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Abstract: One of the main foci of robotics is nowadays centered in providing a great degree of autonomy
to robots. A fundamental step in this direction is to give them the ability to plan in discrete and continuous
spaces to find the required motions to complete a complex task. In this line, some recent approaches
describe tasks with Linear Temporal Logic (LTL) and reason on discrete actions to guide sampling-
based motion planning, with the aim of finding dynamically-feasible motions that satisfy the temporal-
logic task specifications. The present paper proposes an LTL planning approach enhanced with the use
of ontologies to describe and reason about the task, on the one hand, and that includes physics-based
motion planning to allow the purposeful manipulation of objects, on the other hand. The proposal has
been implemented and is illustrated with didactic examples with a mobile robot in simple scenarios
where some of the goals are occupied with objects that must be removed in order to fulfill the task.
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1. INTRODUCTION

The field of motion planning is evolving rapidly and one of
the main directions is towards enabling robots to perform
complex tasks in realistic environments. In this regard, on the
one hand, it is evolving towards the simultaneous consideration
of kinodynamic and physics-based constraints, like the physics-
based motion planning approaches that allow to also consider
the purposeful manipulation of objects. On the other hand, it
is evolving towards the integration with task planning, like the
LTL-based approaches that define multiple goal tasks in terms
of temporal logic, such as visit region A followed by region C
and avoid region B.

LTL-based motion planning is a hybrid approach of discrete
(high-level) and continuous (low-level) planning, that computes
the robot trajectories in such a way that they satisfy the temporal
constraints, represented in terms of an LTL formula. To our
best knowledge, all state-of-the-art LTL motion planers, such
as Fainekos et al. (2005); Bhatia et al. (2010); Plaku (2012b);
Lahijanian et al. (2012); Plaku et al. (2013); Edelkamp and
Plaku (2014), evaluate the validity of the formula using model
checking techniques (automaton construction) and in case of
feasible formula, determine the collision-free trajectory that
satisfy the formula. These planners neither analyze the formula
against the capability of the robot, nor incorporate manipulation
actions (i.e. they do not consider the dynamic interactions
between rigid bodies). Therefore they are not able to compute
the plan if, for instance, no collision free trajectory exists for
moving between regions that the robot must visit, although with
the removal of few objects a trajectory could be found.

? This work was partially supported by the Spanish Government through
the projects DPI2013-40882-P, DPI2014-57757-R and DPI2016-80077-R.
Muhayyuddin is supported by the Generalitat de Catalunya through the grant
FI-DGR 2014. A. Akbari is supported by the Spanish Gov. through the grant
FPI 2015.

The straight extension of these approaches in order to handle
manipulation actions is possible, but due to the high com-
plexity of physics-based motion planning (large search space
and highly constraint solution set) along with the incorporation
of temporal constraints, may lead to a computationally non-
tractable problem, raising the question about its decidability.
Therefore, an efficient and powerful framework is required that
has the capacity to handle both the temporal goals and the
physics-based constraints, along with the purposeful manipula-
tion of the objects if necessary. This paper tries to contribute in
this line by enhancing the framework introduced in Muhayyud-
din et al. (2015), that combined the use of ontologies with
physics-based motion planning, by allowing now the consid-
eration of temporal constraints.

Contributions. The main contributions of this paper are: (1) the
integration of the Linear Temporal Logic within the framework
of ontological physics-based motion planning, thus allowing
the purposeful manipulation of objects, like the execution of
push actions to clear regions possibly occupied by objects; (2)
the proposal of an LTL feasibility evaluation and simplifica-
tion process, that uses knowledge-based reasoning to evalu-
ate whether the properties of the objects and the robot make
the task described by the LTL formula feasible or not and,
if required, simplifies the formula by skipping the non-valid
propositions defined with disjunction relations.

