R. 97 Pag 1203 Cas

1400008597 M-2E70R1/357

ABOUT LOG-ON LANGUAGES

Preliminary Version

R.Casas J.Gabarró

RR 85/02

ABOUT LOG-ON LANGUAGES

Preliminary Version

R.Casas J.Gabarró(&)

Facultat d'Informàtica de Barcelona
Universitat Politècnica de Catalunya, 08034 Barcelona
Spain

(&) Aquest treball ha estat realitzat, en part, durant una estada a França, possible gràcies a un ajut concedit per la CIRIT, Diari Oficial de la Generalitat n° 486, 16 de Novembre de 1984.

<u>Abstract</u>: We deal with on-line log-space Turing Machines, with markers in the work tapes.

In this type of machines we prove the existence of a language L satisfing

L
$$\in$$
 NSPACE (log n) , $\overline{L} \in$ NSPACE (log n)

and

We give a explicit definition of L. The main theorem uses minimisation techniques of deterministic finite automata.

Resum: Tractem amb Màquines de Turing que tenen marcadors en les cintes de treball.

En aquest tipus de màquines demostrem l'existència d'un llenguatge L que satisfà

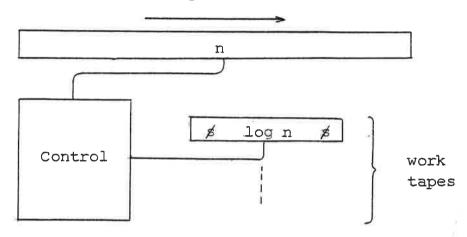
L
$$\in$$
 NSPACE (log n), \overline{L} \in NSPACE (log n)

i

Donem la definició explícita de L.El teorema principal utilitza les tècniques de minimització d'autòmats finits.

Our model of machine is the on-line log-space Turing machine. When the machine has markers in the work tape, we note MT .

More specifically we are interested in on-line log-space TM with markers. Schematically:



We denote the complexity classes defined by these machines by a subindex \$. For example NSPACE (log n) is the class of languages defined by a non-deterministic on-line log-space Turing machine with markers.

Let us define the language L.

<u>Definition 1</u>: Let us consider the language L over $\{0,1,a\}^*$ which is given by:

Throughout the paper $\frac{1}{2}k$ or $\log k$ will mean $\left\lfloor \frac{1}{2}k \right\rfloor$ or $\left\lfloor \log k \right\rfloor$ The language L satisfies

Lemma 1: The defined language verifies

$$L \in NSPACE_{g}(log n)$$

$$\bar{L} \in NSPACE_{g}(\log n)$$

<u>Proof.</u> Let $w \in L$ be such that $w = g_1 a g_2 a \dots g_k a$, then $1 \le k \le w$.

The following algorithm simulates a non-deterministic TM, which accepts L in log n space:

- (i) The machine guess k. This can be done in log space.
- (ii) Find log k.
- (iii) Count the number of blocs g in w having l in position log k. Let y be that number.
- (iv) Test if $y = \frac{1}{2}k$
- (v) Test if k is the number of blocs.

Asimilar non-deterministic machine to accept L could be obtained by changing:

(iv)' Test if
$$y \neq \frac{1}{2}k$$
.

Remark: By a small change in the last lemma it can be proved that

$$\bar{L} \in NSPACE(\log n)$$

We study a deterministic machine for L.

