A complementary step
based on propesition 2 cheks whether the generated vali#d cut



¥s a facet or net.

ALGORITHM 3.1

Input: The set of demands dj, j € J, ef the centers
and the set bi, ¥+ € I, of the capacities.

Qutput: The first part gives a streng minimal cover eof
pelytepe P;, (which could be eveniually a
facet), when perfermed over the i-th capacity

constraint. If the cemputed strong minimal

- cever s not a facet then the secend part

© -rcemputes a valid cut and cheks whether er net
#s a facet.

begin

Set LIST : =1
Order the set of demands 4. ¥n dncreasing
order J ‘
(dj = dj+1, j=1’2’lc0,[t]1 = 1);
while LIST # @ de
begin let & be the first plant in LIST;
search for two elements #n J, dk and
q{ such that 1
: A I R
agatn: SeT L2 :=dy .+ dgoy - 4,
(Comment: at this pcetnt the procedure tries te
generate a strong minimal cover fer
the i-th capacity censtraint

starting from and dy )
while I d., <52 do 2
j€s R
begin
et e it et e - - S3€BTCH fOTr an element 4]

such that j>k1 and j>k24;

set S:= s VU {j};



check: _IEA<AZ

set A: = © 4. - b.
jes
end

set: S':={§ € T 5 <k}
set E(S) : =suU g';

Let di1 be +the first element #n
J-E(S)

If A<Al then S #s a streng minimal
cover . gete . check : -
else

other 59§in
search fer twe different 4

and dk2 #n J, such that dk +
e dk2 tn J >= 4; -1
goto “again

-e_-!,_d- T L]

P; by proposition 1
(If anether facet of P is desired
g8o6toe other, etherwise repeat with a

new capacity constraint);

else gote validcut

validcut: (cemment: the first part of the procedure #s
an adhoc version of the Balas algorithm,
(Balas, /1/), fer generating validcuis; the
second part checks whether the valzd cut s

a faces

begin

or not).

D e . -

ky

the ) . - i
n jéE(lej < | sl - 1 is a facet of



set
fer h:= 1,2,..., 1 Sl - 1 de

(%*1%

first ﬁ elements in S |

0
()
ot

= J- E(8);

Jo:
h:=

=
(o]
Lr ]

1,2,..., 1 st -1 do

|

begin

set o=l =
=2 J:={j€3 1 = 4 < dj

k
kGSk
set JU : =JU0 UV {Jh}

end

J:= E(S) -J U ;

vhile j €J_den=h

(Comment: then

L m,x,..S<1[8 -1
jEJ J 1]

s a valid cut fer Pi)

end

begin

for h:=1,2,...,| 5 -1

If ¢

(o]

set dkh:={ first element #n Jh}

j€s-8 h

h+l
then by proposition 3.2

a., + d, < by, h:= 1,2,...,Isy-1

or h:i= 1,2,...,!51-1 do set § := {set of



the valid cut is a facet of Pj, go t¢ other
#f another facet of Pi #s desired, eotherwise
repeat with a new capacity censtrains.

end

end



4, COMPUTATIONAL EXPERIENCE I

We have carrvried out twe parallel series of computatienal
experiences. The ebjective ¢f the first sertes was to study
the percent decreasing tn the duality gap, with reference to
the desagregated fermulatien and 1lineal relaxatien used,
while the second series tried te¢ determine the efficisncy of
2 standard branch and bound commercial cede in solving the
correspending formulatien.

Table 1 shews all the sets of coenstraints te be included
#n the different desagregated formulatiens. In the first

- step we have adopted as basic fermulatien that defined by
.se3s. (1), (2), (3), (4), and. (5) in Table 1, and as

alternative desagregated fermulations these derived frem the
baséc ¢ne substituing (5) by (6) and/er (7). The censtraint
set (8) is the set e¢f facets of knapsack pelytepes of
capactty censiraints (4), one <facet for each capacity
censtraints, computed by algorithm 1.

As test preblems we used the same set already employed #n
Barcel® and Casanevas, /3/,. Frem this set we have selected
three cases of different sizes that could be considered as
representattves of the average behavieur. Tables 2,3 and 4
show the results ebtained fer these three cases.

