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ABSTRACT 

This research project presents an overview of the Lattice Boltzmann Method (LBM), 
an alternative numerical approach to conventional CFD. LBM has increased in 
popularity among the scientific community in recent years, due to its promising 
abilities. Namely, it claims to achieve the same level of accuracy as that of traditional 
CFD, while offering new benefits such as easy parallelization and the possibility of 
implementing complex and multiscale flows. Unlike conventional CFD which focuses 
on the numerical solution of the Navier Stokes Equations, the Lattice Boltzmann 
Method focuses on microscopic particle interactions to represent the macroscopic 
behaviour of the fluid. 
The aim of this project is to appraise the ability of the Lattice Boltzmann Method to 
accurately simulate incompressible flows and to analyse its accuracy performance 
and stability. This report presents the theoretical basis of this novel method, as well 
as a verification of its convergence results through some examples. These examples 
are implemented through an open-source code (Palabos). This project not only 
focuses on matching the LBM solutions with analytical or existing solutions, but it 
also focuses on studying the effect that the parameters of the model have on the 
results provided, on stability and on computational cost.  
The results and their analysis show that LBM is an accurate method for representing 
incompressible flows. The report also describes how to implement the Lattice 
Boltzmann Method and suggests some ways to continue the work further.  
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1. INTRODUCTION 

Computational Fluid Dynamics (CFD) traditionally has simulated flows by 
considering the fluid as a continuum model governed by the non-linear Navier Stokes 
equations, which are based on the conservation of macroscopic properties 
(momentum and mass). These equations are then discretized in space and time to 
obtain a numerical solution.  
However, in recent years, a new approach to solve flow problems in the field of CFD 
is increasing in popularity. That new approach is the Lattice Boltzmann Method 
(LBM). Just to illustrate this increase in popularity, scientific articles written between 
1950 and 1985 included the words “Lattice Boltzmann” 29,700 times, while articles 
between 1985 and 2017, 332,000 times (information from Google Scholar). It was 
firstly introduced by Ludwig Boltzmann in 1872, but it was not until the second half 
of the XX century and especially in the last twenty years that the scientific community 
has noticed the advantages that this model can produce. 
Instead of focusing on the macroscopic representation of the flow, LBM uses a 
microscopic representation of the flow, as well as a discretization in space and time. 
LBM is a model that works under the basic idea that a fluid is composed of interacting 
molecules that can be described by classical mechanics. The method reproduces 
the physics of the fluid by applying simple physical phenomena such as streaming in 
space and billiard-like collision interactions between microscopic particles (C.Sukop 
& T.Thorne, 2006).  
LBM has been proved to provide some computational advantages compared to 
traditional CFD. LBM can easily represent complex physical phenomena, ranging 
from multiphase flows to chemical interactions between the fluid and the 
surroundings. LBM is particularly suited for very efficient parallel processing, which 
considerably reduces computational cost. 
These advantages have increased the interest in Lattice Boltzmann Method in the 
last years. Theory behind LBM is well documented, for instance the book written by 
Succi (2001) provides a good up-to-date account of the LBM theory. Concerning 
LBM code, open-source code provided by Palabos offers an accurate 
implementation of LBM for incompressible flows.  
This project aims to compare the accuracy and performance of LBM to examine 
whether LBM is indeed a reasonable replacement for conventional CFD. Firstly, the 
basic theory of LBM is explained and secondly some real examples of flow 
simulations are tested to analyze results provided by LBM. Throughout this process, 
key aspects from LBM will be studied.   
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2. THEORY 

This is a brief summary of the basic elements of Lattice Boltzmann Method, for further 
information I refer to references (Succi, 2001), (Chen & D.Doolen, 1998) or (C.Sukop 
& T.Thorne, 2006). 

2.1 Boltzmann Equation 

LBM evolves from an equation proposed by Ludwig Boltzmann in 1872 known as the 
Boltzmann equation (BE). Therefore, it is important to understand the basic idea 
behind the Boltzmann equation to be able to comprehend how LBM works.  
Boltzmann equation focuses on the microscopic representation of the fluid to analyse 
its behaviour. As a fluid is composed by many particles, a statistical treatment is 
necessary to avoid massive number of calculations. That is the probability density 
function ƒ(!, #,t), which describes the probability of finding a particle around position 
! at time t with velocity #. Therefore, the sum of all the probability density function at 
one specific position and time will result in the total number of particles in that position 
and time. It is precisely that probability density function that is the main object of the 
Boltzmann equation and consequently of LBM.  
The Boltzmann equation describes the behaviour of ƒ(!, #,t) as a function of the 
microdynamic interactions, which refer to collisions between particles of the fluid  
(Succi, 2001). This equation is referred to as the Boltzmann equation and the basic 
ideas behind its development are described in the following.  
Assuming that there are no collisions between particles and that the flow evolves 
only due to its own velocity, the evolution of the distribution function ƒ(!, #,t) during 
an interval of time dt is  
 

$ ! + # · '(, # + )	+,-

.
· '(, t + dt = 	$	(	!, #, () , 

 

that is referred to as the streaming process. Assuming $	(	!, #, () is constant, a first-
order Taylor series expansion around (!, #, () leads to  
 

4
45		
+ # · 67 +

8	
9!(

:
· 6; · $	 	!, #, ( = 0 . 

 

However, equation (2) does not consider collisions that may occur between moving 
particles. Collisions taking particles in or out the streaming trajectory can be 
represented by adding a term, =[?],  on the right-hand side of equation (2): 
 

4
45		
+ # · 67 +

8	
9!(

:
· 6; · $	 	!, #, ( = =[?] . 

 

This collision term of equation (3) needs to represent how particles at same position 
change their velocities due to collision. Boltzmann made the following important 
assumptions: only binary collisions are considered, influence of container walls are 
not considered, influence of the external force is neglected when treating collisions 

(1) 

(2) 

(3) 
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and there is no relation between velocity and position of the molecule (known as 
molecular chaos) (Succi, 2001).  
Using these assumptions, Boltzmann proposed a collision operator as follows. Given 
two particles with relative speed A=v1-v2 (see Figure 1) and solid angle Ω (defined by 
the scattering angle X from Figure 1 and the azimuthal angle around collisional 
plane), the differential cross section is defined as the total number of particles with 
relative speed g and solid angle Ω.  

 
Figure 1 Scattering angle associated with a binary collision 

 

Those parameters represent the underlying particle dynamics of the collision. 
Therefore, the change in the probability distribution function due to collision is a 
function of those parameters, which is given by 
 

=[?] = 	 $CD · $ED		 − 		$C · $E · A · σ g, Ω · dΩ · d#E	 ,  
 

where ƒ1’ refers to the distribution function after collision, ƒ1 to the distribution function 
before collision and I A, J  to the differential cross section, which is the total number 
of particles with relative speed g and solid angle Ω.  

Substituting equation (4) in equation (3) leads to the Boltzmann equation, which 
takes the form  
 

4
45	
+ # · 67 +

8	
9!(

:
· 6; · $	 = 	 $CD · $ED		 − 		$C · $E · A · σ g, Ω · dΩ · d#E	, 

 

where the left-hand side refers to the streaming motion of particles, while the right-
hand side of the equation represents the effect of collisions between particles.  
 

2.2 BGK Lattice Boltzmann Method 

The Boltzmann equation is hard to solve by itself due to its continuum form and its 
complex non-linear collision operator. Many authors have proposed alternative forms 
to simplify the collision operator. The simplest and most effective one was proposed 
by Bhatnagar, Gross and Krook in 1954 (Bhatnagar et al., 1954). For instance, 
Palabos open-source code uses this version of Lattice Boltzmann Method.  
 