The rest of the paper is structured as follows. Sec. 2 presents
some relevant work related to physics-based motion planning
and LTL-based motion planing. Sec. 3 describes the modeling
of the world and problem statement. Then, Sec. 4 explains the
framework, the reasoning process and the planning process. Im-
plementation issues and some simulation results are explained
in Sec. 5. Finally, the conclusions are presented in Sec. 6.



2. RELATED WORK

2.1 Physics-based Motion Planning

Motion planning problems focus on computing a collision-
free trajectory from a given start state to the goal state in the
configuration space. The configuration space C represents the
set of all possible configurations of the robot; it is divided
into Cfree (free regions) and Cobs (forbidden regions). To take
into account differential (dynamic) constraints the planning is
performed in a higher dimensional state space S that records
the system dynamics. For any configuration q ∈ C the state
of the system is represented as s = (q, q̇). Planning will be
performed in S in a similar way as it is done in C for pure
geometric problems.

Kinodynamic motion planning is centered in computing the
collision-free trajectories that satisfy the kinodynamic con-
straints (such as joint limits, bounds on the forces and acceler-
ation). Sampling-based motion planners (Tsianos et al., 2007),
particularly those based on tree data structures, are well suited
for this purpose because the state propagation used to incremen-
tally grow the data structures can easily take into account the
constraints. Moreover, if a dynamic engine is used as state prop-
agator then physics-based constraints (gravity and friction) can
also be easily incorporated (Şucan and Kavraki, 2012), (Plaku,
2012a). Therefore, physics-based motion planning can be con-
sidered as an evolved form of kinodynamic planning in which
the robot motions also satisfy physics-based constraints. This,
moreover, allows to evaluate the dynamic interaction between
rigid bodies and, besides considering only collision-free trajec-
tories, allows the consideration of manipulation actions (such
as the push action), thus broadening the range of tasks that can
be solved.

The physics-based motion planners rely on sampling-based
kinodynamic motion planners, such as Rapidly-Exploring Ran-
dom Trees (RRT) (LaValle and Kuffner, 2001), Kinody-
namic Motion Planning by Interior-Exterior Cell Exploration
(KPIECE) (Şucan and Kavraki, 2012), Synergistic Combina-
tion of Layers of Planning (SyCLoP) (Plaku et al., 2010), for
sampling the states and constructing the solution path, while the
state propagation is performed using a dynamic engine such as
Open Dynamic Engine (ODE) (Russell, 2007). The large search
space and the evaluation of the dynamical interactions make
physics-based motion planning computationally intensive. A
few approaches have been proposed that try to overcome these
issues, such as the work of Zickler and Veloso (2009) that pro-
posed a nondeterministic tactic based on a finite state machine
to guide the motion planner, along with the use of action skills
to control the sampling. In a similar direction, the ontologi-
cal physics-based motion planning approach of Muhayyuddin
et al. (2015) performs a knowledge-based reasoning process
to determine the way of manipulating objects, thus reducing
the planning search space. This knowledge-based framework
can be used together with any sampling-based kinodynamic
motion planner (such as RRT, KPIECE, SyCLoP), and ODE
is set as state propagator. Moreover, this framework has also
been used for computing the motion plan and dynamic cost in
integrated task and motion planning approaches such as Akbari
et al. (2015, 2016). The present proposal extends this approach
for temporal goals described by an LTL formula.

2.2 LTL-based Motion Planning

LTL motion planning is a hybrid approach that provides a
framework to describe complex motion planning tasks in terms
of temporal goals, and that plans in discrete and continuous
spaces. The planning is performed in three steps (1) Workspace
decomposition: decomposes the robot workspace (using for
example a triangular decomposition); (2) High level planning:
constructs the discrete plan over the product space of the
decomposed workspace and the automaton (that is constructed
to check the LTL formula) in such a way that the discrete
plan satisfies the LTL formula φ; (3) Low level planning:
implements the high level plan at low level in such a way that it
also satisfies φ.