The computatienal exprience was carried out in a DEC-2060
computer using LAMPS (Linear and Mathematical Programming
System) ef CAP Scisntific Limited, as standard mathematical
programming cede. Results fncluded &n the branch and beund
reference o¢f each table are the best enes obtained by using
pseudecests and special erdered sets, foellowing the
recommendations ferm the studies of Forvrest et al., /9/,
Gauthier and Ribiere, /10/, and Benicheu et al., /4/.

The expertiences performed gave us an 4dnsigth &nte the
difficulties. in selving this class ef preblems, +the main
dtfficulty 1ltes more £n the relationship between the
ceefficients Q. and b than +n the problem s#ze.

Censequently thg ratie *



"h= I 4./ % b,
jeg I ier*

where I*C I &s the set of plants e¢pened in the optimal
- solutien, coeuld be interpreted as a measure ¢f hew hard is a
preblem. '

Table 2 shows the results for an average problem of
tntermediate difficulty. From the first set of experiences
@t could be pointed out the small influence ¢f ceonstraints
(7) tn the decreasing of the duality gap, when compared with
censtraints (6). As rows (2.2) and (2.3) shew, dncluding
constraints (7) #n +the desagregated. formulatien decreases
very few the duality gap but increases a let the cemputing
cest (number of si*mplex tteratiens, CPU time, etc.) Row
(2.4) shews the effect of tncluding facets of capacity
constrains pelytepes (4) througn constraints (8), and row
(2.5) shews what happens when censtrainis (7) are included
#n the formulatien tegether with censtraints (8), again
censtraints (7) shew a high degree of dnefficiency in
reduciéng the size of the duality gap in terms ef
cemputational cest.

Rews (2.6) and (2.7) are the start of the results of the
secend set of experiences, #n which a standard branch and
beund procedure is employed. The results show clearly that
f constraints (7) present a small advantage when compared
.te (6) in what is refered to the searching effort, (the
number of explered nedes in (2.7) &s smaller than in (2.6)),
this advantage does n ot compensate the increase of CPU time
required. That fellews from the fact that fncluding (7)
¥ncreases a lot the size ef the linear pregram te be soclved
at each step. Anyway the results shewed #n row (8) confirm
empirically the hypethesis that constiraints (8), cemputed at
low computatienal cest by means of Algerithm 3.1, are an
efficient resource #n helping te selve this class ef
problems using enly standard computing facilities.



TABLE

[MIN]- I z c.. x.. + L f. vy, (1)
i€l jey '3 M e P
£2) z Xio = 1 Vj e’ J
i€l J
(3) z y; <K T b. y. 2 D (3a) where D =% d,
i€l = b jes 4.
(4) JéJ dj X0 < b, v, Yi € 1
(5) X;; 20, v; 20, Yiel and Vjeu
(6) x;; 20, y;< 1, Yiea, and VYj €
(7) X5 < YooY <1, Vie1l and Yi € J
" (8) g X < (Is.0 - 1) Yio Yi e
jee(s;) -
(9) L x;p < (s - 1)y, Yie*
(10) z Y; 2 st -1
i€E(S)
(11) I a.
i y. 2 a
€] : °

(12) x;j € {o,1}, vy, € (0,1} VYiel and Vjeuy




TABTLE 2

NUMBER OF PLANTS m = 6

NUMBER OF CENTERS n = 10

ratio (hard) = 0.85

(66 integer variables)

OPTIMAL VALUE z = 2057
EXPERTENCE SETS OF CONSTRAINTS IN COBJECTIVE IPU DUALITY NUMBER
NUMBER ILP REIAXATTION FUNCTICN TIME GAP IN (0}
VAILUES (se— S SIMPIEX
conds) ITERATIONS
DEC-2060 -
2.1 (1), (2),(3), (), (5) 1412.83  4.83 3131 28
2.2 (1), (2), (3), (4), (6) 1719.73  4.83 16.39 28
2.3 (1),(2),(3),4),(6),(7) 1721.10 6.76 16.32 51
2.4 (1),(2),(3),(4),(6),(8) 1838.8 5.78 10.60 60
2.5 (1),(2),(3),(4),(6),(7),(81841.6 7.65 10.47 69
EXPERTENCE SETS OF CONSTRAINTS IN NUMBER CPU TIME
NUMBER B -B OF NO- (seconds)
DES EX DEC-2060
PLORED
22,6 (1),(2),(3),(4),(6),(12) 253 47.83
2.7 (1), (2), (3), (4),(6),(7),(12) 220 1:30.83
2.8 (1),(2),(3), (4) ,(6),(8),(12) 16 10.04
2.9 (1),(2),(3),(4), (7),(8),(12) 22 13.32




