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ABSTRACT

We investigate the propagation of intense light beams in bulk quadratic nonlinear crystals under
conditions for second-harmonic generation. We show numerically that input light beams with a spiral
phase front dislocation self-split in the crystal into several spatial solitons. For input fundamental and
its second harmonic gaussian beams the latter with a phase dislocation, the number and pattern of
output solitons can be controlled by the material and wave parameters involved, and in particular by
the input light intensity and by the topological charge of the dislocation. In second harmonic
generation processes with a phase dislocation in the input fundamental beam the output pattern of the
solitons may be controlled by a low-intensity double frequency gaussian beam.

Key words: Vortices, cascading, splitting, soliton, quadratic nonlinear.
RESUMEN

En este articulo se investiga la propagacidn de haces de luz intensos en medios homogéneos con
respuesta no lineal cuadratica, bajo condiciones de generacién del segundo arménico. Se muestra
numéricamente que haces de entrada con una dislocacién en espiral del frente de onda se rompen en
el medio no lineal para formar varios solitones espaciales. El niimero y caracteristicas de los solitones
a la salida cuando se inyectan haces gaussianos tanto a frecuencia fundamental como a su segundo
armonico, este tltimo con dislocacién de fase, pueden controlarse mediante parametros tipicos del
material y de las ondas que intervienen y en particular mediante la intensidad de la potencia de
entrada y la carga topolégica de la dislocacion. Cuando la dislocacion de fase es contenida en el haz
fundamental, puede usarse como control un haz gaussiano de baja intensidad a frecuencia doble.
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1. INTRODUCTION

Light propagation in quadratic nonlinear media exhibits a fascinating variety of phenomena [1],
whose implications go far beyond conventional frequency conversion applications. One important
example is the formation of spatial solitons (more properly, solitary waves) [2]. Solitons exist in
a wide variety of material and input light conditions in both bulk crystals and planar waveguides [3,4],
and they have been observed experimentally by Torruellas et. al. [5], and Schiek et. al [6].

Under conditions for second-harmonic generation, the solitons form by mutual trapping of the
fundamental and second harmonic beams. The existence of these solitons along with their associated
propagation dynamics hold promise for different applications, in particular for the realization of
all-optical operations such as beam steering and scanning, and switching [7,8]. By and large, the
principle of operation leading to such effects involves the control of the location of the output
light beams that exit the quadratic material. Such control can be accomplished in a variety of ways
by exploiting the mutual dragging of the two waves forming the solitons. In the geometries
studied to date the key ingredient for soliton control is either the existence of Poynting vector
beam walk-off between the fundamental and second harmonic beams, and/or the use of tilted
input light beams that carry non-vanishing transverse momentumn.

In this paper we explore the dynamical regime, in which the input light carries angular
momentum associated with the field envelopes [9]. Our aim is to show that it offers new
opportunities for the control of light by light. Naturally, there are many interesting situations and
here we have selected two representative cases that capture many of the essential features and that
hold promise for experimental demonstration.

Specifically, as a first case we consider the beam evolution in bulk crystals when both the
fundamental and second harmonic input beams are Gaussian, but the second harmonic beam
contains a vortex nested in its center. We show numerically that depending on the input light
conditions, the beams either form a single soliton or they self-split into several solitons. We
discuss the origin of the splitting and how the number of output solitons depends on the input light
intensities and on the topological charge of the phase dislocation. We briefly study the effects
introduced by a wavevector mismatch and the presence of Poynting vector walk-off.

The second case is second harmonic generation, i.e. the input consists only of a fundamental
beam with a phase dislocation. In this case the process of second harmonic generation becomes
unstable against azimuthal modulations. Numerical simulations were carried out for initial conditions
including a small random noisy field for the study of this effect.

Usually beams with a phase dislocation are referred to as an optical vortices. Optical vortices
and their associated dynamics in both linear and cubic nonlinear media have been investigated by
several authors in the last few years [10-14], and they have been shown to display interesting
properties with potential applications. In particular, Tikhonenko and co-workers observed
experimentally the break-up of a modulationally unstable vortex into bright solitons in saturable
self-focusing cubic nonlinear media [14], a phenomenon somehow similar to the splitting that we
study here.