LTL-based motion planning approaches are broadly divided
into two main categories: controller-based and sampling-based
LTL motion planers. The former compute the discrete plan over
the decomposed workspace and then the controller looks for
the dynamically-feasible and collision-free trajectory for each
action (Fainekos et al., 2009). The latter consider the integration
of the task and motion planning steps, proposing a probabilistic
search over the hybrid space of discrete and continuous compo-
nents (Bhatia et al., 2010, 2011; Maly et al., 2013; Plaku et al.,
2013; He et al., 2015). The discrete component is represented as
the product space of decomposed workspace and the automaton
that satisfies the LTL formula φ, whereas the continuous layer
consists of a sampling-based dynamic motion planner that is
guided by the discrete layer. All these approaches always seek
for a collision-free trajectory. Although some approaches such
as (McMahon and Plaku, 2014) incorporate a dynamic engine
within an LTL framework, it is used only to consider the robot
dynamics and the physics-based constraints, i.e. no dynamic in-
teractions between rigid bodies are considered while planning.

3. PRELIMINARIES

3.1 Modeling

Consider the world is composed of a set of rigid bodies B, that
are categorized into fixed and movable. The former remains
fixed throughout the planning process and is represented as
Bfixed, whereas the latter can be moved (pushed) by the robot.
The movable bodies are further divided into:

• Freely-movable bodies Bfree: Bodies that can be manipu-
lated freely from any direction.

• Constraint-oriented movable bodies Bco: Bodies that must
be manipulated from certain directions, such as car-like
bodies that can only be pushed in the forward or backward
directions.

The manipulation constraints of a Bco are modeled by defining
some part of the body that the robot is allowed to touch, and
an associated region, called manipulation region. (mRegion),
where the robot must be located in order to interact with the
body. All bodies in the environments can be represented as;
B = Bfree ∪ Bco ∪ Bfixed.

To store the above stated information and to update it while
planning, the knowledge is represented in two levels, the ab-
stract knowledge K and the instantiated knowledge κ. The
abstract knowledge is represented using ontologies encoded
with the Web Ontology Language (OWL) (Antoniou and van
Harmelen, 2003). It contains the type of the objects (such as



fixed and manipulatable), their properties (such as masses and
friction coefficients), associated manipulation constraints, kin-
odynamic properties of the robot (such as joint limits, bounds
on the forces, torques and velocities), and the LTL operators.
The abstract knowledge K remains fixed throughout the plan-
ning process. The instantiated knowledge κ is the dynamic
knowledge, inferred fromK through the reasoning process, and
updated continuously at each time step. It contains the manip-
ulation constraints that are valid at each particular instance of
time.

Let X be the state space of all the bodies in the environment. At
any time t a state x ∈ X is represented as x(t) = {s1 . . . sk}
where si represents the position and orientation of the i-th
object in the environment. The instantiated knowledge κxt is
associated to state x.

3.2 Robot Model

Consider a mobile robotR, and let S be its state space contain-
ing all possible states of the robot. A state s ∈ S is represented
as s = {p, o, v, w} where p, o, v, and w are the position, ori-
entation, linear velocity and angular velocity respectively. The
instantiated knowledge κst is associated to s. The state of the
environment can be represented as E = X × S.

A trajectory of the robot is defined by the robot dynamics in
the results of control inputs, that are applied for a small time
duration ∆t. It can be written as snew = PROPAGATOR(s, u,∆t),
where u ∈ U is a control input from the control space U
containing the set of all possible control inputs that can be
applied to the robot. The PROPAGATOR will generate a tra-
jectory between state s and snew. An entire trajectory (Traj)
of the robot is obtained by applying the control inputs (start-
ing from start state) repeatedly for small time durations.
During the execution of the motion, if the robot interact
with Bfree or Bco the resulting motion will change the state
of the bodies. It implies that control inputs are responsi-
ble for updating the state of the robot as well as the state
of the bodies. Generally the transition function PROPAGATOR
can be written as PROPAGATOR: Ei × U → Ei+1. The instanti-
ated knowledge for E can be defined as κ = κs ∪ κx. va-
lidity of newly generated state is evaluated by a function
VALIDITYCHECKER: E × κ→ {>,⊥}. It returns > iff the newly
generated state satisfies all the constraints imposed by κ. For
each new state of E, κ is updated by the inference process
INFERENCE: Ei+1 × κi → κi+1.