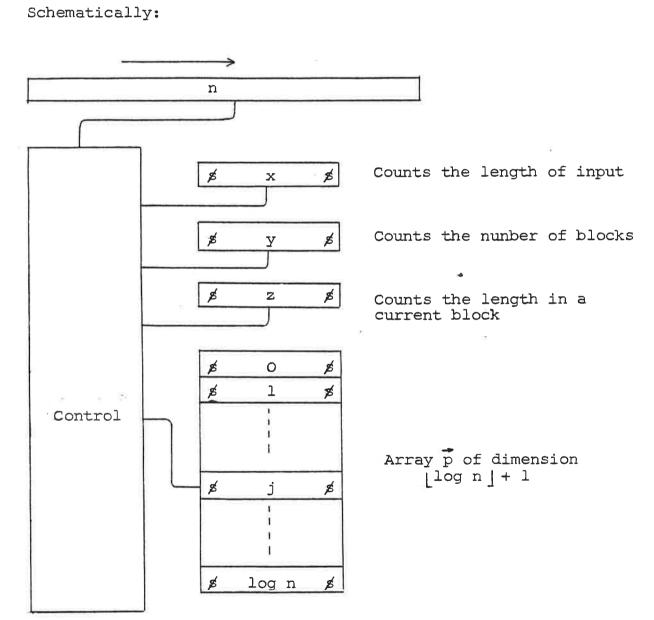
Lemma 2 : $L \in DSPACE(\log^2 n)$

<u>Proof.</u> Let w be in L with $w = g_1 a g_2 a ... g_k a$, then $1 \le k \le |w| = n$

as $0 \le \lfloor \log k \rfloor \le \lfloor \log n \rfloor$ then:

 $\label{eq:log_n_$

When the current bloc g has a l in position $t, l \le t \le \log n$, the p(t) counter increases by l the content.



When the machine has read a left factor $w = g_1 a g_2 a \cdots g_m a$ for every $0 \le i \le \lfloor \log n \rfloor$, p(i) = t iff there exists exactly t blocs g with l in position i.

When we have read the entiere input word, the acceptance condition is

$$p(\lfloor \log y \rfloor) = \lfloor \frac{y}{2} \rfloor$$

We shall study memory bounds. The counters x,y,z are bounded by $\log n.As p(i) \leq \log n$ then

$$\sum_{i=0}^{\log n} p(i) \sim (\lfloor \log n \rfloor)^2$$

In the next lemmas we shall consider configurations like

$$c = (x, y, z, \vec{p})$$

Therefore our interest lyes in some components of vector \overrightarrow{p} . We cut \overrightarrow{p} in three parts.Look at the next figure. We shall study components between $1 + \frac{1}{2}\log n$ and $1 + \frac{3}{4}\log n$. If a word is accepted using the counter $1 + \frac{1}{2}\log n$ then

$$p(1 + \frac{1}{2}\log n) = \frac{1}{2} \cdot 2^{1 + \frac{1}{2}\log n} = \sqrt{n}$$

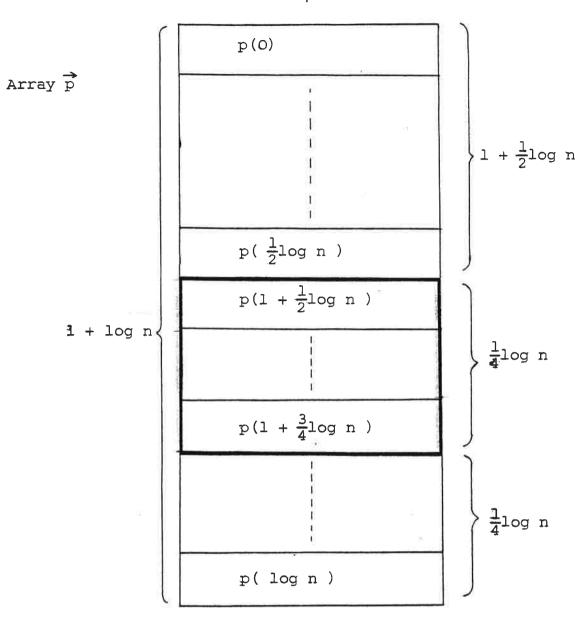
In general for every counter

$$1 + i + \frac{1}{2}\log n$$
 , $0 \le i \le \frac{1}{4}\log n$

we have

$$p(1 + i + \frac{1}{2}\log n) = 2^{i}\sqrt{n}$$

We are interested in an accessibility problem for a nonpolynomial number of configurations.



To study that problem, we fill the vector \overrightarrow{p} in such a way that: (i) p(i) = 0 , $0 \le i \le \frac{1}{2} \log n$

(ii)
$$p(i) = x$$
 , $1 + \frac{1}{2} \log n \le i \le 1 + \frac{3}{2} \log n$, $x \le \sqrt{n}$

(iii)
$$p(i) = 0$$
, $2 + \frac{3}{2} \log n \le i \le \log n$

The values of \overrightarrow{p} and the accessibility of these configurations induce us to define the set Q and the words $g_{\overrightarrow{\sigma}}$.