2. OPTICAL VORTEX: FIELD DISTRIBUTION AND METHODS OF GENERATION

An optical vortex is a spiral dislocation of the phase-front that has a helical phase-ramp around
a phase singularity. Laguerre-Gaussian beams, which include a exp(im¢) azimuthal dependence in
the field distribution are of special interest because they are rather easily generated experimentally.
The field of a Laguerre-Gaussian beam propagating along the z-axis is given by
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Ficure 9. Fundamental beam after propagation up to & =10 by SHG with an initial amplitude and A = 6 for
two realizations of the noise term.

Figure 10. Interference fringes for the fundamental beam and double frequency beam in Figure 9.

£

where R is the random complex number sequence. The random sequence is assumed to have zero
average, and a uniform distribution in the range [-1,1]. In our experiments we used a scale factor
that gives a variance of 10-2, The random sequence was generated by a standard pseudo-random
number generator [19]. The noise simulates fluctuations in the input beam that always exist by
experimental realization of the SHG and ‘seeds’ the azimuthal modulational instability.

We did numerical simulations for several realizations of the noise term. In all cases three
soliton were observed at £ =10 (Fig. 9). Notice that in this case we observed a generation of the
topological defects 2m in the second harmonic field. (Fig. 10).

5. CONCLUSIONS

To summarize, we have shown numerically that focused light beams with a spiral phase
dislocation propagating in bulk quadratic nonlinear crystals self-split into several spatial solitons.
The self-splitting process occurs in a wide variety of conditions, including second-harmonic
generation settings that involve ring-shaped input beams. Here we presented simple situations and
discussed the fact that the number and pattern of output solitons can be controlled by the material
and wave parameters involved, and in particular by the input light intensity and by the topological
charge of the dislocation. The self-splitting process that we predict requires experimental features
similar to the formation of single solitons [5,8], hence it holds promise for experimental
demonstration.

This work has been supported by the Direccio General de Recerca de la Generalitat de
Catalunya, by the Universitat Politecnica de Catalunya and by the Spanish Government under
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Ficuke 8. Same as in Fig. 3(b), but at positive and negative wavevector mismatch. (a): f=3; (b): f=-3.In
both cases m=1,A=3, B=4, and 6=0.

raised from the Figures is that they clearly confirm the robustness of the self-splitting process, as
it happens over a range of conditions producing a reasonably uniform output pattern. Thus, the
effect holds promise for experimental exploration.

The dynamics and result of the beam splitting also depend on the material and linear wave
propagation conditions, namely the wavevector mismatch and Poynting vector walk-off between
the interacting beams. as so does the formation of solitons in the simpler case of cylindrically
symmetric beams [3]. In particular, the soliton properties themselves, e.g. the fraction of power
carried by each of the two waves forming the soliton, are different at positive and negative
wavevector mismatch. All this impacts strongly the details of the beam splitting process and a
comprehensive and detailed study shall be published in the future, but under appropriate input
light conditions the number of output solitons is also given by the results obtained at phase-
matching and described above. As a representative example, Fig. 8 shows the output solitons
obtained at 3 = £3, for the same conditions as in Fig. 2(b).

Beam splitting into several solitons similar to the phenomenon that we predict here also occurs
when only a fundamental beam with a variety of ring-like beam shapes, including phase dislocations
nested in a Gaussian, higher-order Laguerre-Gaussian beams or general laser doughnut modes, are
considered as the input light conditions. Notice that this is an important point from a practical
point of view, because the experimental set-up required is simpler than the situation that we have
reported here. In such case the beams self-split because of the azimuthal modulational instability
of the flat top of the ring-shaped beams [17], a process similar to the break-up of analogous beams
in saturable cubic nonlinear media [14,18]. Therefore, this process has both, a different interpretation
and a different dynamics than the splitting that we studied here and thus requires a separate
detailed investigation.

Next we consider the above situation, namely we assume that only a single-charged vortex
beam at the fundamental frequency is launched into the crystal. In this case, the ring-shaped
beams at both @ and 2@ are modulationally unstable, thus to ‘seed’ the instability we add a small,
noisy field to the input conditions. We suppose that the noise induces both amplitude and phase
fluctuations, so that the input field is

a; (=0, rL) =ArLexp(ip) cxp(—rffwz)(] +R)

