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RESUM

Mitjangant el m&tode de Monte-Carlo s'ha dissenyat
un programa de Simulacid per descriure l'evolucid
d'un edosistema sotmé&s a uns lligams energétics.
Els primers resultats d'aplicacid a un cas senzill
ens donen:una bona aproximacid per relacionar el
comportament individual dels components i el compor
tament global de tot l'ecosistema, estant agquest
Gltim, d'acord amb el seu model deterministic.
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ABSTRACT.- A Monte Carlo computer simulation is designed in order to descri-
be the evolution of an ecosystem under imposed environmental conditions of
energy. Some preliminar results of a simple situation show a suggestive mat-
ching between the detailed random behaviours of individuals and a global
deterministic model. This fact may provide a new‘insight into the understan-

ding and control of biomass production processes.

1.- INTRODUCTION.- Consider the state of an ecosystem by the space-time dis-

tributions of the ecological occupation numbers, namely

ny = nj(r , t) j=1, 2, cee, M (1)

where nj is the number of individuals of species j, T is the spatial location
and t is time. Two main lines of reasoning may be adopted in order to derive
such a description. The first procedure lyies on the statement of some mathe-
matical models in the form of differential equations which inéegration

should provide equation (1) or, at the stationary case, by postulating cer-
tain global variational principles. This is the case of the well known Lotka-
Volterra equations, the logistic models of growth or certain biomass distri-

bution functions (Lurié et al. 1983 a,b). A second procedure consists in the

t To whom correspondence should be addresed.
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direct simulation of whatever happens to each individual "living" in the
ecosystem concerning all the physically relevant effects, i.e. motion, nu-
trition, reproduction and life time. The aim of this work is to compare both
approaches for a simple idealized situation. We procede in this way encoura-
ged by the new insights obtained in HMolecular Dynamics (Alder and Wainwright
1959, Rahman 1964, Verlet 1967) where the macroscopic world of the thermodi-
namical models of liquids is explored versus the microscopic world which is

governed by the specific intermolecular potentials of particles.

As noted before, we shall represent the state of the ecosystem by a po-
pulation of individuals classified in a number m of possible species. We do
not take here the concept of species in the common genetic sense, but in a
rather physical meaning: a species is a class of biomass value. More preci-
sely, two individuals occupy the'same species if they enter in the same

-preassigned- biomass interval.

In Section 2 we show a Monte Carlo computer simulation designed in or-
der to describe the ecosystem from the detailed point of view, that is, fo-
llowing the individual interactions for a simple idealized case. In Section 3
we develop a global deterministic model designed in order to describe the
same phenomenon with an overall treatment. Finally, in Section 4, hoth re-

sults are reported and discussed.

2. -MONTE CARLO SIMULATION.- [t has been shown in Physics that
the microscopic simulation of matter is available using a low population of
molecules (Nnalos). The programm that we are proposing for the ecological
case is able o simulate in principle a systems of about 100,000 individuals
owing to ten species. In Lhe preliminar version of the programm we consider
the situation in which all individuals feed themselves from the same substra-
te, a set of nourrishing particles that we shall call ‘'nutritons''. Each spe-
cies is characterized by its mean biomass and our working hypothesis is to
accept some general properties associated to this magnitude. That is to say,
we shall assume the following parameters to be specific of each class of
biomass: the reproduction rate, the nourrishing rate, the maximum value of
life time, the maximum consumption rate of nutrit_ons and the spatial area

of influence (concerning motion or Lhe available amount of nutriq_pns).



Moreover, two basic ideas used in Physics for the microscopic simula-
tions of matter (Hansen and McDonald 1976, Girdé et al. 1980) are incorpora-
ted to our simulation, namely: a) the periodic boundary conditions and b) the
cellular grid-like structure. The former avoids the boundary effects in the
system. In fact, it enables to consider the simulated spatial area as a good
representation of an indefinite large ecosystem. Space is supposed to be
divided in squares célls. The central-cell ~the cell under consideration- is
in contact with eight identical cells (true copies of the central cell)
through completely transparent walls (Fig. 1). In other words, when one in-
dividual leaves the central cell then the corresponding image enters through

the opposite wall. Walls are therefore shockless spatial limits.

The second.idea, the cellular method, is one of the time honored tools
in Molecular Dynamics (Giré et al. 1979), where the time-saving or efficiency -
of the calculus is very important for the viability of the simulation. The
cellular method for our purposes in Ecology is a natural application, since
we assume that the localization of an individual is completely determined
by the occupation of a certain subcell, one of the identical squares in
which the central cell is subdivided (Fig. 1). The cellular method is based
on the so called interaction table, a matrix that states the correspondence
between each subcell and the surrounding subcells that are available accor-

ding to the spatial area of influence mentioned before.