NUMBER OF PLANTS m = 10

NUMBER OF CENTERS n = 20

TABLE 3

ratio (hard) =

0.97

(210 integer variables)

OPTIMAL VALUE 3668
EXPERTENCE SETS OF CONSTRAINTS IN LP ORJECTIVE CPU DUALITY NUMBER
NUMBER RELAXATION FUNCTION TIME GAP IN CF
VALUES (se- % SIMPLEX
conds) ITERATICNS
DEC-
2060
3.1 (1),(2),(3),(4),(5) 3028.12 6.90 1 44 44
3.2 . (1),(2),(3),(4).,(6), ¢ 3491 .38 7.47 - 4,81 66
3.3 (1),(2),(3),(4),(6),(8) 3493.159 9.38 4.76 86
3.4 (1),(2),(3),4),(6),(8) 3497.54 11.12 4.64 104
3.5 (1),(2),(3a),(4),(6),(11) 3632.66 7.84 0.96 74
3.6 (1),(2),(3a),(4),(6),(11),(9). 3636.97 8.53 0.84 94
3.7 (1),(2),(3a),(4),(6),(11),(9),(1183640.12 11.24 0.76 111
EXPERTENCE SETS OF COCNSTRAINTS IN B - B . SOLUTION I CPU TIME NCDES
NUMBRER FOUND seconds EXPLORED
DEC-2060
3.9 (1) ,(2),(3a),(4),(6),(11),(12) .. NO 10:00.00 -
3.10 (1) ,(2),(3a),(4),(6),(L1),(9),(12) 3670 4:32.08 481
3.11 (1) ,(2) ,(3a),(4),(6), (11),(9),(11),(12) 3668 1:58.23 131




T ——— — . e st = =

TABLE 4 °

NUMBER OF PIANTS m = 10 ratio (hard) = 0.95

NUMBER OF CENTERS n = 20 (210 integer variables)

OPTIMAL VALUE 3714
EXPERTENCE SETS OF CONSTRAINTS IN IP OBRJECTIVE CPU DUALITY NUMBEE
NUMBER RETLAXATION FUNCTION TIME GAP CF
VALUES (se- 1IN % STMPLEX
conds) ITERATIONS
DEC-
2060
4.1 (1), (), (3), (4), (5, 2676.48 7.19  27.93 56
4.2 (1), (2), (3), (4), (6) 3286.04 7.75  11.52 64
43 (1),2),03),4),6),8) - 3287.16  9.60 11.49 91
4.4 (1), (2), (3), (4), (1), (8) 3287.61 7.59  11.48 90
4.5 (1),(2),(3a),(4),(6),(11)  3641.54 7.55  1.95 61
4.6 (1), (2)5.(3a), (4), (6),.(11),(9) 3669.04 7.71 .1.21 63
EXPERTENCE SETS OF CONSTRAINTS IN B - B SOLUTIONS CPU TIME NODE
NUMBER FOUND DEC-2060
4.7 (1),(2),(3),(4), (6),(8), (12) 3749 4:01.36 444
3740 7:15.28 734
4.8 (1),(2), (3a), (4), (6),(11),(12) 3753 48.63 72
3740 1:54.08 221
4.9 (1),(2),(3a), (4}, (6), (11), (12) , (9) 3740 32.27 46 SEARCH
3714 385 COMPLETED
AFTER -
e e o i N S 435 NODES

IN 2:59.4¢

———— g ——— ——

————— e e — — e -



Results of the type shown &n Table 2 appear again when
this precedure is appliéed t¢ preblems with a ratie h of
hardness of this level. One is tempted to draw optimistic
conclusiens which are dented by results included #n Tables 3
and 4.

Preblems in Tables 3 and 4 are twoe test preblems
specially hard, with very high values of h. The first set of
expertences (rews (3.1) to (3.4), and (4.1) 1o (4.4)
respectively) shows clearly that @n such difficult cases
although constraints (6) are better than (7), because they
st#ll preduce a similar decrease #n the duality gap at a
much lower computaticnal cost, censtraints (8), hewever, ne
loenger effer a meaningful advantage, even frem the point ef
view of branch and beund, since the secend set of
experiences (rews (3.8) and (4.7)) shews, that either it #s
nct able te solve the preblem within seme given CPU <ime
r¢mét (10 minuts én all the experiments dene)., or %t only
can reach some feastble selutions, althecugh acceptabily good,
withién such limits.