ay(ryr,,§=0)=0 (0)
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Ficure 5. Same as in Fig. 5, but for different input conditions. Here, in all casesm =1 and B=4. In (a): A =2,
inrA=3,in(chA=4, andin (d): A = 5.
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FIGURE 6. Same as in Fig. 5, but for different input conditions. Here, in all casesm=2and A =3.In (a): B=1,
in(b): B=2,in(c): B=3, and in (d): B =4.
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Fioure 7. Same as in Fig. 5, but for different input conditions. Here, in all cases m =2 and B=2. In (a): A = 1,
in(b:xA=2in(crA=3andin (d): A =4.
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they tend to be either radiated or transferred to the regions where a soliton is formed. Of course,
the actual beam evolution in either of the above regions depends on the light intensity. The
partition of the beam dynamics into separate azimuthal pieces is readily exposed by examining the
initial rate of power exchange between two cylindrically symmetrical, but out-of-phase input
beams. Writing the fields in the form e, = R,(rl) and a, = R,(rL) exp (id,), with R, , and ¢, being
real quantities, one obtains

dfz 2 . .
7 T 2 | RY R, sin (¢p)drL. ©)

By and large, in-phase input beams (i.e., having ¢, = 0) with similar amplitudes form solitons
much more easier than inputs with a phase difference of 7 [3]. Thus, in the case that we study here
in general solitons tend to form nearby the regions where the input beams are in-phase whereas
the portions of the beams that experience a T initial phase difference tend to spread. Also, the
beam evolution is not symmetric around ¢,= 0. In particular, according to (9), input beams with a
positive phase difference, say Io,|, start transferring power from the fundamental to the second
harmonic, whereas input beams with the same phase difference but with a negative value, i.e. —ld|,
start transferring power from the second harmonic to the fundamental. Therefore, a different
dynamics is generated at either side of ¢,= 0.

Naturally, the dynamics of the beam evolution depends a great deal on both, the total and the
relative input light intensities launched at each frequency. Figures 4-7 show the fundamental
beams at £ =10, for different representative input light intensities with fixed topological charges of
the phase-dislocation. In Figures 4 and 5 we set m = 1 and in Figures 6 and 7 we set m = 2. In
Figures 4 and 6 the intensity of the fundamental beam is kept fixed whereas the intensity of the
input second-harmonic beam varies, and viceversa for Figures 5 and 7. The plots show that, as
expected on physical grounds, the precise pattern of output solitons is sensitive to the input
intensities, mainly at the regime of lower input light intensities. For instance, in Figure 4(a) the
input power is not high enough to allow the dynamical formation of two solitons by the splitting
of the input beams, therefore the output pattern is clearly different than the output obtained in the
conditions in Figures 4(b)-(d). Nevertheless, for our present purposes the main conclusion to be

a) b) c) d)

Ficure 4. Fundamental beam after propagating up to & = 10 in a phase-matched configuration, for different
values of the input light intensities with a fixed value of the phase dislocation of the second-harmonic input
beam. In all cases m=1land A=3. In(a: B=2,in(b): B=3,in(c): B=4, and in (d): B=35.
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Fioure 3. Interference fringes obtained by illuminating the fundamental and second harmonic beams with a
plane wave tilted with relation to the propagation direction.

media: the addition of coherent fields induces splitting of a dislocation of charge m into Iml single
charge dislocations [12].

One salient point of Fig. 3 is that, for the specific conditions chosen, the number of solitons
formed is equal to twice the charge of the vortex. This conclusion also holds for higher values of
m than those shown here, provided that the input light intensity is high enough so that the 2m
solitons can be formed dynamically by the process of beam splitting. This requires that the input
light intensity is well above the threshold for the existence of 2m solitons, because the dynamics
of the beam evolution produces dispersive waves that take energy away.

The self-splitting of the beams shown is due to the different dynamics experienced by the
portions of the beams located at different azimuthal regions, as follows. Because of the helical
phase-front of the second-harmonic input beam, the portions of the two interacting, fundamental
and second-harmonic beams located in the different azimuthal positions experience a different
phase relation and therefore undergo different dynamics. As a consequence, the beams split and,
in those azimuthal regions where the particular initial dynamics favours the mutual trapping of the
beams a soliton is formed. Otherwise, the corresponding portions of the beams tend to spread, and
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Ficuke 2. Fundamental beams after propagating up to & = 12, in a phase-matched configuration (£ = (), for
different values of the charge of the phase dislocation of the second-harmonic input beam. The features
shown are similar for the existing second-harmonic beam and have not been plotted. (a): m =0, A = 3,B=
S5:(bym=1,A=3,B=4:(ckm=-1,A=3,B=4,(d: m=2,A=3, B=2 Inall cases & =0.

value of the various parameters involved, and in particular on the input light intensity, as we shall
show and discuss shortly.