To sum up, the simulation of the time evolution of the ecosystem works
as follows. It starts with an initial configuration created by the random
location of each individual in a subcell and by assigning -also at random- a
biomass and an age to each individual from the available ranges of values.
The programm follows then each individual taking all eventual "living"
efferts into account: motion, nourrishement, reproduction and death. All this
effects are simulated accordingly to the specific properties of each class
of biomass and using the creation of random numbers in order to take the fi-
nal decision for motion of each individual. Priority for nutriton feeding of
individuals is also decided at random. Once this process is completed for
the whole population occupying the central cell a new configuration is crea-
ted. And so on. Figure 2 shows the flow chart of this programm -the Barcelo-
nagramm- a simulator of the time evolution of an idealized ecosystem in a

plane surface.
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As a preliminar simulation we shall consicder the simplest case, that is
to say, one single species growing under a constant inflow of nutritons. We
shall call this, briefly, the SN case.

3.- DETERMINISTIC POPULATION EQUATIONS.- We begin by representing the dyna-
mics of a community of N species by a set of deterministic differential

equations

n, = fi(nl, RN RN cl,...cj,...) (2)

where the ni's are species abundances and the cj's are parameters of the
system that depend on the environment and the biology of the component spe-
cies. We look for a particular form of equation (2) in order to describe the
simple idealized case (SN): one single species that grows with a population
of nutritons that are supplied at constant rate into the system. A whole
spectrum of models can be recognized in the literature which ranges from the
descriptive, empirical type to the general form. Using Holling's (1966)
terminology we look for a ''tactical" model, that is; a model that is desig-
ned to answer a specific question rather than a '"strategic" model that

would be devoted to examine general ecological principles. Let us therefore
state for the SN case the mass-balance equations for the number of indivi-

duals n and for the number of nutritons s in the form:

n

( f(n,s) - g(n,s) ) n + R (3)

S

-vin,s)'n + Rs (4)

where f(n,s) and g(n,s) are the nafality and mortality functions of the spe-
cies, the R's are the sums of inflows and outflows and v(n,s) is the inten-
sity of nutritons consumption. Equations (3,4) represent in fact one parti-
cular case of the general producers-—consumers equations for an ecological
community (Svirezhev and Logofet 1983). Some simple considerations 'from the

global point of view yield an explicit model for the SN case.

We first assume Rn=0. This condition is equivalent, as it was in the
computer simulation, to a dynamic equilibrium between inmigrants and emigrants
individuals. On the other hand we take Rs= k4, a constant external supply of

nutritons. In addition we state g(n,s)= k the constant natural rate of death o(

lt
the species, and we take the species' functional response f(n,s) to the mean
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nutriton population density to be a linear function of the number of availa-
ble nutritons per head of the population, namely f(n,s) = ka(s/n). In the
Monte Carlo simulation this assumption obviously represents that in each
subcell i the number of individuals n, have Si/ni available nutritons per
unit time and this density is equal to s/n in the averaged distribution of
the population considered here by the deterministic mo&el. The domain of va-
lity of this term is, of course, under a certain saturation value for the

nutritons, that is to say, as long as (s/n) is a limitating factor of growth.

On the other hand, v(n,s) obviously represents the amount of nutritons

which one individual consumes in a unit time and we shall assume v(n,s)= k3,
a characteristic constant of the species voracity. Equations (3,4) read now:

n

-kln + kzs | (5)

-k3n + k4 (6)

for n, s, k k being positive. The population adapts itself to

1' Kar Kao Ky
the external constraints n(™e) = (k4/k3) following the typical transitory
evolution of a damped oscillator subjected to an external constant force.
Indeed, by eliminating s by substituting equation (6) into the derivative
of equation (5) we may rewrite both equations in the form

n + kln +kn= ko (7)

where k = k k >0 and k. =k k > 0. Equation (7) has a well known analytic

0
solution dependlng on the condltlon k2 % 4k:
a) If 4k)>k the trend of the populatlon shows damped oscillaticns when

approachlng to the stationary state
-\t
n(t) = A e cos (Wt +8) + n(eo) (8)

where Y = k1/2 , w=(k < (k1/2)2)l/2and where the constants A and & de-
pend on the initial conditions, i.e. quantity n(0) and quality n(0) of the
initial population.

b) If 4k<<k§ the population approaches aperiodically the same final statio-

nary state value n(o9)

n(t) = c e Wt L o e Bt L (g (9)

1/2

1/2
where Y =(k;/2) + ( (k1/2)2 - k) and Y, = (k,/2) - ( (k1/2_)2- Sk



and where C and C' depend on the initial conditions.
c) 4k = ki corresponds to the critical behaviour between the overdamped ca-

se a) and the underdamped case b), namely

a(t) = (C + C't) e~V T 4 n(eo) (10)

These solutions remember, if n(0)< n(=2¢), the logistic sigma-like curve to
the final state n(=®); in particular, the overdamped situation shows the sa-
me qualitative behaviour predicted by the Lotka-Volterra equations for the
parasite-hosts population cycles in whose a cross term of the type (k-n's)

is included.

