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Abstract—The development of efficient methods for the control
system performance verification has drawn a lot of attention
recently. In this paper, the use of viability theory for this
purpose is investigated in case of non-linear systems. In particular,
verification algorithms based on the use of the computation of in-
variance and viability kernels and capture basin are proposed. A
Lagrangian method has been used in order to approximate these
sets for nonlinear systems. Because of simplicity and efficient
computations, zonotopes are adopted for set representation. An
application example based on a well known control benchmark
is provided in order to show the effectiveness of the proposed
method.

I. INTRODUCTION

Nowadays, verification of the performance of a designed
control loop has drawn a lot of attention. Reachability analysis
is widely used in this area as an acceptable tool for verification
[1]. Safety of the system is a major issue that is investigated
using reachability analysis [2]. There is also a rich literature
in experimental verification of control systems [3], [4], [5].

In assessing the control performance, the goal is essentially
to determine whether changes have occurred in some measure
or characteristic parameter of the system [6]. Let the true
process parameter of interest be denoted by 6. This might be
the process states, variance or any other performance indices.
To detect a change in 0, it is common to test a null hypothesis:
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where 6y is the desired process characteristics. Testing the
null hypothesis requires specification of other parameters,
such as critical values. When the test statistics are calculated
sequentially, the performance of the test procedure is often
characterised in terms of its run length distribution [7].

Viability theory provides a solid framework for control
synthesis of constrained dynamical systems in a set-valued
form [8], [9], and has been utilized in many applications such
as robotics [10], aircraft collision avoidance [11] and air traffic
management [12]. It also plays an important role in safety
verification in control systems, a particular important problem
for high-risk, expensive, or safety-critical applications. In many
engineering systems, input constraints limit the systems ability
to remain within a desired safe region of operation. For such
systems, constraints on the state space determine the safe set.
It is important to identify the subset of the safe set for which
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the existence of a control input that keeps the states of the
system within the safe region can be guaranteed.

In this paper, three concepts in viability theory are used
to verify performance of the control system. These concepts
are invariance kernel, viability kernel and capture basin. The
main contribution of this paper is an algorithm proposed
for performance verification of a control system using these
definitions from viability theory. This algorithm is developed
based on the equivalency between concepts that until now
were used for performance verification and viability theory
concepts. The difficulty with viability theory relies on kernel
computations. This paper also proposes algorithms to find
these kernels. Because of simplicity and efficient computations,
we adopt zonotopes for set representation, while for system
representation the non-linear system model is brought to a
Linear Parameter Varying (LPV) representation. The represen-
tation of the non-linear model in this way facilitates the set
computations based on zonotopes that are required to apply the
viability theory to the control system performance verification
problem.

This paper is organized as follows. In Section II, some
preliminaries about viability theory concepts are provided. In
Section III, we show how viability theory sets can be calculated
using LPV nonlinear system representation. The algorithm for
performance verification is provided in Section IV. Simulation
results are provided in Section V. In this Section, an example
on two-tank system is given in order to illustrate the proposed
method. Finally, concluding remarks are provided in Section
VI

II. PRELIMINARY CONCEPTS

In control engineering, a state space representation is a
mathematical model of a physical system as a set of inputs
u, state variables x and unknown inputs w, related by a set
dynamic equations represented by

L (x () = [ x(0),u(t),w(1))
x(r)eX
u(t)elU
w(t)eWw

ey

where the time ¢ ranges throughout a time domain 7. The
time domain 7' can be either continuous or discrete. .Z is the
differential operator corresponding to the given time domain



(differentiation in the case of a continuous-time system and
differencing in the case of a discrete-time system). It is
assumed that the above system is defined in a proper open
set O C R” and that there exist a globally defined solution for
every initial condition x(0) € O. The evolutionary system:

S:X — C(0,+e0;X)

maps any initial state x € X to the set S(x) of evolutions x (.)
starting from x(0) and governed by (1).

Viability theory is concerned with ensuring that a system
state remains within a viability constraint set K C RY. Any
trajectory of system (1) that leaves the set K at some point in
time is considered to be no longer viable.

Definition 2.1 (Viability Kernel): The viability kernel of K
under the evolutionary system S is the set Viabs (k) of initial
states x (0) € K from which starts at least one evolution x (¢) €
S (x) viable in K for all times ¢ > 0:

. o [x(0) € K|Fx(.) € S(x)
Viabs (K) = {such that vt >0, x(t) € K}
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Sometimes, from the engineering point of view, the exis-
tence of at least one solution in S is not enough, since nothing
is said about all other possible solutions. So, another stronger
concept is defined known as the invariance kernel.