3.3 Linear Temporal Logic

Linear temporal logic is a formalism used to specify tasks by
combining propositions with logical and temporal operators.
The combination is called an LTL formula φ (Clarke et al.,
1999), i.e. an LTL formula φ is defined by integrating propo-
sitions with the logic operators negation (¬), conjunction (∧),
disjunction (∨), equivalence (⇔), and implication (⇒) along
with the temporal operators next (©), always (2), until (t),
and eventually (♦).

Let Π be the set of atomic propositions, Π = {π1, . . . , πn},
each πi representing a statement such as “robot is in region
Pi”. Every πi ∈ Π is a formula, and if φ and ψ are formulas,
then new formulas can be defined using the following grammar:

¬φ, φ ∧ ψ, φ ∨ ψ, ♦φ, φ t ψ, φ© ψ

As an example, the formula to visit the regions P1, P2, P3

in an ordered way can be represented as φ = ♦(π1 ∧ ♦(π2 ∧
♦(π3)))

The semantics of LTL formula are defined over infinite traces
of a system. Let σ = τ0, τ1, . . . τ∞ represent the infinite trace
with τi ∈ 2Π, and σ |= φ represent that σ satisfies φ. Then,
σ |= φ iff there exists a finite prefix σi = τ0, τ1, . . . , τi−1 of σ
that satisfies φ.

Syntactically co-safe formulas are a special class of LTL for-
mulas. When written in positive normal form (i.e. when the
negation operator occurs only in front of atomic propositions),
they only contain the eventually, next and until operators. They
can be interpreted over a finite trace and their validity can
be checked using nondeterministic finite automata (Kupferman
and Vardi, 2001).This is the type of formulas used when the
focus is in motion planning problems over a finite time horizon.

3.4 LTL Semantics for Motion Trajectories

The robot workspaceW contains different types of rigid bodies
and a set of propositional regions P = {P1 . . . Pn} correspond-
ing to the propositions {π1 . . . πn}. The part of the workspace
that is accessible by the robot is represented as Wacc = W \
Wfixed, where Wfixed is the part of the workspace occupied by
Bfixed. Propositional regions are associated with the accessible
part of the workspace, i.e. P ∈ Wacc. A special proposition
π0 is associated with a propositional region P0 defined as
P0 =Wacc\∪ni=1Pi. A function G :Wacc → Π maps each point
of the workspace over the corresponding propositional region.

The discrete trace of a trajectory Traj is defined as the sequence
of propositional regions that are traversed by Traj and is rep-
resented as tr(Traj). A propositional region Pi is said to be
traversed iff G(Traj(t)) = πi for some 0 ≤ t ≤ T . A motion
trajectory Traj satisfies φ iff tr(Traj) |= φ.

3.5 Problem Statement

Let a motion planning problem for a robot R be considered
as the tuple 〈Einit,K,Π, φ〉. The goal is expressed in terms of
an LTL formula φ, defined over a set of atomic propositions
Π that describe regions of the workspace that the robot must
either visit or avoid. The problem is to evaluate (by taking
into account Einit and K) whether the robot can satisfy the
formula, and whether it can be simplified. If the formula (or
possibly simplified formula) is feasible then the problem is to
find a sequence of control inputs such that the resulting robot
trajectory Traj satisfies tr(Traj) |= φ, is dynamically feasible,
avoids the collision with fixed bodies and, if necessary, pushes
movable objects away for clearing the regions.