Definition 2 For every n, let Q be the set of vectors

$$Q = \{0\}^{1 + \frac{1}{2} \log n} \cdot \{0, 1, \dots, \sqrt{n} - 1\}^{\frac{1}{4} \log n} \cdot \{0\}^{\frac{1}{4} \log n}$$

for every $\overrightarrow{q} \in \Omega$ consider the word

$$g_{q} = g_{1}ag_{2}a...g_{1}a...g_{\sqrt{n}}a$$

such that for each $1 \le i \le \sqrt{n}$ we have

$$g_{i} = 0$$

$$u_{1}^{i}u_{2}^{i}...u_{m}^{i}...u_{\frac{1}{4}}^{i}log n$$

with

$$u_{m}^{i} = \begin{cases} 1 & \text{if } q(1+m+\frac{1}{2}\log n) \ge i \\ \\ 0 & \text{otherwise} \end{cases}$$

Given any j,0 \leqslant j \leqslant \sqrt{n} we denote by $g_{\vec{q},j}^{\rightarrow}$ the left factor of $g_{\vec{q}}$ containing j bloks,formally

$$g_{\vec{q},j} = g_1 a g_2 a \dots g_j a$$

notice that

$$g_{\vec{q}}\sqrt{n} = g_{\vec{q}}$$

We are interested in values for n such that $\frac{1}{2}\log n, \frac{1}{4}\log n, \sqrt{n}$ are naturals, let us consider

$$n = 2^{4x} , x \ge 1$$

then
$$\sqrt{n} = 2^{2x}$$
, $\frac{1}{2}\log n = 2x$, $\frac{1}{4}\log n = x$

This we obtain a second version of the last definition

Definition 3: Let $n = 2^{4x}$, $x \ge 1$ then consider the set

$$Q = \{0\}^{1+2x} \cdot \{0,1,...,2^{2x} - 1\}^{x} \cdot \{0\}^{2x}$$

for every $\vec{q} \in \mathbb{Q}$ let us consider the word

$$g_{\vec{q}} = g_1 a g_2 a \dots g_i a g_2 x a$$

such that for each $i, l \le i \le 2^{2x}$ we have

$$g_{i} = o^{2x+1}u_{1}^{i}u_{2}^{i}...u_{m}^{i}...u_{x}^{i}$$

with

$$u_{m}^{i} = \begin{cases} 1 \text{ if } q(1 + 2x + m) \geqslant i \\ 0 \text{ otherwise} \end{cases}$$

Given any j, $1 \le j \le 2^{2x}$ let $g_{\vec{q},j}$ denote the left factor of $g_{\vec{q}}$ with j blocks

$$g_{\vec{q},j} = g_1 a g_2 a \dots g_j a$$

notice that

$$g_{\vec{q},2}^2 = g_{\vec{q}}$$

In the next lemma we shall see that after reading $g_{\overrightarrow{q}}$ the MT satisfies

$$\vec{p} = \vec{q}$$

Lemma 3 : Take $q \in Q$ and $1 \le m \le \frac{1}{4} \log n$.

(a) When the TM has read the prefix $g_{\vec{q},j}$, the counter $1 + \frac{1}{2}\log n + m$ satisfies

$$p(l + \frac{1}{2}log n + m) = \begin{cases} j & \text{if } u_m^j = l \\ \\ q(l + \frac{1}{2}log n + m) & \text{otherwise} \end{cases}$$

(b) When the TM has read the complete word $g_{\overrightarrow{q}}$ it in the configuration

$$c_{\overrightarrow{q}} = (\sqrt{n}(2 + \frac{3}{4}\log n), \sqrt{n}, 0, \overrightarrow{q})$$

Proof We denote $r = 1 + \frac{1}{2}\log n + m$.

(a) When the TM has read the block $g_{\overrightarrow{q},j}$ there are two possibilities.