Definition 2.2 (Invariance Kernel): Let K C X be an envi-
ronment and C C K be a target. The subset Invs (K,C) of initial
states x(0) € K such that all evolutions x(z) € S(x) starting at
x(0) are viable in K for all 7 > 0 or viable in K until they
reach C in finite time is called the invariance kernel of K with
target C under S.

Invs (K) £ { x(0) € K|Vx(.) € S(x),Vt >0, x(t) €K} (3)

Positive invariance in set theory has the same definition as
invariance kernel. Viability kernel and weak positive invariance
are also equivalent definitions in viability and set theories,
respectively [9]. Capture basin is another concept that has a
wide range of applications, for example, in process control

[13] and economics [14].

Definition 2.3 (Capture Basin): The capture basin of C
(viable in K) under the evolutionary system S is the set
Capts (K,C) of initial states x(0) € K from which starts at
least one evolution x(7) € S(x) viable in K on [0,7) until the
finite time 7 when the evolution reaches the target at x(T) € C.

Reachability analysis identifies the set of states backward
(forward) reachable by a constrained dynamical system from
a given target (initial) set of states. The notions of maximal
and minimal reachability analysis were introduced in [15].

Definition 2.4 (Forward Maximal Reachable Set): The
forward maximal reachable set at time instant k is the set of
states for which there exists an input such that the trajectories
emanating from initial states in 7 reach that set exactly at
time instant #:

Reach (T) £ {x(1) e R"|3u(.) €Ujp,x(0) €T} (4

Definition 2.5 (Backward Maximal Reachable Set): The
backward maximal reachable set at time instant ¢ is the set
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of initial states for which there exists an input such that the
trajectories emanating from those states reach 7 exactly at
time instant ¢:

Reach? (T) £ {xo € R"|Fu(.) €Uy, x() €T} (5

III. COMPUTATION OF VIABILITY SETS

The difficulty with the application of viability theory is the
computation of the related sets presented in Section 2. In this
section, several algorithms are proposed in order to derive these
sets based on zonotopic sets and the LPV representation of the
non-linear system. Here, we use the discrete-time quasi-LPV
model on the non-linear system (1):

x(+1)=Ap (1) x(6)+B(p (1) u() +E(p (1)) w(t) (6)
where x(¢) € X is the state, u(¢) € U are the control inputs
and w(t) € W are the unknown inputs.

A. Invariance Kernel Computation

Using Lemma 4.1, the zonotope X; that bounds the tra-
jectories of the system (6) at instant ¢ is computed from



the previous approximating zonotope at time instant ¢ — 1,
X1 =x_ OH,B"

Reachf (X,_1) =X, = x{ © H'B" v

= mid (A (p (1~ 1)) +mid (B(p (1 — 1))
+mid (E (p (t—1)))we

H;E:[Jl h 3 Jy I Je |

Ji = seg (GA(p (1 —1)H" )

,_ diam(Apl 1)),

t—1

2 i (®)
J3 =seg (OB (p (t—1))H")

where 'mid’ denotes the center and ’diam’ the diameter of the
interval, <) is zonotope inclusion and seg (Q) = H considering
that Q =+ H" is a zonotope [16]. Note that the set of states
has an increasing number of segments when generating the
zonotope X; using this method. In order to control the domain
complexity, a reduction step have to be used. Here, we use the
method proposed in [17] to reduce the zonotope complexity.
It is also important to note that p (f — 1) must be calculated
based on information from x{_,.

The sequence of sets Reachf (X;) for the dynamic system
(6) can be used iteratively to find invariance kernel as follows

Inv(X) = é) Reach! (X,)

An algorithm is proposed in order to calculate invariance
kernel based on above discussion.

Algorithm 1 Invariance Kernel Estimation

Ko+ X
t+1
while t <N do
if K, = & then
Ky +— O
break
end if
if K; = K;_1 then
KN — Kt
break
end if
K, «+ Reach! (K, 1) (Eq. (7))
t+t+1
end while

return (Ky) Ky =Inv(X)

B. Viability Kernel Computation

Lagrangian methods have been successfully applied to the
computation of reachable sets [18]. In contrast to Eulerian
methods, Lagrangian methods use representations that follow
the vector field flow. Since Lagrangian methods do not depend

on gridding the state space, it is computationally feasible to
analyze high-dimensional systems.

In this section, based on [19], a method of expressing
finite horizon viability kernels in terms of reachable sets is
presented. This provides a modified version of Saint-Pierres
viability kernel algorithm that can be implemented using
efficient and scalable techniques developed within the context
of reachability analysis. We can reformulate this recursive
definition of the finite horizon viability kernels K}, in terms of
the backward reach set over one discrete-time step Reach? (X).