(4) 

(5) 
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2.2.1 BGK Lattice Boltzmann Equation 

Bhatnagar, Gross and Krook proposed in 1954 a collision operator for the Boltzmann 
Equation that consists of a relaxation of the probability distribution function towards 
a local equilibrium, that takes the form  
 

4
4-
+ # · 67 · $	 	!, #, ( = 	 C

K
· ($	 	!, #, ( − $LM	 	!, #, ( )	. 
 

External forces are not considered. This relaxation process can be interpreted 
physically as the tendency of the probability distribution function to approach its 
equilibrium state $LM	 	!, #, (  after a time N	(the specific value for the equilibrium 
function is discussed in the following sections). 

Equation (6) is discretized in space, velocity and time (variables that define	$) to 
obtain a numerical solution. Space is discretized by defining a lattice with cells of 
dimension ∆x. Time is discretized by defining a time step ∆t. The lattice speed is 
therefore given by #	 = ∆!/∆(. The direction of this velocity can also be discretized 
into a specific range (Q = 1…T) without modifying the solution. By doing this, the 
hydrodynamic moments of $	 	!, #, ( , which represent the physics of the flow, remain 
the same, since the moment integral can be evaluated exactly using a quadrature up 
to a certain order in the velocity space directions (Mei & Yu, 2002). By applying these 
discretizations, equation (6) evolves to   
 

				$U	 	!	 + 	#U · ∆(, ( + ∆( 	− 	$U	 	!	, ( = 	 Cτ · $U	 	!	, ( − $LMU	 	!	, ( , 			Q = 1…T. 
 

where $U	 	!	, ( = 	 $		 	!	, #U, ( ,  #U · ∆( = ∆! and W = N
∆(	. 

 

2.2.2 The equilibrium distribution function 

Determining the value of the equilibrium distribution function is important because it 
defines the behaviour of the model. This function is normally established as a 
truncated Taylor series expansion up to second order of the Maxwellian distribution 
function. The Maxwellian distribution function proposes a distribution probability for 
the particle speeds in idealized gases as  
 

$YZ7[LKK\Z] = ρ · (
1

2·`·a·b)
c
2 · 9(

−(#−d)2
a·b) , 

 

where D refers to the number of dimensions of the domain. To discretize equation 
(8) into the specific range of velocities (Q = 1…T), the distribution function is 
approximated as  
 

$YZ7[LKK\Z] = 	 eU · $LMU			; 									 eU = 1
UU

 

 

(6) 

(7) 

(8) 

(9) 
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where $LMU			are obtained via a Taylor series expansion of equation (8) up to second 
order, which using equations (9) leads to 
 

$U
LM = 	ρ · eU · 1 + ;g·h

ijk
+ (;g·h)k

E·ijl
− hk

E·ijk
	, 

 
where eU is a specific weight for each velocity equilibrium distribution function 
(equation (9)), mn	  the sound speed, #U the lattice velocity (∆x/∆t) and d the 
macroscopic speed of the flow.  
The weights eU are adjusted to recover the incompressible Navier-Stokes equations. 
A proof that LBGK satisfies Navier Stokes equations is developed in the article (Chen 
& D.Doolen, 1998). Depending on the choice of the discrete velocity space, weights 
eU  and mn	  take different values. (Qian, et al., 1992) proposed a whole family of 
solutions for specific discrete velocities and their eU  and mn	  values, by imposing 
conservation of mass, momentum and entropy. For instance, the case of 2 
dimensions and 9 velocity directions has the following eU and mn	  values: 

 

																	4 9 						Q = 0 

eU = 						 1 9 						Q = 1,2,3,4																				; 																mn = 1
3

   . 

																	1 36 				Q = 5,6,7,8   

 
Velocity discretization space takes the name of DnQm, meaning m velocities in a n-
dimension space. Among the solutions proposed, D1Q3, D2Q9 and D3Q19 are the 
most popular ways of discretizing velocity space (see Figure 2). 
 

            
 

Figure 2 D2Q9 velocity space                     

                 

(11) 

(10) 
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2.2.3 The relaxation parameter 

The relaxation parameter, W from equation (7), is an important parameter of 
Bhatnagar-Gross-Krook Lattice Boltzmann Method (LBGK). It establishes how fast 
the particle distribution function achieves the equilibrium distribution function. The 
solution given by the model will depend on its value, which cannot be arbitrary, since 
it influences the viability of the model to recover the Navier-Stokes equations.  An 
analysis proposed by (Chapman & Cowling, 1992) confirms that LBGK reproduces 
exactly the Navier Stokes equations for quasi-incompressible flows when  
 

τ = 	 ;
ijk
+	1 2		, 

 

where # is the kinematic viscosity and cs is the speed of sound.  
 

2.2.4 Computational aspects 

When this model is programmed, streaming and collision are calculated as separate 
processes. This means dividing equation (6) into the following two steps (Mei & Yu, 
2002):  

Collision:     	$U	 	!	, ( = 	 $U		 	!	, ( − 		 Cτ · 	 ($U	 	!	, ( − $LMU	 	!	, ( )	 

Streaming:   $U	 	!	 + 	#U · ∆(, ( + ∆( = 	 $U	 	!	, (  

Firstly, the collision process is calculated and particles at the same position 
redistribute their velocities due to interactions between them; secondly, streaming is 
calculated and particles change position due to their velocity.  

Another interesting aspect concerning the theory of LBM that should be noted and 
that simplifies computational calculations is that the method enables us to calculate 
macroscopic parameters directly from the distribution function. Density (ρ) and 
momentum density (ρu) can be calculated as follows (K. Aidun & R.Clausen, 2010): 
  

ρ = 	 $QQ 	, 

ρu = 	 $QQ · #Q . 

 

2.3 Lattice Boltzmann Method stability 

LBM is a numerical method that may develop instabilities depending on the 
parameters selected to run the model. I present only a brief overview of LBM stability. 
Further information can be found in the papers (D. Sterling & Chen, 1996) and 
(Worthing, et al., 1997). 
Since the collision operator includes an equilibrium function that is required to satisfy 
the Maxwell-Boltzmann distribution function (equation (8)), as well as the Navier 

(14) 

(13) 

(12) 

(15) 

(16) 
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Stokes equations, entropy is not guaranteed to not decrease during collision. In case 
entropy decreases, instabilities in the model may occur.   
The article (D. Sterling & Chen, 1996) develops a study of LBM stability by linearizing 
the Lattice Boltzmann scheme, which is non-linear due to the form of the equilibrium 
function in the collision term (equation (8)). To linearize the system, they expand $U	 
as  

$U	 	!	, ( = 	 $U
(w) + $Ux 	!	, (  , 

 

where $U
(w) refers to the global equilibrium particles which are constant in space and 

time. Term $Ux 	!	, (  does not necessarily match with $U
(]LM) 	!	, ( . By applying that 

change, Lattice Boltzmann Equation becomes  

 

AU	 	$U = 	 $U	 	!	, ( − C
τ ($U

	 	!	, ( − $U
w 	!	, ( ) . 