If $l \le j \le r$ the counter p(r) has value j.

By construction the blocks $g_{q,1}, g_{q,2}, \dots, g_{q,r}$ satisfy:

$$u_{m}^{1} = u_{m}^{2} = \dots = u_{m}^{r} = 1$$

If $r < j \le \sqrt{n} - 1$ the counter p(r) has value q(r).

The blocks $g_{\vec{q},r+1}$, $g_{\vec{q},r+2}$, ..., $g_{\vec{q},\sqrt{n}-1}$ satisfy

$$u_{m}^{r+1} = u_{m}^{r+2} = \dots = u_{m}^{\sqrt{n} - 1} = 0$$

- (b) We denote $c \Rightarrow = (x, y, z, p)$
- (i) After reading the complete word $g_{\begin{subarray}{c} \end{subarray}}^{\begin{subarray}{c} \end{subarray}}$ we have processed an exact number of blocks.

That means z = 0.

(iii) By construction the number of blocks is \sqrt{n} , then $y = \sqrt{n}$. (iii) Every block g_i a has a length of:

$$1 + 1 + \frac{1}{2}\log n + \frac{1}{4}\log n = 2 + \frac{3}{4}\log n$$

As there are \sqrt{n} blocks we come to

$$x = \left| g_{q} \right| = \sqrt{n} (2 + \frac{3}{4} \log n)$$

(iv) Considering that $g_{\overrightarrow{q},\sqrt{n}} = g_{\overrightarrow{q}}$ we come to $\overrightarrow{p} = \overrightarrow{q}$

Lemma 4: For every $\overrightarrow{q} \in \Omega$ we have $g_{\overrightarrow{q}} \notin L$.

Proof The word $g_{\overrightarrow{q}}$ has \sqrt{n} blocks. If $g_{\overrightarrow{q}} \in L$ we need $q(\log n) = \frac{1}{2}\sqrt{n}$. By construction $q(\frac{1}{2}\log n) = 0$ then $g_{\overrightarrow{q}} \notin L$.

<u>Lemma 5</u>: Consider \vec{q} , \vec{q} in Q, with $\vec{q} \neq \vec{q}$, we cannot merge the configurations $c_{\vec{q}}$ and $c_{\vec{q}}$.

Proof As $\vec{q} \neq \vec{q}$ there exists $m, l \leq m \leq \frac{1}{4} \log n$, such that \vec{q} and \vec{q} differ in component

$$r = 1 + \frac{1}{2} \log n + m$$

suppose

$$x = q(r) > q'(r) = y$$

Take

$$\begin{aligned} \mathbf{g}_{\mathbf{q}} &= \mathbf{g}_{\mathbf{l}} \mathbf{a} \mathbf{g}_{\mathbf{2}} \mathbf{a} \cdots \mathbf{g}_{\mathbf{n}} \mathbf{a} & \text{with } \mathbf{g}_{\mathbf{i}} &= \mathbf{0}^{\mathbf{l}} + \frac{1}{2} \log n_{\mathbf{u}_{\mathbf{l}}^{\mathbf{i}} \mathbf{u}_{\mathbf{2}}^{\mathbf{i}} \cdots \mathbf{u}_{\mathbf{t}}^{\mathbf{i}} \\ \mathbf{g}_{\mathbf{q}^{\mathbf{l}}} &= \mathbf{f}_{\mathbf{l}} \mathbf{a} \mathbf{f}_{\mathbf{2}} \mathbf{a} \cdots \mathbf{f}_{\mathbf{n}} \mathbf{a} & \text{with } \mathbf{f}_{\mathbf{i}} &= \mathbf{0}^{\mathbf{l}} + \frac{1}{2} \log n_{\mathbf{v}_{\mathbf{l}}^{\mathbf{i}} \mathbf{v}_{\mathbf{2}}^{\mathbf{i}} \cdots \mathbf{v}_{\mathbf{t}}^{\mathbf{i}} \\ \mathbf{with} \mathbf{t} &= \frac{1}{4} \log n & \\ \mathbf{we} \mathbf{h} \mathbf{a} \mathbf{v} \mathbf{e} \end{aligned}$$

$$g_{x} = 0 + \frac{1}{2} \log n \\ u_{1}^{x} ... u_{m-1}^{x} l u_{m+1}^{x} ... u_{t}^{x}$$

$$f_{x} = 0 + \frac{1}{2} \log n \\ v_{1}^{x} ... v_{m-1}^{x} o v_{m+1}^{x} ... v_{t}^{x}$$

When the machine has read the left factor $g_{\vec{q},r}$. That counter r has his maximum value x. That means p(r) = x.