Frem this experiences twe cenclusions can be drawn. The
first ene #s the low interest of using censtraints (7) in
fermulating and selving pure integer capacitated locatien
problems. The secend cenclusien &s that even Dbeing
recemmendable the use of desagregated fermulations including
censtraints of type (8), its effictency depends heavily en
the level ef difficulty ef the preblenm.

The f#rst coenclusien is surprising %*n that it
centradicts the asserts of Geeffrien and Mc Bride, /11/, and
Sptelberg, /16/ fer the mixed dnteger capacitated lecatien
preblem, given that constraints (7) are a particular case of
constraints Xijq -~ Mi4 ¥yi <= 0, and, as was mentiiones adove,
Geeffrien and ﬂc Bvi&e shew that such censtraints are facets
¢f the cenvex hull e¢f the preblem. But in the pure dnteger
case the empirtcal cenclusien drawn can be explained
theeretically because when mij = 1 and x. € {0,1} , then
usually cenditions ef Prepesition 2 in (Balas, /1/, pg. 149)

held (because usually dj < b;), and Xig - y{<=¢ are trivial
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facets of the corresponding knapsack pelytepe. This fact
expains why #n this case constraints (7) have such a low
contribution #n the selutien of the preblem.

A second conclusion would #ndicate that a deeper analysis
s needed of the facets ¢f the convex hull, that means,
tdentifying whether %t #s pesible er not te generate mere
useful facets. '
.



5. ADDITIONAL PROCEDURES OF GENERATING FACETS OF THE KNAPSACK POLYTOPE

A pessibility ef impreving the fermer resulis weuld be
not cemputing a prieri facels of the knapsack pelytopes B,
ass¢ciated with the capactty constraints (4), fgnering how
goocd they are, but cemputiéng enly those of guaranteed
- uselfulness strictly when we need them. A way to de this
censists in selving the eordipnary linear programming
relaxation, and identifying which is fer each capacity
censtraint (4), the minimal cover S , whese asociated
inequality

1 8 : ) ' '

would be mere violated by the centinueus . selutien i&.,
whenever such an tnequaltty exists. ]

The following theorem, (Crewder, Jennsen and Padberg,
/7/) answers this question:

THEOREM 5.1

There exists a minimal cever dnequality (8) that cuts eoff

iij 2f and only #f the eptimal ebjective functien value ef

MIN {f (1-%.,.)z. | I 4. z. >b., z. € {0,1} i € J} (9
jeJ lJ J jEJ J J l’ J ’ 4 VJ ( )
¥s }ess than ene.

Hewever, whenever such an #nequality (8) exists, it will be
a facet of the pelytepe Pi defined by

P. =Pn {xe R x, .
Si i ~ I 1]
and we were interested in cemputing a facet of Pj. The

=0, Vigs;} (lo)
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preblem %s then te know whether or net we are able te&
compute the desired facet of Pi frem (8), than means knowing
when an tnequality which is a facet of a pelytope, holds #ts
preperty of defining a facet when its number of variables is
tncreased.

The follewing theorem (Padberg, /15/) answers the
question of lifting the facets ef %i inte the n-space t6 yield a facet of Pl .
THEOREM 5.2

Let P be the polytepe defined by (10). If <the
§nequality i _ ,

L a. X.. <1
jes; 3 1] © ,
defines a facet of Ps; » then there exitst nen negative
numbers Bj < LN , such that
z OLix..+Z B. x.. < 1w _ _
jesi ij jEJ-Si J ij o

s a facet of Pi.

The pessibility of calculating the ceeffictentsg. #n a
recurstve way is based on the foellewing theorem (Pgdberg,
/15/, Balas and Zemel, /2/).