 

A Taylor expansion of AU	 about $U
(w) leads to the following linearized system:  

 

$Ux	 	!	 + 	#U · '(, ( + '( = y	 · 	$Ux	 	!	, ( 	, 
 

where y  is the Jacobian matrix of the coefficients of the Taylor expansion and it is 
independent of space and time. The eigenvalues of that matrix determine the stability 
of the system, since the model will be stable if all eigenvalues have modulus less 
than the unity. The eigenvalues of y are {1, 1-1/	τ} and stability is therefore 
guaranteed when τ > 0.5 (D. Sterling & Chen, 1996).  
However, when testing values for τ slightly higher than 0.5 the model also generates 
instabilities. That it is due to the nonlinear terms in the equilibrium distribution 
function. When τ approaches 0.5, kinematic viscosity decreases significantly 
(equation (12)) and high Reynolds number is obtained (equation (20)). Equation (20) 
represents the way LBM calculates the Reynolds number, but this is not necessarily 
the physical Reynolds number of the case that the model is testing. To avoid 
confusions with the physical Reynolds number, that relationship of parameters that 
appears in equation (18) will be named a9z{Y  :  
 

a9z{Y = 	|	·	;
}

  , 
 

where N refers to the resolution of the lattice (1/∆x), # is the lattice velocity (∆x/∆t) 
and v is the kinematic viscosity of the fluid.  
To avoid those instabilities, lattice velocity (∆x/∆t) should be small enough to retain 
a stable scheme and to keep higher-order terms from the Chapman-Enskog 
expansion negligible (D. Sterling & Chen, 1996). Since the velocity is limited, if high 
Reynolds number is needed, resolution should be increased or relaxation parameter 
decreased until its boundary limit. 

(17) 

(18) 

(19) 

(20) 
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3. SOFTWARE 

Beyond providing an appraisal to Lattice Boltzmann Method theory, this project aims 
to execute some practical examples and analyse the results that LBM provides. To 
perform this analysis, a code is used provided by Palabos (Parallel lattice Boltzmann 
open source), which is an organization focused on developing LBM software. This 
project uses the latest version of Palabos (version 1.5), which was launched in 
January 2015. 
Palabos provides a C++ code that simulates flow behaviour using Lattice Boltzmann 
Method. It provides a set of functions and algorithms to be able to implement different 
kinds of geometries and flows. Some examples are already programmed by Palabos 
to illustrate how the code works. It must be emphasized that Palabos always 
calculates Reynolds number with equation (18) and if the geometry requires another 
calculation for Reynolds number, it should be adapted to that of equation (18). Since 
not all geometries concerning this project are implemented by Palabos with its 
examples cases, this project has needed to program those new cases using Palabos 
structure. This has been done by adding code to the already existent C++ program 
of Palabos, in order to develop the cases and calculations included in this project.   
It should be noted that the Palabos code can reproduce the physics of those flows: 
Incompressible Navier-Stokes equations, weakly compressible, non-thermal Navier-
Stokes equations, flows with body-force term, thermal flows with Boussinesq 
approximation, single-component multi-phase fluids (Shan/Chen model), multi-
component multi-phase fluids (Shan/Chen model) and static Smagorinsky model for 
fluid turbulence (Flowkit, 2011). More information about the code can be found on its 
website (www.palabos.org) or in the reference provided.  
The Palabos code was run in parallel using a two-core 2.9 GHz processor with a 
Ram memory of 8 GB.  
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4. VERIFICATION OF LBM  

This section discusses the verification of the Lattice Boltzmann Method (LBM) for 
flow simulation. A total number of five cases are simulated, all of them in two 
dimensions. All cases are run under double precision, unless the first one which is 
tested in single precision. Since LBM is implemented on a lattice with straight lines, 
the first cases analysed contain only cartesian geometries, which consist of non-
curved geometries with either horizontal or vertical walls. Complex surfaces require 
introducing curved geometries that do not necessarily match with the lattice lines. 
The fluid implemented in all geometries is an incompressible, single phase and 
thermal. 
Results are compared to analytical solutions or to results obtained by other CFD 
methods. To evaluate this comparison quantitatively, the error between both 
solutions is calculated. The results provided by Lattice Boltzmann Method will mainly 
depend on the number of iterations run, the mesh size selected and the relaxation 
parameter chosen. Those cases aim to give a general overview of how those 
variables influence on the accuracy of the results.  
An analysis of the iteration convergence is performed to obtain the influence of the 
number of iterations. It is also indispensable to find a convergence criterion to know 
when to stop the code and then consider the solution steady in time. Computational 
cost will be another aspect to consider when analysing number of iterations.  
An analysis of the mesh convergence is performed to obtain the influence of the 
mesh size selected. Therefore, different resolutions for the lattice are executed to 
find which relationship exists between ∆x and accuracy of the results.  
The same physical problem is tested with different values of τ to obtain the influence 
of the relaxation parameter. An analysis of the effect of the relaxation parameter on 
accuracy will be also carried out.  
When analysing curved geometries, a new way of implementing boundary conditions 
is discussed in section 2, since the geometry does not fit exactly with the lattice lines, 
by the bounce-back boundary condition. 
 

 

4.1 Cartesian geometries 

This section presents a study of three cases that contain staircase geometries: 
Blasius flat plate, Poiseuille flow and backward facing step. They all conform to a 
cartesian grid, since they do not have curved lines on their geometries.  I analyse 
iteration and mesh convergence, the influence of the relaxation parameter and the 
computational cost. The main goal is to illustrate the behaviour of the model 
according to how the case is implemented.  

4.1.1 Blasius Flat Plate 

This geometry consists of a single plate submerged in a flow that moves at a constant 
velocity. The flow has a Reynolds number of 10,000, an inlet velocity of 0.05 m/s, a 
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kinematic viscosity of 0.000005 m2/s and a density of 1 kg/m3. The domain has 
dimensions 0.5m x 1m, the plate is allocated in the bottom wall and the plate has a 
length of 0.4m (see Figure 3). The domain is divided into cells and the resolution 
(number of cells per meter) varies from 600 to 3000.  
  
 

 
Figure 3 Dimensions of the Blasius flat plate 

Since Reynolds number is quite high, resolution needs to also be high due to the 
reason exposed in the section concerning LBM stability. The domain is divided into 
1400 cells per meter to increase the value of the relaxation parameter and to avoid 
instabilities.  
The analytical solution of the flat plate and its boundary layer has been well 
documented (Fang et al., 2006). To validate the accuracy of the results provided by 
LBM, the solution is compared to the exact analytical solution proposed by Blasius, 
which describes the velocity flow as a function of the Reynolds number and the 
quotient between the height and the boundary layer thickness. 
I analyse the iteration convergence to find the convergence criterion, the mesh 
convergence to find which mesh is small enough to represent the model properly 
and I evaluate computational cost per mesh size.  
   

4.1.1.1  Iteration convergence 

Lattice Boltzmann Method is an iterative method that needs a condition to stop 
iterating. Therefore, first thing to do is to establish a criterion to know when to stop 
the code. The condition to stop iterating will be fixed when difference in results 
between two consecutive iterations is smaller than a certain value.  
To determine this value, the code is run for 40,000 iterations. At each iteration, the 
program calculates the difference in results (error) with previous iteration (Figure 4). 
Error is calculated as the average difference of the velocity in the N points allocated 
in the vertical line at the middle of the flat plate, which reads as 
 

9~~�~ = 	
dÄ(−	dÄ(−1Å

Ä
Å   . 

0.5 m 

1 
m

 

(21) 
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Figure 4 Error between consecutive iterations 

Figure 4 shows that error between consecutive iterations decreases as number of 
iterations increases. Since the code is executed entirely in single precision, machine 
epsilon is of the order of 10-6, which explains why error remains between 10-6 and 
10-8 for high iterations. Error similar in magnitude to machine epsilon can be caused 
by the round-off error and not by progress of LBM.  
However, Figure 4 does not provide an indication of when to stop the code. An 
analysis studying how close the results provided are to the exact Blasius solution 
among iterations is needed (Figure 5). The error of the iteration at which its solution 
is like the exact one will be the minimum error permitted to continue iterating.  