In the absence of the phase dislocation, the beams mutually trap and form one soliton as shown
in Fig. 3(a). However, Figs. 3(b)-(d) show that when m # 0, the helical phase-front of the second-
harmonic input produces the splitting of the beams into several solitons. We have verified that the
fraction of the total Hamiltonian carried by each outgoing soliton amounts to a negative value, in
agreement with the energy flow-Hamiltonian relation of the family of stationary soliton
solutions [3]. The solitons emerge in different directions carrying different individual transverse
momenta. Recall that the total transverse momentum 7 is conserved and that some fraction of it is
in the form of radiation.

The total angular momentum L is also conserved. Therefore, either the pattern of output beams
rotates during propagation or the relative phases of the several output solitons have to be different
so that there is an azimuthally-asymmetric phase distribution. We observed that under most
conditions studied, and in particular in all cases shown here, the latter is indeed the case. This fact
might be partially responsible of the mutual repulsion that makes adjacent solitons to separate
from each other.

The pattern of the interference fringes indicate no phase singularity in the fundamental beam
and dislocations with a charge m = 1, 2 or 3 in the input second harmonic beam, depending on the
charge of the initial vortex (Fig. 3). After some propagation distance a break-up of the defects
with m # 1 into single-charge defects with the same sign is observed in the second harmonic beam
while the fringes pattern for the fundamental beam remains practically unaltered. The break-up of
the topological charge in the case m > 1 may be explained by a known effect in cubic nonlinear
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For the right-hand-side of this equations to vanish in the presence of walk-off, the transverse

—= =
momentum of the second-harmonic beam 7, has to be parallel to 8, and such is the case when

input light beams with azimuthal symmetry or with a phase-front tilt are considered(7,8]. Otherwise,
as it is the situation that we study here, the total angular momentum is not conserved in the
presence of Poynting vector walk-off.

To analyze the evolution of charge at the phase singularity (i.e., the value of m) in the beams
of both frequencies, we studied the interference fringes arising by mixing the normalized calculated
fields at a given distance £ with a reference plane wave slightly tilted relative to the propagation
axis. The tilt is towards the x axis. The resulting intensity from such an interference is now

ayH(rL,,rl,) 2

int = ||‘1]1‘,2(T:sﬂ1)|+ exp (ik,rL)| (7)

where k, is the spatial frequency of the tilted plane wave used as reference. The value of k, is

chosen for each field distribution to have good spatial resolution. Thus, a phase singularity
appears as a dislocation, and a topological charge m is visually evaluated.

To monitor the formation and evolution of spatial solitons we calculated the Hamiltonian H,

the components of transverse momentum J, and J,, and the angular momentum L_relevant to a

particular solitary wave by using the fields in the vicinity of the given solitary wave.
4. NUMERICAL EXPERIMENTS

To investigate the effect of the angular momentum associated with azimuthal symmetry
breaking on the beam evolution, we performed series of numerical experiments solving eqgs. (2)
with a split-step Fourier algorithm and for a variety of input beam shapes and material conditions.
Next we present the results obtained by taking Gaussian input beams with a phase dislocation
nested in the second harmonic. We set,

a;(E=0,r)=A exp(—rflw%),

ay (=0, r1) = Br™ exp(img) exp(—riiw3), ®)

where @ is the azimuthal angle in cylindrical coordinates, the integer m is the topological charge
of the phase dislocation, and sgnfm) its chirality. In all the simulations presented in this paper we
set w, = w, = 2. Notice that the input beams (8) carry the angular momentum L = ml,, and that for
a given amplitude B the power carried by the second-harmonic beam, I, is different for each value
of Iml.