THEOREM 5.3

Let Si be a minimal cover fer #-th constraint (4), and
J-83 = {j ,...,Jr} arbitrarily ordered (p =1 J - Sjj), and
consider the sequence of knapsack problzms Kji, defined
recurstvely as:




(W]

i-1
P30 7 U e s +j§jl3j %13
Ji-1
jésid‘ 13 7 jﬁjfj *13 S Py T4y (D)
x5 € {0,1}, Y5 € Sy Y {dyreeerdy g}
fov-i =1,...,p (vhere summation over the empty set ié 0),

with ceefficients Bj defined by

Then the tnequality

Jyeeens ji—l

z Xyu,t L B. x,. <Is,l -1
jes, i3 jEJ—SiJ ij i

s a facet ef Pi'

The coefficientsBs depend on the sequence in which they
avre cailculated, eacg sequence given a different set eof
ceefficients, but anyway the calculation of every
sequentially 1lifted facet requires the selutien of a
sequence of knapsack preblems %i , one fer ecach ceefficient.

The first ¢ne of the knapsack preblems can be solved
tvivially, as fellews from the fellewing prepesitiocn (Balas
and Zemel, /2/): '

PROPOSITION 5.1

For all minimal cevers 3, and all je d - Si,sﬂ =h, where
h is defined by - J _

Zl dk < bi - dj z d
kESi—Sh+l kGSi - Sh

(where Sh is the subset, ef the h first elements in Sh). The
eptimal solution te the knapsack preblem

k

23



B T ane et

MAX { & xij I = dj xij < bi - d

le e{oll}l :] € S}
I€S, j€8;

kl

(beding k¥ the index of the first element in N - Si) s given
by

s € =
1r 378 = Shn

Xy
13
0r 3 € 844,

The remaining knapsack problems can net be soelved seo
trivially, hewever, as &n the case of Prepesition 3.2 abeve,
there still exists the possibility of cemputing easily if
not a lifted facet, at least a valid cut, which very e¢ften
#s alse a facet. Balas and- Zemell show in /2/ that &f an
knequality like

T X,.. + I o, X. <|8.,] -1 (12
jes; I jeg-s; ) * 12

#s a valid i#nequality fer P, , then a. < B', Y3 € J-s. , and
that there exists an impertant class of valid ineqﬂalities
derived frem the minimal cevers, in particular if Si is the
most vielated cover identified by (9), and E(Sy) is its
extensien, then the subprecedure validcut, in algorithm 3.1,
cemputes a valid inequality belenging te the family eof (12),
which, if cemplementary cenditiens of Prepesitiocn 3.2 held,
¥s a facet of Pi .

Thus the sequence ¢f kpnapsack problems which gives the
facet can allways be replaced by subprecedure, validcut if
enly a valid cut, eventually facet, but cemputatienally much
cheaper t#s desired.

--When the facet of P+ is desd#red, the sequence ef knapsack
préeblems can be systemattcally selved by means of the



fellewing.
RECURSIVE LIFTING PROCEDURE (Padberg)
Set ay = 1, ¥i € S;» ag =1ls; -1
Iterative step
Let ¥ € J - S4 and determine
' - € €S,
g = IMRXD AL Ay xy g I oAy %y < by - 4y, x;58(0,11, V5SS, )
' e o
Define Ay =ag -2
Redefine Si %o beS; Y {K}' and repeat until J-§ is empty
1 i
The resulting inequality
I a, X,. < a
5€3 ij o

is a facet of the knapsack pelytepe Pj asseciated with the
&-th capacity constraint (4).

Thiés recursive 1ifting procedure can be cembined with a
standard mathematical pregramming code, as in 4 § y to give
the following glebal precedure

Precedure new facet
begin
start: Selve the erdtnary Yinear pregramming
relaxatien ef the pure ‘integer capacitated
lecation preoblaem
Identify partial selutien -' (set ¢f centers
- J; complete or parcially as;1%n°d te plant i)

set LIST:=

ey



while LIST:# @ de
begin

Let # be the first plant tn
LIST, remeve it form LIST
Determine the mest viclated
minimal cover by parttal
selutioen Eij’ selving

1- £ d,z.»b,,2.€{0,1}, ¥
[?ﬂmﬂgéJ( le)leijsz> 1024500,11, 3833

Apply +the RECURSIVE LIFTING
PROCEDURE to the minimal cever
S; _kdentified. (Alternatively
apply validcut frem Algeritm
3.1 #f enly a valid lnequaitty

is required)
Add the new %nequality

I a.x..<a
s7 3 713 (o}

$6 the coenstrai#nt set

end

If mere facets are desired then ge te
start
else end

Once procedure New PFacet has been performed preceed with
the branch and beund searching.