 
Figure 5 Velocity profile per iteration 

Figure 5 shows that by iteration 20,000, results provided by the program are like the 
Blasius exact solution. Before iteration 20,000, error (Figure 4) is always higher than 
5·10-8. Therefore, the code needs to stop iterating when the error is smaller than 
5·10-8. Criterion of convergence is established. 
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4.1.1.2  Mesh convergence 

LBM uses a lattice to represent the domain. Depending on the number of cells that 
represent the domain accuracy of the results will vary. Not only is needed to know 
when to stop iterating (previous section), but also which resolution apply to the 
domain to obtain enough accurate results.  
To find resolution needed, several resolutions are tested and compared with the 
exact analytical solution. The model is run for the following resolutions: 600, 800, 
1000, 1200, 1400 and 3000. For all of them, the code stops iterating when error 
between consecutive iterations is smaller than 5·10-8. Figure 6 shows that results are 
closer to the exact solution when resolution increases. 
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Figure 6 Blasius solution vs LBM solution for several resolutions 



                                                                            

16 Appraisal of flow simulation by the Lattice Boltzmann Method                             Page  

Figure 6 just illustrates qualitatively that higher resolution means more accurate 
results. However, an analysis studying quantitavely resolution against accuracy is 
developed.  Figure 7 shows how the error between exact and LBM solution is related 
to resolution (number of cells per meter). To find the exact correlation between both 
parameters, both the resolution and the error are plotted with logarithm. Error is 
calculated as the average percentage difference in velocity between both solutions.  

 
Figure 7 Error between exact and LBM solution per resolution 

 

Figure 7 shows that correlation between the error and the resolution is 
 
 

Ç~~�~ = 2592.4 · a9É�Nd(Ä�Ñ ÖC.ÜáÜà			. 
 

 

Therefore, error decreases when resolution increases by an exponent of 1.64. If user 
needs an error smaller than 1%, resolution should be higher than 1400. By 
introducing a resolution of 3000, accuracy in results are quite satisfactory (error of 
0.45%). 
 

4.1.1.3  Computational cost 

Previous section has proved that higher resolution means more accuracy. However, 
higher resolution needs from more computational time, which is a cost. User may be 
restricted by this cost, so resolution may be fixed not by accuracy needed, but by 
maximum cost allowed. Therefore, an analysis studying how computational cost 
increases as resolution increases is performed in Figure 8.  
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Figure 8 Computational cost per resolution  

Correlation between resolution and computational cost is quadratic. Moreover, 
resolution of 1400 spends 0.0817 s/iteration (27.2 minutes for 20,000 iterations), 
while resolution of 600 only 0.01537 s/iteration (5.1 minutes for 20,000 iterations), 
which means that increasing approximately 5 times the computational cost leads to 
reducing approximately 3 times the error between solution given and exact solution.  
 

4.1.2 Poiseuille flow 

This case consists of a flow through two parallel plates. The flow moves horizontally 
due to a pressure decrease between both extremes of the channel (pressure-driven 
flow). The fluid has a Reynolds number of 5, a kinematic viscosity of 0.2 m2/s and a 
density of 1 kg/m3. The domain has a length of 3 metres and a height of 1m, while 
resolution varies from 60 to 300 cells per meter. Since Reynolds number is much 
lower than for the Blasius flat plate case, resolution needed is much smaller, because 
there is no need to increase resolution to avoid stability problems. Pressure gradient 
is fixed in 144 Pa/m. 

To avoid initial problems near the walls, the case is initialised with a constant velocity 
for all the cells, except for those cells whose distance to the wall is smaller than 0.2m. 
For those cells, velocity decreases linearly from that constant velocity to 0, at the cell 
in the wall. Figure 9 shows how the lattice is initialised in terms of velocity, while 
Figure 10 shows the velocity profile at steady state.  
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The geometry is implemented with periodic boundaries in the horizontal axis. This 
means that the right side is connected to the left side, so that the flow always remains 
in the domain. Pressure gradient is imposed by fixing a pressure both in the left wall 
and the right wall.  
As for the Blasius flat plate case, the analytical solution for the Poiseuille flow has 
been well documented. That exact solution proves that the flow has a parabolic 
velocity profile, which remains constant in the whole channel. The equation of the 
parabola reads as  
 

d(ℎ) = 	 ∆ä4·#·ã · (å
E − ℎE) , 

 

where # is the kinematic viscosity, L is the length of the channel, ∆P is the pressure 
difference and H is the height of the channel.  
 

4.1.2.1  Iteration convergence 

Unlike Blasius flat plate case, Poiseuille flow is run under double precision, which 
means that machine epsilon is of the order of 10-12. Therefore, the minimum error 
between two consecutive iterations permitted to continue iterating will have a 
different value. To determine it, the same procedure as the one of Blasius flat plate 
is done. Firstly, the error between consecutive iterations for a fixed amount of 
iterations is studied (Figure 11) and secondly the error between LBM results and 
exact solution as number of iterations increase is calculated (Figure 12 and Figure 
13). The error of the iteration at which its solution is like the exact one will be the 
minimum error permitted to continue iterating. 
 

 
Figure 11 Error between consecutive iterations 

 

1.E-15

1.E-13

1.E-11

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

0 100,000 200,000 300,000 400,000

E
rr

o
r

Iteration

(23) 



                                                                            

19 Appraisal of flow simulation by the Lattice Boltzmann Method                             Page  

 
 

Figure 12 Velocity profile per iteration 

 
 

 
Figure 13 Error between exact and LBM solution per iteration 

Error decreases notoriously until iteration 50,000 (error of 0.70%). However, it is not 
until iteration 200,000 that the error remains almost constant at a value of 0.05%. At 
iteration 200,000 error between consecutive iterations is approximately 10-10. 
Therefore, the code needs to stop iterating when the error is smaller than 10-10. The 
fact that minimum error permitted is smaller for the Poiseuille flow than for the Blasius 
flat plate is consistent with the fact that Poiseuille flow is run under double precision, 
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4.1.2.2  Mesh convergence 

Iteration convergence was run with a lattice resolution of 60 cells per meter, which 
means that the domain is divided into 60 cells in vertical axis and into 180 cells in 
horizontal axis (∆x remains constant both in vertical and horizontal, since the lattice 
is represented by square cells). However, accuracy of the results provided may be 
also determined by the resolution employed. To see how resolution influences the 
results that LBM provides, several resolutions are tested.  
Resolutions tested are 30, 60, 120, 240 and they are run until the average variation 
of velocity between iterations is smaller than 10-10. Figure 14 shows the error 
between the solution provided and the exact solution. The resolution and the error 
are plotted in logarithms to find the exponent that correlate both parameters. 

 
Figure 14 Error between exact and LBM solution per resolution 

 

Figure 14 shows that correlation between the error and the resolution is 
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Therefore, error decreases when resolution increases by an exponent of 1.65. For 
the Blasius flat plate case, this exponent is 1.64 (see equation (22)). Thus, for both 
cases, a modification in the resolution affects in the same way to the error. An error 
of only 0.01% is achieved when using a resolution of 240.  
However, not all resolutions are run the same number of iterations, since the error 
being smaller than 10-10 can occur at different iteration for different resolutions 
(Figure 15).   
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Figure 15 Number of iterations needed to achieve steady state 

Figure 15 shows that the number of iterations needed increase as the resolution 
increases. Computational cost not only will be higher because at each iteration more 
cells need to be checked, but also because more iterations are run.  
 

4.1.2.3  Influence of the relaxation parameter 

For the Poiseuille flow case, a new analysis has been performed. In theory section, 
the relaxation parameter was described. The collision operator, also described in 
theory, depends significantly on the value of the relaxation parameter. To check how 
this parameter affects the accuracy of LBM, the Poiseuille flow case is tested for 
several values for that parameter.  
The value for the relaxation parameter can only between 0.5 and 2, as described in 
theory. The cases selected include all possible values that the relaxation parameter 
can have. The Reynolds number is constant for all cases (Re=10), since Poiseuille 
flow is characterised by the Reynolds number. Therefore, same real example is 
tested even if relaxation parameter is different. Per each case, error between solution 
provided and analytical solution is calculated (Figure 16). To check if the relaxation 
parameter has an influence also in computational cost, the number of iterations and 
the time spent during computational is also calculated per each case (Figure 17).   
 