Our main goal is to elucidate the impact of the topological charge of the phase dislocation on
the beam evolution, and we begin by examining the case of phase-matching (5 = 0) in the absence
of Poynting vector walk-off (& = 0). Figure 2 shows the summary of the output of a series of
numerical experiments that display the main features of the beam evolution. The plots show the
fundamental beams at § =12, for different values of the charge of the vortex in the second-
harmonic input beam. The features of the second-harmonic fields are similar and thus not shown.
The amplitudes of the beams A and B have been taken to be well above threshold for single soliton
formation [3], and B has been chosen to yield similar values of I, regardless of the value of m. The
results shown in Figure 2 are representative of the effects that occur over a range of input light
conditions, but it is worth recalling that the precise pattern of output beams does depend on the

Petrov et al. 79 Opt. Pur. Apl.- Vol. 30-n°1 - 1997



Gaussian beam. Figure 1(b) shows the principle of this transformation. A Hermite-Gaussian mode
HG,, can be generated using a conventional laser if a crosswire is inserted into the laser cavity. To
produce a /2 phase shift a cylindrical lenses mode convertor may be used [16].

3. GOVERNING EQUATIONS
We consider cw light beams traveling in a medium with a large quadratic nonlinearity under

conditions for Type I second-harmonic generation. In the slowly-varying envelope approximation,
the beam evolution can be described by the reduced normalized equations [3].

’ aa r * 2
{55~ 7 Viai+ diayexp(-BE) =0,
el . g (2
i 28}2_ - g Via,-idd -V a,+ ai exp(iB&) =0, )

where a, and a, are the amplitudes of the fundamental and second-harmonic waves, r = -1, and
o = ky/k,. Here k, , are the linear wavenumbers at both frequencies. In all cases o.= 0.5, so we set
o.=-0.5. The parameter B is given by B = k,n2Ak, where Ak = 2k, - k,, is the wavevector mismatch
and 7 is a characteristic beam width. The parameter & accounts for the Poynting vector beam
walk-off that occurs in birefringent media when light propagation is not along the crystal optical
axes, and is given by 8 = k, np, p being the walk-off angle. Poynting vector walk-off is absent in
non-critical and typical quasi-phase-matching settings. Finally, in egs. (1) the transverse coordinates
are given in units of 11, and the scaled propagation coordinate is & = z/kn>2 A detailed discussion
of the impact of the above parameters on single soliton formation is given in References [3-8].

In the following we use three conserved quantities of the beam evolution, namely the beam
power or energy flow, the Hamiltonian and the transverse beam momentum, which are respectively
given by

I=1+L=]{IAR+|A,2} drl, (3)

FH=— %J {rivmlﬂ + 32 V1A, - BlAyI% + i % 8- (A,V1A%-A3V14))

+(AT?A, +AfA;)} drl, @

F #F 2 q § . % i
2=0,+9, :Ej{z(Aivm,—A[Vm]) +(A5V1A4,- A, VIA3) Jdrl, (5)

where we have defined A, = o, and A, = @, exp (-ifid).

Because we consider input conditions without azimuthal symmetry, we study the evolution of
the longitudinal component of the total angular momentum of the light beams given by

L=] [71x7’], drL, with 7 being the transverse beam momentum density in expression (5). In
z 2 Y P

the absence of Poynting vector walk-off, L is also a conserved quantity of the beam evolution.
When walk-off is present, one readily finds that

dL =
E = [5 X %]7
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, 20rL)? IrL)?
Lz)=Ar™ Lm( ) (— )
afrl,z) ri exp(im@) L7 7 exp e (1)

where r1 is the transverse radius-vector, L is the Laguerre polynomial, w is the beam width, A is
the beam amplitude, @ = tan-'(Im(rL)/Re(rL)) is the azimuthal angle and m is the topological
charge of the phase dislocation. We suppose in this study m =1 or 2, and p = 0 or p = 1 so that the
fields have cylindrical symmetry and have one or two nodes. The corresponding Laguerre

2lrl)? 2IrL?
polynomials are Lg}:L%:l;L}:Z— ;zi ;Lf=3— r,' :

These beams can be generated experimentally by appropriate phase masks or by the
transformation of Hermite-Gaussian modes with astigmatic optical components [15,16]. For
example, when the pattern showed in Figure 1(a) is illuminated with coherent light, the first
diffraction order produced has helical wave front with phase singularities that show up as defects
in the fringes pattern of the interference between this beam and a non collinear plane wave.

Another way to generate Laguerre-Gaussian beams with phase singularities uses the Hermite-
Gaussian output of a conventional laser and its transformation into the corresponding Laguerre-

a)

FiGUrg 1. a) Computer-generated zone plates with m = 1. b) The cylindrical lens mode convertor. If the input
HG,, mode is oriented at 45° with respect to the cylinder axis of lens the mode is converted into the LG',
mode. [See ref. 16 for details].
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