6. COMPUTATIONAL EXPERIENCE II: CONCLUSIONS

The algorithm just described was applied again te the sex
of test problems which had not been solved by the first
algerithm, that is to the hardest ones which exhibited a
behavicur 1like that referenced #n Tables 3 and 4. Procedure
New Facet ceomputed a set of constraints of +type (9)
referenced #n Table 1. Results of this new series of
experiences have net been tncluded in the %table because
dissapeintingly, although being theeretically strenger, the
new inequalities were no mere efficient than the previeus
énes. Computational behavioeur ef the new algoerithm was
aimest the same as the first ene. : A :

This disceuraging fact lead us teé &nvestigate further
whitch was the centributien of the different facets of the
convex hull te clesing the duality gap. The analysis reveals
that constraints like (8) jer (9) in Table 1 act enly ever
the x; var*abiss, that is the decission variables ef the
a331gnﬂnnT ¢f centers te¢ o¢pen plants, and enly conssraint
(3) acts ever the selectisn e¢f plants, but since usually,
the f! s are bigger than the Cig» the centribution of the yy
8 te ¢clesing the dualtty gap S ebviocusly strenger than the
centributien ¢f the 9 iy

Coensequently any further #mprevement weuld be pessible
enly &f we can act ever the y' s. with the problem
formulated as #n Table 1, there #s enly a censtraint acting
en the yi, this is ’

I y; <K (3)
i€T

which dees net offer any pessibility of computing
tnequalities of type (8) er (9) in terms ef vargables yi.
The enly pessibility ef deing that comes from a new
formulation ef the preblem. Indeed, substituing (3) by the
lim¥ting censtraint:

e o i il 4 i g b i —



I by y;>D {3a)
i€l

where D = . j, already used by Nauss, /13/, and Guignard
and Splalbgrg, /12/, fermerly, and by Van Rey, /17/, &n a
recent paper. Censtraint (33) ts agatn a knapsack type
constraint, which affects c¢nly +te the ¥i vartables,
representing the decisions o¢f ¢pening er net ‘ene plant.

Thts censtraint epens up the poessibility ¢f acting on %he
plants by means .. roecedure New PFacet, substituing
constraints (4) by. (3a§ in the precedure. Procedure New
Facet will then compute constraints 1ine (11) tn Table 1.
Thus Procedure New Pacet will then adept the form:

begin:

start: Selve the erdinary linear pregramming
relaxatioen ef the pure capacitated lecaticn
problem.
Identify partial selutioen y.
Determine the moest violated minimal cever of
(3a2) by partial selutioen ¥, selving

B <y € .
[MIN]iéI (1-y,) 2y IiéIbi z; > D, z; {0,1}, Y1

Apply the RECURSIVE LIFTING PROCEDURE te the

minimal cover S #dentified (Or precedure

validcut when only a valid inequality is encugh)
Add tne new inequality

r a, y. > a
jer 74 o
coerrespending te the computed facet, te the
censtraint set




If mere facets are desired then go te¢ start
else end

Computational experience with this last algorithm is
vreported in rows (3.5) te (3.7) and (4.5) and (4.6) in
. Tables 3 and 4 respectively, #n what rvefers te the first
sertes of experiences abeut the decrease in the dvality gap.
(3.5) and (4.5) shew undoubifully that this is the mest
pewerful alternative. Frem the point ¢f view o¢f the seceond
series of cemputational experisnces, the mest impertant
concluston #s that using censtrainis of types (11) and (9)
together, can solve the preblem, even in very hard cases,
vsing ¢nly a standard seftware within acceptable time Yimits
as rews (3.9) to (3.11) and (4.8) te (4.9) ¢n Tables 3 and 4
shew.

Constraints ef types (3) and (11) were already suggested
by Guignard and Spielberg &n /12/, from an empirical point
6f view, witheut further justifying and witheut giving any
systematic way e¢f cemputing (11 frem (3a). Our werk
analyses why such type o¢f censtraints s interesting and
gtves an easy procedure of computing them that can be used
with any standar mathematical preogramming software.

The last versien of the algerithm, the e¢ne acting only en
the y' s, can be used alse in mixed integer capacitated
lecatien preoblems. Changing the éntegrality constraints X4 5
Efb,llin?12), Table 1, by the relaxatien 0 <= xj+4 <=1, the
cerrespending mixed integer problems in Tables 3 and 4 were
setved +te¢ optimality explering enly 3 and 2 nodes
vrespectively.
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