Theorem 1. The sequence of finite horizon viability kernels

K, can be computed recursively in terms of reach sets as
Ky=K

B ©))

K[+] - K() ﬂReaChl (K[)

Proof. See [19].

Now, considering nonlinear system expressed in discrete-
time in the form (6), the backward reachable set over a single
time step is computed as

Reach (X) =A(p (1)~ {X @ (=B(p (1)) Ue (—E (p (f))()l‘g)}

Here A(.)_1 denotes the pre-image of a set under the map
A:RY - RY, We will assume that A is non-singular, and thus
the pre-image of A can be calculated simply by applying the
linear transformation A(p (¢))~" to the set

X®(=B(p)Ud(-E(p(1)W

Considering zonotopic sets, (8) can be rewritten in order
to calculate backward reach set

Reach? (X) =X, | =x° @ H |B"
x5y = mid (A(p (1))t +mid (~A(p (1)) "B (p (1)) ) uf

+mid (~A(p (1) 'E (p (1)) ) w*
H =[N h J3 Ju J Jo |

Ji = seg (OA(p (1)) HY)
diam (A(p (t))*l)

J2 = 3 x,c

Js =seg (0= A(p (1)) "B (p (1)) H")
diam (~A(p (1)) 'B(p (1)))

J4= 2 u

Js =seg (0= A(p (1)) "E(p (1) H”)
diam (~A(p (1)) "'E(p (1))

J6= ) w

C

C

1)
This method is similar to the one that was proposed for
invariance kernel computation. The difference is that in in-
variance kernel computation forward reachable set is used, but
backward reachable set is used in viability kernel computation.
Here, a similar algorithm for computing viability kernel for
system (6) based on (9) and (11) is presented.



Algorithm 2 Viability Kernel Estimation
Ko+ X
t+1
while t <N do
if K, = & then
Ky +— <
break
end if
lf Kl‘ = Kt—l then
Ky < K;
break
end if
L < Reach? (K, 1) (see Eq. (11))
Kiy1 +—KoNL
t+—t+1
end while
return (Ky)

Ky = Viab (X)

C. Capture Basin Computation

Based on capture basin definition, it is clear that we can
easily modify Algorithm 2 in order to find capture basin. In
the viability kernel definition, no time constraint is considered.
Therefore, the algorithm is repeated until it converges to a set.
But, in the capture basin concept, there is time limit that can
be considered by a small change in stop criteria of the viability
algorithm. Actually, we must find backward reachable tube for
each time instant ¢. In this manner, Algorithm 3 is proposed.

Algorithm 3 Capture Basin Estimation

Ky« C

t+1

while t < T do
if K, = & then
Kr+— o
break
end if
K; < Reach? (K;_1) (see Eq. (11))
t+t+1

end while

Ky =KrnX

return (Ky) Ky = Capt (X,C)

IV. SYSTEM VERIFICATION
A. Problem description

The problem of system verification has recently received
much attention (see e.g. [1]) providing the answer to questions
as: is a potentially unsafe configuration, or state, reachable
from an initial configuration?. The problem of system verifica-
tion may be encoded as a condition on the region of operation
in the system state space: given a region of the state space
that represents unsafe operation, prove that the set of states
from which the system can enter this unsafe region has empty
intersection with the system initial states (see Fig. 2).

In this paper, the aim is to investigate if the performance
requirements on the closed-loop system are satisfied. This can
be illustrated by using the notion of the system behaviour (Fig.
3). The plant has the behaviour 3, and the controller 3. The set
B describes the I/O pairs (U,Y) that satisfies the control law.

Unsafe initialization

Fig. 2. Backward reachable set for safety verification

Fig. 3. System behaviour characterization

Since the I/O pairs of the closed loop system are consistent
with both the plant and the controller, the behaviour of the
closed-loop system is given by the intersection B, = B, N B,
(which is drawn in grey). The behavioural requirements of the
system can be shown as the f; of those I/O pairs. As the grey
set lies completely within the set fq

ﬁcb - ﬁs

the closed-loop system satisfies the performance specifications.

B. System verification using viability theory

Based on the viability concepts recalled in Section II and
the algorithms for computing the sets involved presented be-
fore, it can be readily deduced that there are some similarities
that allow to use viability theory in performance verification.
It is desirable to find equivalency between concepts that until
now is used for performance monitoring and viability theory
concepts. The system is required to work in a set that preserves
the safety of the system. This set, that is shown with f in the
Fig. 3, can be represented with viability kernel, i.e:

Bs = Viabs (K)

Therefore, if the system works in viability kernel, safety
requirements are met. In the viability kernel definition, there
is a limitation that the system must have at least one evolution
that remains in the set. This is close to the concept of Lyapanov
theory for stability.