In the next Section we fit these solutions to the output data of the

Monte Carlo simulation for some fixed initial and external conditions.

4.~ RESULTS AND DISCUSSION.- The matching between the detailed and the
overall treatments expounded in the preceding Sections is explored by the
very computer programm. The data analysis element attached to the data bank
of Monte Carlo simulation has available a Gradient-expansion least-squares
fit for the analytical solutions of equation (7) (Bevington 1969). This me-

othod minimizes the goodness of fit criterion fX?defined as

2
X=Z\yi\'1(yi - y(xi))2 (11)

where the yi's are provided by the data bank of the simulation and y(xi) are

the corresponding values predicted by the deterministic model.

The preliminary results for the SN case are indeed encouraging. First,
the Barcelonagramm provides, as predicted by the mathematical model, an
approach to the externally imposed stationary state, that may be an aperio-
dic damping (a tipical sigma-~like curve) or that of damped oscillations,
accordingly to the specific properties of the species under consideration.
The latter appears if the nutrition efficiency in transforming nutritons int
biomass is favourised versus the species'natural death rate. A consistency
check is easily performed by observing the effect of the shifting of one be-
haviour to the other in both descriptions if one changes accordingly the
internal laws in the computer simulation or the appropiate constants in the

deterministic model.

(o]
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Figure 3, for example. exhibites the best fit between both approaches
(in the conditions detailed in the figure caption) with a 1K2= 1.7 for an
evolution of t = 250 time intervals. Further consistency checks may be done
by changing some Monte Carlo parameters and observing the effect of such va-
riations concerning the constants characterizing the fit ted analjtical solu-
tion. This is shown in Table I. The first three columns correspond to para-
meters of the detailed treatment, namely, the initial amount of individuals
n(0), the constant input flow of nutritons ¢> and the maximum.time that indi-
viduals can live & . The other columns correspond to the four constants de-
10 Ko Ky
and n(=9)= k4/k3. Table I-A proves that a change of the initial conditions

termining the best analytic fit ( Xz is always <2.0), that is: k

keeps the solution invariable; only the constants A and € of equation (8)
are affected. Table I-B shows the same result if one varyies the external
constraint ¢ , except, logically, for n(o9). Finally, the change_of the life
time @ -an internal parameter of behaviour- provides, as shown in Table I-C,

new solutions that vary accordingly.

The Monte Carlo simulation works therefore satisfactorily with a popu-
lation of about 10,000 individuals for the SN case and provides the necessary
connection in order to identify the constants appearing in deterministic mo-
-dels in terms of the detailed-random behaviours. This kind of simulation is
then a tool to be considered for further generalizations. It is in these mo-
re complex systems where such a method would be actually of relevant appli-
cation. The stability of ecosystems can be searched, for example, in many in-
teracting species system for a wide range of energetic conditions, such as
space-time depending sorrounding constraints. Some further new results will
be reported soon, but let us do some comments on the method proposed in this

note.

The Monte Carlo simulation takes the role of the experimental observa-
tions with perhaps the same handicap that in the case of the Molecular Dyna-
mics, that is to say, a less credibility concerning what actually is happe-
ning in nature, but it has nevertheless the same interesting list of advan-
tages. Simulations replace indeed adventageously the experiments in complex
ecosystems for in the latter the control of the external constraints is al-
most impossible and the very observations are highly difficult to be recor-
ded with a certain fiability. The double view is specially interesting to be

applied in the neighbourhcod of critical situations (eventual bifurcations

-7-
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points predicted by the mathematical models) in order to test the sensibility
of a many species ecosystem in front of internal or environmental fluctuations,
a central problem regarding the concepts of biological adaptation versus in-

ternal or external noises.

Up to now we have,for instance, realized with the Barceloﬁagramm the
critical nature of the values range of parameters which allows the stabiliza-
tion of two species competing for a constant input of nutritons. Another re-
levant point concerns the biomass distribution of individuals (diffefent spe-
cies) at the stationary state predicted by some deterministic models (Lurié
et al. 1983 a,b). The Monte Carlo simulation provides a tool in order to
search the kind of individual interaction$ that are consistent with the natu-
ral observations or with the predictions of such models; the discussion of
such interactions being relevant for the understanding and controlling of
biomass production processes. In particular, such a technique may provide,
we believe, the optimization of certain parameters for use in managing real

natural or man-made ecosystems.