 
Figure 16 Error between exact and LBM solution as a function of the relaxation parameter 
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Figure 17 Computational cost as a function of the relaxation parameter 

 

Accuracy of LBM depends on the value of the relaxation parameter, as shown in 
Figure 16. Best values in terms of precision are obtained with τ between 0,55 and 
1,1. Moreover, not only is accuracy affected when varying relaxation parameter, but 
also is computational cost. Computational time decreases as relaxation time 
increases (Figure 17). This is because less number of iterations are needed to 
achieve steady state.   
 

4.1.3 Backward facing step 

The geometry of this case consists of a rectangular channel that at certain horizontal 
distance increases its height, creating a backward facing step. The fluid has a 
Reynolds number that varies from 50 to 300, a kinematic viscosity of 0.2 m2/s and a 
density of 1 kg/m3. The flow is initialised with a parabolic velocity profile in the inlet 
and it moves due to a decrease in pressure along the channel (pressure-driven flow). 
Pressure gradient is 144 Pa/m. The domain has a length of 30m and a maximum 
height of 1m, while the resolution is fixed at 40 cells per meter.  
This case has been well analysed and studied by scientists. However, there is not 
an exact analytical solution to compare it with. It can only be compared with 
experimental results or with other computational results. This report bases the study 
of the backward facing step on an extended article (Zarghami & Ahmadi, 2012) that 
analyses this case. The objective consists on reproducing the results obtained by 
this article, but using Palabos implementation of LBM.  
The backward facing step is characterised by generating two recirculations: primary 
recirculation on the bottom wall after the step and secondary recirculation on the top 
wall beyond primary recirculation, but and only for certain Reynolds numbers (see 
Figure 18).  
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The object of study for this case is the point where primary recirculation ends, also 
known as reattachment point (X1 in Figure 18).  

 
 

Figure 18 Geometry and recirculations of the backward facing step (Zarghami & Ahmadi, 2012) 

Point X1 changes its position as Reynolds number of the flow changes. The aim of 
this case is to validate that point X1 is allocated nearby the results obtained by the 
article (Zarghami & Ahmadi, 2012), for different values of Reynolds number. 
Point X1 is calculated as it follows. X1 corresponds exactly to the point where shear 
stress is null. For a Newtonian fluid, shear stress can be calculated as  
 

W = 	µ · 4h
4ê

   ,  
 

where d is the horizontal velocity, ë is the vertical distance and µ is the dynamic 
viscosity of the fluid. Shear stress will be zero when the derivative is null. A linear 
approximation of the derivate is done to solve previous equation. Since d=0 when 
ë=0 (boundary condition at the wall), the derivative being null is guaranteed when 
d=0 and ë=1. Therefore, point X1 is allocated at the same horizontal distance as that 
one of the cell that is just above the wall (ë=1) and that has null horizontal velocity.  
For the backward facing step case, Reynolds number reads as  
 

a9 = 	 í·	ìîï,·(ñÖó)
á·;

   , 
 

where å is the height at the outlet, ℎ is the height of the step, ò.Z7 is the maximum 
velocity at the inlet and # is the kinematic viscosity. 
 

4.1.3.1  Iteration convergence 

The backward facing step is run under double precision, just as the Poiseuille flow. 
Poiseuille flow stopped iterating when error between consecutive iterations was 
smaller than 10-10. The same criterion may be applied for the backward facing step. 
To check if this criterion is accurate for that case, the error between consecutive 
iterations for a fixed amount of iterations is studied (Figure 11). Error is calculated as 
the average variation in velocity between two consecutive iterations for those cells 
allocated in the vertical line at a horizontal distance of the height of the step, just after 
the step. 

(26) 

x 

y 

(25) 
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Figure 19 Error between consecutive iterations 

Both Poiseuille flow curve (Figure 11) and backward facing step curve (Figure 19) 
for the error between consecutive iterations have the same aspect. Therefore, the 
same criterion of convergence as that one of the Poiseuille flow can be established. 
Steady state can be considered when variation in velocities between two consecutive 
iterations is smaller than 10-10.  
 

4.1.3.2  Mesh convergence 

As in previous cases, a study regarding size of the mesh is done to evaluate the 
influence resolution has in results. This will tell us which resolution should be 
implemented. The case is tested for different number of resolutions.  
Resolutions studied are 20, 40, 80 and 120 cells per meter. Reynolds number is fixed 
at 135. Resolutions are of the same order of those ones of the Poiseuille flow 
because Reynolds number employed is also of the same order. Resolution needed 
and Reynolds number are strictly related due to stability problems, as shown in 
theory. Since the object of study is point X1, the parameter studied per each 
resolution case is precisely this point. Per each resolution case, position of point X1 
is calculated (Figure 20). 
 

 
Figure 20 Position of point X1 as a function of resolution 
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Figure 20 shows that for resolutions higher than 40 cells per meter, point X1 does not 
change significantly its position. Therefore, a resolution of 40 cells per meter is high 
enough to represent accurately the position of point X1. Using higher resolutions will 
lead to an increase in computational cost, as shown in Figure 21. Moreover, as for 
the Blasius flat plate case and the Poiseuille flow case, correlation between accuracy 
and resolution is quadratic.  

 
Figure 21 Number of iterations until steady state 

4.1.3.3  Verification analysis 

Once the criterion of convergence and number of cells per meter are established, 
the code is ready to be verified. Verification analysis consists on a comparison 
between a reference (Zarghami & Ahmadi, 2012) and the solution given by Palabos 
code. This comparison is based on studying the reattachment point (X1) as a function 
of the Reynolds number. Figure 22 shows that Palabos LBM provides similar results 
as the ones obtained by the reference (Zarghami & Ahmadi, 2012). This means that 
both calculation of the reattachment point and the method employed to simulate the 
flow are accurate.  

 
Figure 22 Comparison between reference (Zarghami & Ahmadi, 2012) and Palabos LBM for the 
backward facing step 
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4.2 Curved geometries 

The previous section has shown that LBM is able to simulate accurately flows on 
Cartesian geometries, such as the Blasius flat plate, the Poiseuille flow and the 
backward facing step. The next step is to introduce curved geometries that do not 
necessarily match with the cartesian lattice. This will introduce a complexity to the 
model and I want to verify whether Lattice Boltzmann Method will accurately simulate 
flows around curved geometries: a cylinder and a NACA 0012 airfoil.  

4.2.1 Bounce-back boundary condition 

Boundary conditions are normally established in LBM by imposing certain value to a 
parameter in a node of the lattice. However, when geometries do not fit in the lattice 
the so-called bounce-back boundary condition, (Bill Bao & Meskas, 2011) and (Succi 
et al., 2010), permits to account for the curvature of the boundary. 
The main idea of this technique is to reverse those distribution functions that when 
moving from one node to the final node they cross a wall on the way (see Figure 23). 
By reversing it is understood to change to the opposite direction. That way of 
implementing boundary conditions is called mid-grid bounce-back, as the wall is 
placed beyond two nodes. bounce-back can also be implemented directly on one 
node, when no-slip condition is established. Using the technique illustrated in Figure 
23, it is possible to implement boundary conditions for curved geometries that do not 
fit in the lattice.    
 
 
 

 
 
 
 
 
 

 

4.2.2 Drag coefficient calculation 

To analyse the accuracy of the results, a parameter to compare with other 
experimental or CFD solutions is needed. The parameter selected is the drag 
coefficient, which can be defined as the resistance that the cylinder causes to the 
flow. In practice, it is a function of the sum of all the forces acting in the object by the 

Figure 23 Illustration of mid-grid bounce-back (Bill Bao & Meskas, 2011) 
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fluid, fluid density, inlet velocity and a characteristic length of the object in the 
direction of the incoming flow. Drag coefficient (Cd) is 
 

=ô = 	
E·),

ρ·òÄÑN9(
2 ·'

 . 
 