4. PHYSIC-BASED LTL MOTION PLANNING

4.1 Framework

To solve the above stated problem, a physics-based LTL motion
planning approach is proposed that makes use of ontologies
and high-level reasoning, and that considers physics-based mo-
tion propagation. The schematic representation of the solution
framework is depicted in Fig. 1. It consists of two main mod-
ules: the knowledge-based reasoning engine and the physics-
based LTL planner. The former is responsible for defining
the manipulation constraints, the feasibility evaluation and the



Fig. 1. Framework for Physics-based LTL motion planning.

possible simplification of the LTL formula, whereas the latter
computes the motion plan that satisfies the temporal goals.

The knowledge-based reasoning engine contains the abstract
knowledge K, and performs a prolog-based reasoning over K
to define the types of the rigid bodies and the associated ma-
nipulation constraints (encoded in the instantiated knowledge)
using the kinematic and dynamic properties of the robot and
the bodies. Furthermore, it is responsible for the feasibility
evaluation and the possible simplification of the LTL formula
(explained in Sec. 4.2). It is important to note that the feasibil-
ity evaluation and simplification is different from the validity
checking of the LTL formulas that is performed using model-
checking techniques.

The physics-based LTL planner stores the problem definition
(the world modeling along with the initial LTL formula φ
that defines the temporal goals), the instantiated knowledge κ
and the LTL formula ψ inferred by the reasoning module
(ψ contains a simplified version of φ, when possible). The
automaton will be constructed for ψ, unlike other sampling-
based LTL planners that always plan for φ. The sampling-based
LTL motion planner is responsible for generating the discrete
plan (computed over the product space of the decomposed
workspace and generated automaton for ψ) and its execution
at low-level (continuous motion planning level) to determine
the control sequence in such a way that the resultant trajectory
satisfies ψ. The state propagator makes use of the physics
engine for the propagation, and the newly generated states are
evaluated by the state validity checker. Different from standard
sampling-based LTL planners, the proposed validity checker
takes into account the current state of the environment and
evaluates it based on the instantiated knowledge that is valid
for that particular state.

4.2 Reasoning Process

The aim of knowledge-based reasoning is to provide auton-
omy to the robots for performing complex tasks. We use the
reasoning process, on one hand, to generate the instantiated
knowledge κ and, on the other hand, to evaluate the feasibility
of the LTL formula and its potential simplification.

For the generation of κ a prolog-based reasoning is employed
that reads the abstract knowledge in order to classify the ob-
jects into different types, together with their manipulation con-
straints. This process is performed by evaluating physical prop-
erties of the objects and the kinodynamic properties of the robot
in a similar way as performed in Muhayyuddin et al. (2015);

Algorithm 1 Simplify
Input: List L with nonvalid proposition(s), LTL formula φ
Output: LTL formula φ

1: if op(L) 3 ∨ then
2: return φ\L
3: else
4: if parent(L) = φ then
5: return NULL
6: else
7: Simplify(parent(L), φ)
8: end if
9: end if

Algorithm 2 Evaluate
Input: LTL formula φ, Set of propositions Π, Knowledge K
Output: φ or NULL

1: Mp ← F(K,Π)
2: ifMp = NULL then
3: return φ
4: end if
5: for all π ∈Mp do
6: φ←Simplify(π.L, φ)
7: if φ = NULL then
8: return NULL
9: end if

10: end for
11: return φ

Gillani et al. (2016). At each instant of time κ is updated using
the INFERENCE function that takes into account the previous
state of κ and the current state of the environment and gener-
ates the new state of κ (INFERENCE: Ei+1 × κi → κi+1). For
instance, if after a propagation step one manipulation region is
occupied with another object, the motion constraints of the first
object are updated accordingly to the new situation.

To evaluate the feasibility and the possible simplification of the
LTL formula, the reasoning process is done as follows:

• Let an LTL formula φ be defined over a set of propositions
Π = {π1 . . . πn}, where each πi ∈ Π is associated with
a region Pi of the workspace (that the robot should visit
or avoid) called propositional region. A proposition is
considered nonvalid if the associated propositional region
is not accessible by the robot and valid otherwise. LetMp

be the list of nonvalid propositions and F be the function
that computes them, i.e. F : K × Π ⇒Mp. IfMp = ∅,
the formula is feasible and does not require simplification.