LITERATURE
Alder, B.J. and T.E. Wainwright. 1959. “Studies in Molecular Dynamics."
J. Chem. Phys. 31, 459-466.
Bevington, P.R. 1969. '"Data Reduction and Error Analysis for the Physical
Sciences." p.235, New York: Mc. Graw Hill.
Gird, A., J.M. Gonzdlez and V. Torra. 1979. "A time-saving method in Molecu-
lar Dynamics." An. Fis. 75, 154-158.
Gird, A., J.M. Gonzélez, J.A. Padré, V.Torra. 1980. "The structure of the
liquid lead at 670 K through Molecular Dynamics." J. Chem. Phys.73, 2970-2972.
Hansen, J.P. and I.R.McDonald. 1976. "Theory of Simple Liquids." p.47.
London: Academic Press.
Holling, C.S. 1966. "The Strategy of Building Models of Complex Ecological
Systems" Systems Analysis in Ecology, 195-214. Ed. K.E.F. Watt. New
York: Academic Press.
Lurié, D. and J. Wagensberg. 1983 a. '"On Biomass Diversity in Ecology"
Bull. Math. Biol. 45, 287-293.
, J. Valls and J. Wagensberg. 1983 b. "Thermodynamic approach to Bio-
mass Distribution in Ecological Systems" Bull. Math. Biol. 45, 869-872.



-9~

Rahman, A. 1964. "Correlations in the Motion of Atoms in Liquid Argon. I. Ge-
neral Method." Phys. Rev. A. 136, 405-411.

Svirezhev, Yu.M. and D.0. Logofet. 1983. "Stabjility of Biological Communities"
p. 116; Moscow: Mir Publishers.

Verlet, L. 1967. "Computer "Experiments" on Classical Fluids, I. Thermodyna—_

mical Properties of Lennard-Jones Molecules" Phys. Rev. l§2' 98-107.



Hat-

et

i
L1 lo)

N

T

1

s

+

s

&
.
|

4T
DOl

= __I_ __

o

F_}
1o,

FIGURE 1

=10~



DATA -
INPUT

Y

st b, - —

- - — — s

=11-

SYSTEM . CELLULAR
DESCRIPTION ' STRUCTURE
L 4
Y .
INITTIAL INTERACTION
CONFIGURAT ION MATRIX
¥ ¥ T
RANDOM WOTION INPUT
AND < OF
NUTRITION NUTRITIONS
CHARACTERISTICS
<REPRODUCTION? OF

NEW INDIVIDUALS

FIGURE 2

REMOVAL
Y

DEATH? >- =Sy OF Y

K///, INDIVIDUALS .
0

v
'

NEW DATA| DATA

CONFIGURATION sank| ~ |ANALYSIS

L

END



OF IVIiC S

JmMma

.t car—— S . h e . e

O e O UG N e

e ame

e w— s

=12~

FIGURE

3

|
150
TIME STEPS




-13-

(@]

MONTE CARLO SIMULATION DETERMINISTIC MODEL

n(0) ® [Z Ky Ky ky n( o)
500 1000 50 . 0540 . 0068 .503 1988
1000 1000 50 .0530 .0074 . 502 1993
2000 1000 50 .0540 .0070 . 500 2001
3Q00 1060 50 .0538 .0069 .496 2015
4000 iOOO SQ .0608 .0071 .495- 2021
500 1000 50 .0840 .0068 . 503 1988
500 1500 50 B .0484 i .0065 .504 2977
500 2000 S50 .0498 .0067 .503 3975
500 2500 50 .0490 .0070 . 502 4985
500 3000 50 . 0462 .0070 .503 5969
500 1000 30 .1066 .0130 .860 1163
500 1000 40 .0672 .0087 . 640 1562
500 1000 50 .0540 .0068 . 503 1988
500 1000 60 .0428 .0059 .415 2412
500 1000 80 .0316 .0043 .307 3258

TABLE

I




FIGURE CAPTIONS

Figure 1.- Periodic boundary conditions used in the computer simulation;

Figure 2.-

Figure 3.-

Table

I.-

dashed lines represent the subcellular structure.

Flow-Chart of the Monte Carlo Simulation for an Ecosystem.

Time evolution of individuals for the SN case. The continuous
line represents the computer simulation with the following
parameters: n(0) = 500, € = 50, § = 3000. The dashed line is
the best deterministic solution fitted with 7{?: 1.7,

k.= .0462, k, = .0070, k.= .503 and n(=©)= 5969.

1 2 3

Consistency check between the Monte Carlo simulation and the

deterministic model.
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