For assessing and verifying if the controller performance
is acceptable, capture basin is used. Capture basin is a set that
shows the capability of the system to go toward a target set.
After finding viability kernel based on constraints of states and
inputs, the capture basin can be obtained. In this manner, it is
possible to consider viability kernel or a part of the set (based
on steady state or a predefined objective trajectory) as the
target when determining the capture basin. For the equivalency



purpose, the intersection of the system and controller behaviour
set can be considered as the capture basin:

ﬁCb = CaptS (ch)

This means that if the system works in the capture basin, it
has the capability to arrive to the target in a finite and desired
time that is used in the capture basin derivation algorithm. The
target can be considered as small set near steady state inside
viability kernel or a small set around a predefined trajectory.
Also, the invariance kernel can be used as target in the capture
basin computation:
C =Invs(K)

V. ILLUSTRATIVE EXAMPLE

In this section, the algorithm for system verification de-
veloped in the previous sections is applied to a coupled-tank
process that is modeled in a quasi LPV form.

The dynamic model of the water tank system can be written
as [20]

I (1) = = (5/5) V/2e /I (1) + (K/g) u (1) +wi (1) 1)
o (1) = (5/5) /28 [/l (0) = /B2 ()] w2 (1)

where u(t) is the voltage applied to the pump, A (¢) and h; (¢)
are system states, wy (7), wy (¢) are bounded state perturbation
and the parameters are as follows: S = 15.5179cm? is the cross
section area of the tanks; s = 0.1781cm? the cross section
of the tanks outflow orifice; k¥ = 3.3cm> / Vs is the gain of
the pump; and g = 981cm / s? the gravitational constant. After
Euler discretisation with sampling period 7 = 1 s, the whole
system is formulated in its quasi-LPV form through parameter
non-linear embbeding approach [20]

x(t+1)=A(p))x(t) +Bu(t) + Ew(t)
y(t) =Cx(t) +n (1) (13)

where

0
B=1[ k/S 0]"
c=[0 1]
E=t1 1]
no=[m@ m@

The varying parameters are defined as follows

s | 2g .
pl(t)*S hi([)v 1*172

7N (¢) is measurement noise matrix. Disturbances and noises
are considered bounded by means of zonotopes with center in
0 and segment of 0.01. Let assume that the system should
satisfy the following specifications:

e the goal is for A, (¢) to track a reference of 5 cm.

251 Initial Zonotope

sk JestsaC—Invariance Kernel

Fig. 4. Invariance kernel of two tank system

25F /

Initial Zonotope:

Viability kernet

Fig. 5. Viability kernel of two tank system

e it must have the ability to go near the reference in 5
sample times.

e the system must work in a safe area.

For finding viability and invariance kernels, initial zonotope
for states x is considered as:

SHEL

The initial zontope for states is chosen to cover all the
possible values for states. The zonotope for the input is
chosen in order to achieve the reference. Therefore, for finding
invariance kernel (and capture basin), it is considered as:

U=55d18
and for finding viability kernel:
U=041p

Invariance and viability kernels of this system are computed
using Algorithms 1 and 2, respectively. They are shown in
Figures 4 and 5. Invariance kernel is around the steady state
of the system and can be used as a tool for detecting faults
in steady state [20]. Also, it can be used as initial set for
capture basin construction. Viability kernel can be interpreted
as a tool for verifying if the system has the ability to reach the
steady state. In this example, because in each height there is a
possibility to go to desired steady state, viability kernel covers
all the initial zonotope. It means that if no time limitation
is considered, each state can reach the steady state. Hence,
system is working in safe area (viability kernel).

Capture basin is computed by means of Algorithm 3 using
initial zonotope (invariance kernel):
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Fig. 6. Capture basin of two tank system in 5 steps
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for constructing capture basin, five time steps are considered.
Regarding sampling time of the system(7 =1 s), the system
requires 5 seconds to reach the steady state (initial zonotope).
Capture basin is the intersection of active area and computed
capture basin. Using the capture basin, it can be assessed if the
system has the possibility to achieve the desired set. It must
be pointed out that starting inside capture basin do not mean
that the system will inevitably go to the target in 5 seconds.
This means that the system has the opportunity to go there in
desired time.

VI. CONCLUSION

In this paper, viability theory is used to verify performance
of a control system. In this manner, a systematic way for
evaluating performance of a control system is provided. The
paper also proposes a set of algorithms based on the use
of zonotopes and the LPV representation of the system for
computing the viability theory sets. An algorithm that allows
the system performance verification using these sets is also
proposed. An example based on a tank system is provided
to illustrate the proposed approach. In viability theory, there
are more general definitions like absorption basin, restoring
viability and so on that can also be used in this context. This
will part of the future research as well as to the application of
the viability theory to fault-tolerant control.
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