Algorithm 3 Physics-based LTL Motion Planning
Input: Initial state Einit, Π, LTL formula φ, Threshold Tmax
Output: A continuous path that satisfies φ.

1: K ← OntologyFormulation(Einit)
2: κ0 ←InstantiatedKnowledgeInference(K)
3: ψ ← Evaluate(K,Π, φ)
4: if ψ = NULL then
5: return NULL
6: else
7: T ←InitializeTree(Einit)
8: Aψ ←ComputeAutomaton(ψ)
9: D ← ComputeDecomposition() ; j = 0

10: while t < Tmax do
11: ρ← DiscretePlanning(Aψ ,D )
12: v ← SelectHighLevelState(ρ)
13: {u, n} ← SampleControlAndSteps(v)
14: for i = 0 to n do
15: Enew ← PROPAGATOR(E, u,∆t)
16: if ! VALIDITYCHECKER(Enew,κj ) then
17: Break
18: else
19: κj+1 ← INFERENCE(Enew, κj ); j = j + 1
20: vnew ←UpdateHighLevelState(v)
21: T ← UpdateTree(Enew, u,∆t)
22: z ←GetAutomatonState(vnew)
23: if z ∈ Accepting state ofAψ then
24: return Traj←RetrieveTrajectory(T )
25: end if
26: end if
27: end for
28: end while
29: return NULL
30: end if

• Let a formula be considered a list L, which can be either
an atomic list (defined by a single proposition), or a
compound list (defined by the composition of lists using
temporal and logic operators). Then, parent(L) returns
the parent list of a list, op(L) returns the set of prefix
and postfix operators of L within parent(L), and π.L
represents the innermost list containing the proposition π
(i.e. π.L = {π}).
• Let Simplify(L, φ) be a recursive function that verifies if
L contains disjunction operators and if so returns the
formula φ without L, as shown in Algorithm 1. Then,
Algorithm 2 shows the procedure Evaluate(φ) that checks
the feasibility of an LTL formula by using function
Simplify(L, φ).

As an example, consider the formula φ = ♦π1 ∨ (♦π2 ∧ (♦π3))
where the proposition π3 is nonvalid. The list associated to π3

is L(3,1), as shown in Fig. 2. The recursive Simplify is initially
called forL(3,1), then forL(2,2) andL(1,2), when the ∨ operator
is found. At this moment the formula is simplified by deleting
L(1,2) and the simplified formula results ψ = 3π1.

The proposed reasoning process works for the syntactically
co-safe LTL formulas. The Open Motion Planning Library
(OMPL) (Şucan et al., 2012), a C++ based tool for sampling-
based motion planning, provides the implementation of the
sampling-based LTL motion planner presented in Bhatia et al.
(2010). It supports the temporal goals defined using syntac-
tically co-safe LTL formulas such as φ = ♦π1 ∧ · · · ∧ ♦
(visit all the regions π1 . . . πn in any order), φ = ♦(π1 ∧
♦(π2∧♦(. . .∧♦πn))) (visit all the regions in an ordered way),
φ = ♦π1 ∨ · · · ∨ ♦πn (visit any of the region from π1 . . . πn),
and φ = (♦π1 ∨ ♦π2) ∧ ¬π3 (visit π1 or π2 and not visit π3).

Fig. 2. Example of the simplification process, where φ andψ are
the actual and the simplified formulas respectively. Each
L(i,j) is a list with i and j representing the depth and the
order in the parent list, respectively.

The reasoning process works over the similar types of formula
with similar grammar.