When the machine has read $g_{q,Y}$ the counter satisfies p(r) = y. We need to complete g_q with a word g, such that $w = g_q$ g satisfies:

- (1) The word w has length n.
- (2) The word w has 2^r blocks.
- (3) The word w has exactly $\frac{1}{2}2^r$ blocks with a value 1 in position r.

Considering (1),(2) and (3) we conclude $w \in L$. We proceed step by step.

(a) Consider a word g of the form

$$g = h_1 a h_2 a \cdots h_1 a$$
 with $h_j \in \{0,1\}^*$, $1 \le j \le i$. It is easy to see that

$$i = \sqrt{n}(2^{m-1} - 1)$$

(b) We need a total of

$$\frac{1}{2} 2^r = 2^m \sqrt{n}$$

occurrences of l in position r.As $g \rightarrow contain \times occurrences$, g needs to contain

$$t = 2^m \cdot \sqrt{n} - x$$

occurrences of 1 in position r.

(c) We define

$$h = 0$$
 $1 + \frac{1}{2} \log n$ $0^{m-1} \log \frac{1}{4} \log n - m$

then $|h| = 1 + \frac{3}{4}\log n$ and h has only one occurrence of l in position m.

Take $h_1 = h_2 = \dots = h_t = h$, when $t = 2^m \sqrt{n} - x$.

(d) In this moment we have

$$w = g_q(ha)^t h_{t+1} a \dots h_i a$$

it is easy to see that $r-i=\sqrt{n}\,(2^m-1)+x=s$ as $1\leqslant m\leqslant \frac{1}{4}\log n$, $0\leqslant x\leqslant \sqrt{n}-1$ we come to $r-i\ \geqslant \sqrt{n}+x>0$

(e) We take $h_{t+1}=\ldots=h_{i-1}=\lambda$, where λ is the empty word and $h_i=0^y$, taking y to obtain a word of length n. Finally

$$w = g_{q}^{*}(ha)^{t}a^{s}O^{y}a$$

with

$$n = |w| = (2^{m}\sqrt{n} + \sqrt{n} - x)(2 + \frac{3}{4} \log n) + 2^{m}\sqrt{n} - \sqrt{n} + y - 1$$

as $m \le \frac{1}{4} \log n$, $2^m \sqrt{n} \le n^{3/4}$, for increasing values of n,y becomes positive, and the word w exists.

(f) Consider the word $w' = g_{q'}^{\bullet} g$, with the same g as in w.We have $w' \not\in L$, then $c_{q'}^{\bullet}$ and $c_{q'}^{\bullet}$ cannot be merget.

Corollary 1: The language L has a deterministic space lower bound given by Ω (log²n) infinitely often.

Proof The cardinal of the set Q is given by

$$||Q|| = (\sqrt{n} + 1)^{\frac{1}{4}\log n} \sim n^{\frac{1}{8}\log n}$$

As for $\overrightarrow{q} \neq \overrightarrow{q}$ we cannot merge configurations of deterministic

TM, this machine has at least $\parallel Q \parallel$ configurations.

To code these configurations we need at least

$$\log(n^{\frac{1}{8}\log n}) = \log^2 n$$

bits.

We can conclude:

Theorem 1 : L ¢ DSPACE (log n)

In connection with initial index(Ga,83) it is easy to prove that:

$$a_L(n) \sim \theta(n^{\frac{1}{8}\log n})$$

References

(Ga,83) Gabarro, J. 1983. "Initial Index: A New Complexity Function For Languages. ICALP, 83, LNCS 154, 226-236.