All parameters that appear in equation (25) are already known except from 87, which 
refers to the horizontal force acting in the object caused by the flow. Its value should 
be obtained from LBM simulation and there are several ways to achieve it. Article 
(Mei & Yu, 2002) points out three methods: second-order accurate no-slip boundary 
condition for curved geometries, force evaluation based on stress integration and 
method based on the momentum exchange. In this project, I use the method related 
to momentum exchange because it is the one that best fits with Palabos code. It 
calculates the force as 
 

87 = 9U $U !ö, ( + $U !ö + 9U · õ5, (UúwZKK	7ù · 1 − e(!ö + 9U · õ5)   , 

 
where e(!) is a new function that takes the value of 0 if a lattice site ! is occupied by 
the fluid and takes the value of 1 if a lattice site ! is inside an object. Xb refers to all 
boundary nodes and Q is used to identify the discrete velocity selected (Q denotes 
opposite direction of Q). 

With equation (26), this method is calculating the force as a function of the 
momentum exchange between boundary nodes and their adjacent fluid nodes. That 
is calculated by analysing population moving from a boundary node to the fluid node 
and vice versa, computed for all boundary nodes. It takes advantage of one of the 
main properties of LBM, which enables it to calculate macroscopic parameters from 
the distribution function as was pointed out in theory (equation (16)). It is 
subsequently calculated during the streaming process of LBM (Mei & Yu, 2002). 
 

4.2.3 Flow around a cylinder 

This case consists of a flow around a cylinder without external walls. Since the case 
is studied in 2 dimensions, the cylinder is represented as a circle. Inlet velocity is 
imposed on the left wall and an outflow condition on the right wall. The fluid has a 
Reynolds number that varies from 0.38 to 50, an inlet velocity of 0.01 m/s, a kinematic 
viscosity that varies from 0.00156 to 0.000012 m2/s and a density of 1 kg/m3. The 
domain has a length of 1m and a height also of 1m, while the circle has a diameter 
of 0.06m and it is allocated at 0.2m from the left wall at a medium height.  
Resolution is fixed at 200 cells per meter. For that case, mesh convergence is not 
done anymore. Previous cases have shown that resolution is strictly related to 
Reynolds number. This case uses a Reynolds number of the same order as that one 
of the Poiseuille flow and the backward facing step, thus resolution is similar as that 
one of those cases.  

(27) 

(28) 
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Since the geometry is symmetric in horizontal axis, same results will be obtained on 
both sides of the symmetry. Therefore, by studying only half of the domain, one can 
obtain the results for all the domain. Making use of this technique, computational cost 
is significantly reduced. Figure 24 shows the case analysed and its symmetry. 
Horizontal walls are stablished as outflows, meaning that the fluid may go out of the 
model. To reproduce the case properly, horizontal walls need to be far enough from 
the object to guarantee that almost no fluid escapes from the domain. By locating the 
walls far from the object, vertical velocity tends to zero and no fluid leaves the model. 
Regarding the symmetry case, mid wall is established as a free-slip wall that imposes 
zero vertical velocity, which is perfectly consistent with the case. 
 
 
 
 

 
 
 

The results for that case will mainly depend on the value for the Reynolds number, 
which is calculated as 
 

a9 = 	ìûü†+-·ô
;

 , 
 

where ò\]KL5 is the inlet velocity, ' is the diameter of the cylinder and # is the kinematic 
viscosity.  
 
 

4.2.3.1  Iteration convergence 

Since the case Flow around a cylinder contains curved geometries, the criterion 
established in cartesian geometries of when to stop iterating may be different. That 
is the reason why a study of the evolution of results among iterations is performed 
again for this case.  
The procedure to determine the minimum error to continue iterating is similar to the 
one applied in previous cases. Firstly, the error in velocity between consecutive 
iterations is calculated for a fixed amount of iterations (Figure 25), to see whether 
this error is of the same order as that one of previous cases. Secondly, the evolution 
among iterations of the value for the drag coefficient is calculated. The code will stop 
iterating when the error in the drag coefficient between two consecutive iterations is 
smaller than a certain value that needs to be found. To find it, the value of the drag 
coefficient and its error among iterations is calculated, also for a fixed amount of 
iterations (Figure 26).   

(29) 

Figure 24 Geometry for the cylinder case and its symmetry 
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Figure 25 Error in velocity between consecutive iterations 

 
Figure 26 Evolution of the drag coefficient among iterations 

Figure 25 shows that the error in velocity among iterations is higher for this case than 
for cartesian geometries cases (10-8 in the cylinder case, while 10-11 in cartesian 
geometries cases). That is because curved geometries introduce more variations 
between iterations to the model, due to the complexity of the geometry.  
The criterion of when to stop iterating is established from Figure 26. The drag 
coefficient changes significantly until iteration 60,000, while it remains almost stable 
beyond iteration 150,000. At this iteration, error in Cd is always higher than 10-9. 
Therefore, the code needs to stop iterating when the error in Cd between consecutive 
iterations is smaller than 10-9.  
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4.2.3.2  Verification analysis 

To validate that the results provided by Palabos in this case are accurate, the drag 
coefficient obtained by Palabos is compared to the one obtained in an experiment 
(Tritton, 1959). If the reader wants to know more about cylinder simulation using 
LBM, reference (He & Doolen, 1997) provides an in-depth analysis. Comparison is 
performed for different low Reynolds numbers (see Figure 27). This simulation is only 
performed for low Reynolds number. It could be done with higher Re, but this will 
imply using higher resolution which will notoriously increase computational cost. To 
be able to be performed in a reasonable amount of time, it should be executed on a 
faster machine. 
Drag coefficient provided by Palabos is calculated using the balance momentum 
exchange explained above. The code stops iterating at the criterion established in 
the previous section (when the error in drag coefficient between two consecutive 
iterations is smaller than 10-9). 
 

 
 

Figure 27 Comparison between the drag coefficient obtained with Palabos LBM and the one 
obtained in the reference (Tritton, 1959) 

Figure 27 illustrates that drag coefficient obtained in Palabos tends to be slightly 
higher than the one obtained in the experiment. However, differences are small and 
in some cases values are very similar. Both the way of calculating drag coefficient 
and the implementation of bounce-back are techniques that are proved to be 
accurate. Therefore, Palabos LBM can properly reproduce the physics of the cylinder 
under a flow case. 
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4.2.4 Flow around a NACA 0012 airfoil 

This case consists of a flow around an airfoil without external walls. The airfoil is a 
NACA 0012. The inlet velocity is imposed on the left wall and an outflow condition 
on the right wall. The fluid has a Reynolds number that varies from 15 to 160, an inlet 
velocity of 0.01 m/s, a kinematic viscosity that varies from 0.96 to 0.09 m2/s and a 
density of 1 kg/m3. The domain has a length of 1m and a height of also 1m, while the 
airfoil has a chord of 0.15625m and it is allocated at 0.2m from the left wall at a 
medium height. Resolution of the lattice is fixed at 320 cells per meter, slightly higher 
to the one of the cylinder, because the airfoil is a more complex geometry.  
The airfoil is a NACA 0012, which belongs to the category of symmetric 4-digit NACA. 
First 00 indicates that it has no chamber, while 12 refers to the percentage of 
maximum thickness to chord. Its geometry can be represented with a specific 
formula, which reads as 
 

ë5 = 5 · ( · m · 0.2969 · 7
i
− 0.1260 · 7

i
− 0.3516 · 7

i

E
+ 0.2843 · 7

i

á
− 0.1015 · 7

i

í
	,	   

 
where c is the chord length, x the position along the chord, yt half of the thickness at 
a given value of x and t the maximum thickness as a fraction of the chord (12/100). 
That equation generates the geometry shown in Figure 28. 
 