4.3 Planning Process

The planning process is explained in Algorithm 3, that takes as
inputs the initial state, the set of propositions Π, the temporal
goal (defined in terms of an LTL formula φ over Π), and the
maximum allowed planning time Tmax. As output it returns a
continuous path (as a sequence of controls and durations) that
satisfies φ.

The OntologyFormulation function defines the abstract knowl-
edge K about the world by defining the types of the objects
(such as fixed or manipulatable), and their manipulation con-
straints in terms of mRegions (Sec.3.1). The InstantiatedKnowl-
edgeInference fills the initial state of the instantiated knowl-
edge as explained in Sec. 4.2.To determine the feasibility of φ,
the Evaluate function computes the feasibility and performs
the possible simplification (if required) as explained in Algo-
rithms 1 and 2. The function InitializeTree sets the initial state
of the tree as the initial state of the environment.

Lines: (8-13) refer to the general steps of the sampling-based
LTL motion planning, as done in Bhatia et al. (2010), for the
high level planning and for the updating of the states (both at
low- and high- levels). ComputeAutomaton function computes
the Automaton Aψ for the formula ψ, ComputeDecomposition
performs the triangular decomposition of the workspace not
occupied by fixed obstacles, in a way that preserves the propo-
sitional regions. As a difference with Bhatia et al. (2010)
we only exclude from the decomposition the workspace oc-
cupied by fixed obstacles, i.e. the non-fixed bodies are sim-
ply ignored while decomposing the workspace. Function Dis-
cretePlanning constructs the discrete plan over the product
space of the decomposition and Aψ , and SelectHighLevelState
selects the high-level state to be explored. At low level,
SampleControlAndSteps function samples the controls (that
could be a vector of applied forces, joints torques, or velocities),
and the number of steps (that refer to the number of times that
the sampled controls will repeatedly applied for a duration ∆t).

The function PROPAGATOR applies the sampled controls for ∆t
time on the robot and generates new state of the environment
Enew using the dynamics engine that allows to handle all the
kinodynamic and physics-based constraints. VALIDITYCHECKER
evaluates the newly generated state of the environment, based
on the instantiated knowledge κ. Enew will be accepted if



(A) (B)

Fig. 3. Example scenarios A: the goal is to visit
the propositional regions π1, · · · , π4, being the
access to them obstructed by the blue boxes. B:
visit all propositional regions in an ordered way,
being two of them occupied by bodies. Video:
https://sir.upc.edu/projects/kautham/videos/IFAC2017.mp4

it satisfies all the constraints (such as temporal constraints,
kinodynamic and physics-based constraints) that are imposed
by κ and discarded otherwise.

The INFERENCE function updates the instantiated knowledge
with the manipulation constraints that are valid for Enew. Up-
dateHighLevelState updates the high-level state based on the
result of the low-level state and UpdateTree updates the tree-
data structure. The GetAutomatonState function determines the
state of the automaton and if it is the accepting state of Aψ , the
RetrieveTrajectory function returns the continuous trajectory
Traj such that tr(Traj) |= φ.

5. RESULTS AND DISCUSSION

The physics-based LTL motion planning framework (depicted
in Fig. 1) is implemented within The Kautham Project (Rosell
et al., 2014) that is a motion planning framework that mainly
uses planers from the OMPL (Şucan et al., 2012). For the
current proposal a variant of the LTL has been implemented,
and the Open Dynamic Engine has been used for the state prop-
agation. The abstract knowledge K is implemented (in term of
OWL ontologies) using the Protégé editor. Instantiated knowl-
edge is defined by applying the prolog-based reasoning process,
it uses predicates (functions) defined in Knowrob (Tenorth and
Beetz, 2009), which is a knowledge processing framework for
robots, to access the information from K. The communication
between the modules is performed using ROS (Quigley et al.,
2009).