 
Figure 28 NACA 0012 geometry 

 

The results for that case will mainly depend on the value for the Reynolds number, 
which is calculated as 
 

a9 = 	ìûü†+-	·	i
;

 , 
 

where ò\]KL5 is the inlet velocity, m is the chord of the NACA and # is the kinematic 
viscosity.  
 

4.2.4.1  Iteration convergence 

For the flow around a cylinder, the model stopped iterating when error in the drag 
coefficient between consecutive iterations was smaller than 10-9. The same criterion 
may be applied to the flow around a NACA, since both cases are quite similar. 
However, this criterion has only been tested in one case and the fact that the airfoil 
has a more complex geometry may affect as well the evolution of the drag coefficient 
among iterations. Therefore, an analysis studying how the drag coefficient evolves 

(30) 

(31) 
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among iterations is performed, so as to validate that the criterion established in the 
flow around a cylinder may be applied to other cases. 
The same procedure as the one of the cylinder is studied. Firstly, the error in 
velocities between two consecutive iterations (Figure 29) and, secondly, the error of 
the drag coefficient among iterations (Figure 30).  

 
Figure 29 Error in velocity between consecutive iterations 

 
Figure 30 Evolution of the drag coefficient among iterations 

The curve of the error in velocity among iterations (Figure 29) is quite similar to that 
of the cylinder (Figure 25). However, the curve of the error in the drag coefficient 
among iterations is more unstable for the airfoil (Figure 30) than for the cylinder 
(Figure 26). This fact is probably because the NACA is a more complex geometry 
that introduces complexity and variations to the model.  
Even if the curves regarding the evolution of the drag coefficient among iterations do 
not look similar between both cases, the criterion of when to stop iterating is actually 
the same for both cases. Figure 30 shows that the drag coefficient does not change 
significantly beyond iteration 100,000. It is precisely at that iteration that the error in 
the drag coefficient is always smaller than 10-9. Therefore, the same criterion of 
convergence as that of the cylinder case is established for the NACA airfoil: when 
variation in Cd value is smaller than 10-9, results are considered steady.  
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4.2.4.2  Verification analysis 

To validate the accuracy of the results provided by LBM, the drag coefficient obtained 
with Palabos is compared with the one obtained using another computational method 
(see Figure 31). XFoil (MIT, 2007) is the other computational method employed. It 
consists of an interactive program provided by MIT students for the design and 
analysis of subsonic isolated airfoils. More information about that program can be 
found on its website.  
The cases tested are implemented with low Reynolds number flows. Higher 
Reynolds number may be performed as well, but this will cause incrementing 
resolution to avoid stability problems. By increasing resolution, computational cost 
increases quadratically. That is the reason why just low Reynolds number are 
implemented, so as to run the cases in a considerable amount of time.  
The drag coefficient from Palabos is calculated using the momentum exchange 
technique, explained in the section of drag coefficient calculation. Boundary 
conditions are implemented with bounce-back.  
 

 
Figure 31 The drag coefficient for Palabos LBM and XFoil 

 

Both Palabos and XFoil obtain similar results for the drag coefficient of the NACA 
0012 for different Reynolds number. However, as in the cylinder, Palabos provides 
slightly higher values for Cd. This fact just confirms again that the way the drag 
coefficient is calculated and bounce-back boundary conditions are accurate. Palabos 
LBM can properly reproduce the physics of the NACA 0012 airfoil case.  
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5. MULTI-RELAXATION-TIME LBM 

All examples tested in the previous chapter were using the Bhatnagar-Gross-Krook 
Boltzmann Method (LBGK or Single-Relaxation-Time LBM), which is the most 
popular implementation of Lattice Boltzmann Method. It has proven to be an accurate 
model to simulate a variety of flows, since its numerical results agree well with 
analytical solutions or other existing solutions. However, it has also been observed 
that it may suffer from numerical instability when relaxation parameter approaches 
to its stability limit (0.5). This section presents a new implementation of Lattice 
Boltzmann Method that shows better numerical stability: the Multi-Relaxation-Time 
Lattice Boltzmann Method (MRT-LBM). Here a theoretical introduction to this method 
is developed and a computational case is performed to explore in depth the results 
provided by this method.  

5.1 Theory of MRT-LBM 

This section describes theoretically the main idea of Multi-Relaxation-Time LBM, if 
reader wants to know more details about this model, papers (Du a et al., 2006) and 
(d’Humières et al., 2002) provide a complete analysis of MRT-LBM.  
Multi-Relaxation-Time LBM evolves from LBGK. LBGK is a Lattice Boltzmann 
Method that represents the collision operator (right-hand side of the equation of the 
model) as a relaxation towards an equilibrium. In the first section of the project, I 
explained that this equilibrium is based on the Maxwellian distribution equilibrium 
function. In the theory section, I saw that the LBGK or Single-Relaxation-Time-LBM 
equation reads as 
 

$U	 	!	 + 	#U · '(, ( + '( 	− 	$U	 	!°, ( = 	 Cτ · ($U	 	!	, ( − $LMU	 	!	, ( ) , 
 

for all discrete direction velocities Q. The Q equations can be written in a single 
equation by using matrixes. Equation (30) then evolves to 
 

¢		 	!	 + 	#U · '(, ( + '( 	− 	¢		 	!	, ( = 	£ · (¢		 	!	, ( − ¢§•		 	!	, ( ) , 
 

where ¢		 	!	, ( = 	 ($w	 	!	, ( , 	$C	 	!	, ( , …	 , $|	 	!	, ( )¶, being N the number of discrete 
velocities minus 1 (8 for D2Q9). S is a diagonal matrix such that S=Cτ · ß, where I is 
the identity matrix.  

This model can be modified to achieve better numerical stability. This can be done 
by introducing different relaxation parameters in the collision operator matrix (S), 
since the relaxation parameters correspond to the inverse of the eigenvalues of 
matrix S. The (N+1) eigenvalues of S are all between 0 and 2 to maintain linear 
stability and the separation of scales, which means that the relaxation times of non-
conserved quantities are much faster than the hydrodynamic time-scales, which in 
this case are mass density and momentum (d’Humières et al., 2002). 

(32) 

(33) 
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This fact allows to introduce optional relaxation parameters without any kind of 
influence in the physics of the model, while in LBGK case all relaxation parameters 
are equal and related with the kinematic viscosity of the fluid. Introducing some 
optional relaxation parameter result in better numerical stability. In MRT-LBM, the 
only restriction is that  

τU = 	
;
ijk
+	1 2						(Q = 7,8) , 

 

where # refers to kinematic viscosity and cs to speed of sound (1
3

 for D2Q9). This 

means that only two of the nine relaxation parameters are related to the kinematic 
viscosity, while in LBGK all of them are related to the kinematic viscosity. Also, the 
relaxation parameter for Q = 0 can have any value, since it has no influence in the 
MRT-LBM model. This allows to introduce a value that benefit the stability of the 
model.  
When introducing high Reynolds number, kinematic viscosity decreases 
considerably, corresponding in a value for the relaxation parameter closer to 0.5 
(stability limit). If not all relaxation parameters have this value, stability is notably 
improved. Therefore, MRT-LBM enables implementing better higher Reynolds 
number as will be tested in the following computational case.  
 

5.2 MRT-LBM case 

An analysis comparing Multi-Relaxation-Time LBM and Single-Relaxation-Time LBM 
is performed in this section of the project. That analysis consists of reproducing the 
same case with both models and studying differences in results. The case tested is 
the Poiseuille Flow, which consists of a flow through two parallel plates. The flow 
moves horizontally due to a pressure decrease between both extremes of the 
channel (pressure-driven flow). The fluid has Reynolds number that varies from 2 to 
1200 and a density of 1 kg/m3. The domain has a length of 3 metres and a height of 
1m, while resolution is fixed in 32 cells per meter. Pressure gradient is fixed in 144 
Pa/m. Code is run until variation in velocity profile between two consecutive iterations 
is smaller than 10-10. 
Both cases are tested for different Reynolds number, which is strictly related to the 
relaxation parameter by 
 

a9 = |·h
®Öw.ç ·©™

  . 

 

Therefore, when Re increases, relaxation parameter decreases because Resolution 
is fixed at 32 cells per meter. Thus, at some Reynolds number, the model will become 
unstable since the relaxation parameter will be too close to its stability limit.  
To analyse to difference between both models, the error between exact solution and 
solution provided by the model is calculated, per each Re case (see Figure 32).  
 

(34) 

(35) 
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Figure 32 MRT vs SRT for Poiseuille Flow 

Figure 32 shows that Multi-Relaxation-Time has lower stability problems than Single-
Relaxation-Time. MRT becomes unstable when Re=1200, while SRT when Re=600 
(τ = 0.50016). This means that MRT enables the implementation of higher Reynolds 
number than SRT, maintaining constant resolution. It should also be noted that 
Single-Relaxation-Time is not able to achieve stability for values of relaxation 
parameter smaller than 0.5002. However, for low Reynolds number, both models 
provide a similar level of accuracy.  
Nevertheless, Multi-Relaxation-Time LBM has a disadvantage when compared to 
Single-Relaxation-Time LBM. MRT-LBM needs more iterations to achieve steady 
state and it also spend more time per iteration due to the complexity of the model. 
Therefore, computational cost is higher.  
To avoid instabilities in the Single-Relaxation-Time LBM, one can increase the 
resolution to increase the relaxation parameter. This will lead also to an increase in 
computational cost. Therefore, to analyse which option is better in terms of 
computational cost a new analysis is done. It consists on calculating the 
computational cost for both models to achieve an error of 0.5% for several Reynolds 
number (see Figure 33). SRT will need more resolution as Re increases, while MRT 
will need a smaller resolution but it will spend more time per iteration and it will run 
more iterations.   
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Figure 33 Computational cost for several Reynolds number for SRT and MRT to achieve an error of 0.5% 

Figure 33 shows that SRT needs from less computational cost to achieve an error of 
0.5% than MRT needs. For the case of Re=132, even if SRT needs a resolution of 
37 and MRT only of 23, SRT stills has less computational cost. However, for higher 
Reynolds number, the increase in resolution needed by SRT is too high to maintain 
less computational cost than MRT. Therefore, for higher Re, Multi-Relaxation-Time 
LBM is a better option than Single-Relaxation-Time.  
 

 

6. CONCLUSIONS 

During the development of this research project, some remarkable conclusions 
regarding LBM have been obtained. The main conclusions of the project are the 
following.  
Lattice Boltzmann Method can reproduce flow simulations for incompressible fluids 
accurately. For all cases tested, both staircase and curved geometries, it has been 
possible to match the solution provided by LBM with another analytical or 
computational solution. For the Blasius flat plate, the Poiseuille flow and the 
backward facing step the minimum error (average difference for all points between 
exact and solution provided by the model) is smaller than 0.5%. Regarding curved 
geometries, cylinder had an error of almost null, which also proved that bounce-back 
boundary conditions enables to properly represent curved geometries. For the NACA 
0012 airfoil, the error was closer to 8% in comparison with XFoil results.   
To avoid instabilities in LBM at high Reynolds numbers the resolution (number of 
cells per meter) should be increased. That is to elude values for the relaxation 
parameter closer to its stability limit of 0.5. Lattice velocity cannot be increased as it 
also has an upper limit. Therefore, stability can be achieved by selecting resolution 
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properly, that fixes ∆x, and lattice velocity, that fixes ∆t since ∆x is already fixed with 
resolution.  
A different implementation with respect to the one of Bhatnagar-Gross-Krook LBM 
obtains better numerical stability. It is the Multi-Relaxation-Time LBM, which can 
implement flows with two times the upper Reynolds number limit for Single-
Relaxation-Time LBM (SRT was unstable for Re=600, while MRT for Re=1200). 
Moreover, it is observed that SRT is unstable for values of relaxation parameter 
smaller than 0.5002. Computational cost is smaller in SRT even if it needs higher 
resolution to avoid stability problems, but only until a certain value for the Reynolds 
number.     
Correlation between error and resolution has been proved to be quadratic, being the 
error the average percentage difference between the existing solution and the 
solution provided by the model. Both the Blasius flat plate and the Poiseuille flow 
have a correlation between the error and the resolution with an exponent of 1.6. 
Correlation between resolution and computational cost has been proved to be 
quadratic as well. In the Blasius flat plate case, when multiplying resolution per 3.5, 
computational cost multiplies per 5.4 and the average percentage error between the 
exact solution and the solution provided by the model divides per 15.5 (from 6.2% to 
0,4%). 
This project has established a condition for LBM to stop iterating that provides 
accurate results. A condition fixing a minimum error allowed between two 
consecutive iterations has been performed. For cartesian geometries, a minimum 
error of 10-10 is enough to achieve accurate results, while for curved geometries a 
minimum error of 10-9.  
The relaxation parameter (W) plays an important role on the results provided by 
Lattice Boltzmann Method in Poiseuille flow. More accurate results are obtained for 
values of relaxation parameter between 0.55 and 1.1 (between those values error 
keeps almost constant at 0.025%, but beyond W = 1.1 error increases until 0.27% 
when W =1.95).    Moreover, when this parameter is increased, less iterations are 
needed to achieve steady state and less stability problems occur. Therefore, the 
most accurate value for the relaxation parameter is 1.1. 
The calculation of forces in the Lattice Boltzmann Method via the momentum 
exchange method has produced accurate estimates of the drag coefficient for the 
flow around a cylinder case and for the flow around a NACA 0012 case.   
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7. SUGGESTIONS FOR FURTHER WORK 

There are also other aspects regarding LBM that can be analyzed. One of the main 
advantages of LBM is its ability to parallelize numerical calculations. Parallelization 
in this work has been limited to 2 processors, for convenience, an analysis of the 
efficiency and achievable sealing for large number of processors may be performed. 
Studying the implementation of multi-phase flows or the simulation of flows in 3 
dimensions may also be of interest to estimate the abilities LBM can offer.   
This project has focused on Lattice Boltzmann Method for incompressible flows. 
However, one of the main advantages of LBM relies on its ability to implement 
different kind of fluids just by modifying the collision operator. There are two 
promising models implementing compressible flows in LBM: KT-LBM (Kataoka & 
Tsutahara, 2004) and QU-LBM (Qu, 2009). Other references for LBM in 
compressible flows are (Yan et al., 1999) and (Shan et al., 2006).	 

As a first overview of these models, it should be noted that more discrete velocities 
are needed (KT-LBM uses a D2Q16 model and QU-LBM a D2Q13). However, the 
main problem when applying compressible flows concerns the streaming process. In 
incompressible flow models, the molecular velocity depends only on the cell spacing 
and the time step, while in compressible flow models the velocities are irregular and 
defining the velocity as in incompressible flow is not valid. To cope with this, these 
models define a new distribution equilibrium function, as well as new ways of relating 
macroscopic variables to the distribution function. It should be noted that those 
models cannot be implemented using Palabos code. Palabos only allows the 
execution of incompressible flows. To implement these new models, other LBM code 
needs to be programmed since Palabos structure is not able to support these 
models.   
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