The simulation setup consists of a robot (green sphere),
constraint-oriented movable bodies (blue cubes), and fixed bod-
ies (red walls). There are two scenarios presented in Fig. 3.
In the first scenario, it is assumed that all the propositional
regions are surrounded by objects (fixed or movable) such that
no collision-free trajectory exists to visit each of these regions.
It represents different rooms that robot has to visit but, in order
to enter each room, the robot has to interact with the body
blocking the entrance. The propositional regions {π1 . . . π4},
are shown as yellow rectangles. The temporal goal is defined
by the LTL formula φ = ♦(π1 ∧ ♦(π2 ∧ ♦(π3 ∨ π4))) that is:
visit π1, π2 and then π3 or π4 The region associated with
π3 is surrounded with Bfixed and therefore, the reasoning pro-
cess marks π3 as invalid (it is not accessible by the robot).
Since it has a disjunction relation with the other proposi-
tions, the simplification process will simplify the formula to
ψ = ♦(π1 ∧ ♦(π2 ∧ ♦(π4))). Since the length of the first body
is greater than the entrance, at its current location its manipu-

lation region along the x-axis of the world frame is occupied
with the walls. Therefore, the reasoning process will change the
status of the body from freely-movable to constraint-oriented
movable, and only allow the robot to push it along the y-axis.
If after pushing the body, all the manipulation regions become
free, the INFERENCE function will change the type of B1

co to
B1

free. The similar process is applied for B2
co and B3

co.

The temporal goal for the second scenario is described as
φ = ♦(π1 ∧ ♦(π3 ∧ ♦(π2 ∧ ♦(π4)))). That is, visit π1, π3, π2

and π4 consecutively. The propositional regions associated to
π1 and π3 are occupied by B1

free and B2
free respectively.

Therefore, in order to visit π1 (without prior being on π2 or
π4), the robot must push B1

free along the x-axis or −y-axis
of the world frame. If it pushes B1

free along the x-axis then
it ends occupying the manipulation region of B2

free that is
along y-axis and hence the reasoning process will deactivate the
mRegion along the −y-axis and change the status of the body
to constraint-oriented movable. The same reasoning process is
repeated for the second body, i.e. The INFERENCE function will
update the types of these bodies to B1

co and B2
co. To visit π3,

B2
co can only be pushed along the −x-axis. After visiting π3

the types of the bodies will be restored to Bfree and the task can
continue.

These two examples show that the proposed approach is able,
on the one hand, to deal with movable objects that may be
obstructing the solution path (changing if necessary the way
the robot has to interact with them) and, on the other hand, is
able to simplify a formula if part of it is non-feasible.

We tested both scenarios with and without instantiated knowl-
edge. The simulation was performed on an Intel Core i7-4500U
1.80GHz CPU with 16 GB memory. For the first scene, the
success rate of simple physics-based LTL planner was 30% for
10 runs (maximum allowed time was 300 seconds) whereas the
success rate of the proposed approach was 80%. The simple
physics-based LTL approach has an average planning time of
230 seconds. In contrast, the proposed approach computes the
solution in 46.4 seconds (average of 10 runs).

For the second scenario, the success rate of the proposed ap-
proach and the simple physics-based approach were 100%. But,
in the case of the proposed approach the quality of the solu-
tion was better, it avoids the unnecessary interactions between
the robot and the objects and move the objects only when it
is necessary. Regarding planning time, the proposed approach
computes the solution in 2.1 seconds (average of 10 runs) and
simple physics-based planning approach takes 23.8 seconds.

6. CONCLUSIONS

This paper has proposed the integration of LTL planning within
the framework of ontological physics-based motion planning in
order to provide robustness and autonomy for handling com-
plex temporal goals in a realistic way. Moreover, a simplifica-
tion process of the LTL formula is proposed, according to the
validity or not of the goals to be satisfied and the logical opera-
tors involved. The proposed approach has been validated using
simulation examples in which some of the propositional regions
are occupied with objects or the way to the propositional region
is blocked with objects that the robot has to push away, if
possible, in order to visit the regions. The results shows that
the integration of knowledge makes the planner more efficient
and enhance the quality of the solution.
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