
1

Energy Efficient Ethernet on MapReduce Clusters:
Packet Coalescing To Improve 10GbE Links

Renan Fischer e Silva, Paul M. Carpenter
Barcelona Supercomputing Center - Centro Nacional de Supercomputacion (BSC–CNS)

Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
Email: {renan.fischeresilva,paul.carpenter}@bsc.es

Abstract—An important challenge of modern data centers
is to reduce energy consumption, of which a substantial pro-
portion is due to the network. Switches and NICs supporting
the recent Energy Efficient Ethernet (EEE) standard are now
available, but current practice is to disable EEE in production
use, since its effect on real world application performance is
poorly understood. This article contributes to this discussion by
analysing the impact of EEE on MapReduce workloads, in terms
of performance overheads and energy savings. MapReduce is the
central programming model of Apache Hadoop, one of the most
widely used application frameworks in modern data centers.

We find that, while 1GbE links (edge links) achieve good
energy savings using the standard Energy Efficient Ethernet
implementation, optimum energy savings in the 10GbE links
(aggregation and core links) are only possible if these links
employ packet coalescing. Packet coalescing must, however, be
carefully configured in order to avoid excessive performance
degradation. With our new analysis of how the static parameters
of packet coalescing perform under different cluster loads we
were able to cover both idle and heavy load periods that can
exist on this type of environment. Finally, we evaluate our
recommendation for packet coalescing for 10GbE links using the
energy–delay metric. This article is an extension of our previous
work [1], which was published in Proceedings of the 40th Annual
IEEE Conference on Local Computer Networks (LCN 2015).

Keywords—IEEE 802.3az, Green Ethernet, Energy Efficiency,
Packet Coalescing, MapReduce, Hadoop

I. INTRODUCTION

One of the greatest concerns in the design of data centers
is the need to reduce energy consumption. In recent years,
the number of data centers has multiplied, and worldwide,
they are now responsible for a significant proportion of global
electricity consumption [2]. Recently, in 2014, U.S. data
centers were responsible for 1.8% of total U.S. electricity
consumption. At an average cost of 10 cents per kWh, the
annual energy cost of U.S. data centers is about $7 billion per
year [3]. Another study even showed that the cost of energy on
current data centers had exceeded the cost of the hardware [4].

A significant proportion of a data center’s energy consump-
tion is caused by the network. D. Abts et al. [5] recently
showed that a typical data center network consumes 12% of
the total system power at full load, and even more when the
CPU and memory are not fully utilized, which is common in
data centers. Another study put the total energy consumption
for network switches at 30% [6], divided among top of
rack switches (15%), which typically use 1GbE links; and
aggregation switches (10%) and core switches (5%), both

typically employing 10GbE links. The proportion of energy
consumed by the network is likely to increase, as processors
and other components continue to improve in energy efficiency
and energy proportionality.1 There is still opportunity to reduce
network energy consumption through energy proportionality,
since interconnect links, which consume up to 65% of the total
network power [7], always consume full power, even when the
link is idle [8]. Broadcom estimates that it could translate into
a reduction of CO2 emissions by up to 2.85 million metric
tons per year only in U.S [9].

The Energy Efficient Ethernet (EEE) standard, approved by
IEEE in 2010, improves Ethernet energy proportionality by
defining a link sleep mode known as Low Power Idle (LPI).
Although the standard defines the low-level mechanisms for
entering and leaving LPI mode, its designers chose to promote
competition between vendors by not defining how to decide
when to enter and leave sleep mode. EEE was initially
analysed for Small Office/Home Office (SOHO) environments,
but ongoing efforts are analysing its deployment for data center
applications, including video streaming [10] and scientific
computing [11]. Since EEE can incur significant performance
overheads, many system vendors still advise their customers to
disable it in production use [12]–[14], at least until its impact
on real applications is better understood.

Our previous work was the first to study the impact of
Energy Efficient Ethernet on MapReduce workloads [1].
MapReduce [15] and its open-source implementation, Apache
Hadoop [16], are widely used for the processing of huge
data sets on large commodity clusters. MapReduce presents
a specific traffic pattern, including all-to-all communication
in the shuffle phase, between mappers and reducers. It
is also representative of a wider phenomenon, the move
from traditional north–south data traffic, i.e. between the data
center and external users; towards east–west traffic, i.e. among
servers inside the same data center. In fact, more than 75% of
the total traffic nowadays remains inside the data center [17].

Our work can be used to estimate the suitability of EEE for
applications that follow the MapReduce programming model,
in terms of both performance and energy. We find optimum
energy savings for 10GbE links only when packet coalescing is
enabled. With packet coalescing, switches intentionally delay
outgoing packets while the link is in LPI mode, so that they

1The term “energy proportional” means that a component’s energy con-
sumption should be proportional to its utilization.

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

2

Fig. 1. Timeline of a link using Energy Efficient Ethernet

can be transmitted back-to-back with subsequent packets. The
packet coalescing settings, however, must be carefully chosen
to avoid an excessive loss in performance.

This paper extends the discussion to evaluate how to
adjust the static packet aggregation settings as a function
of the traffic load. At low load, packet aggregation settings
must avoid excessively increasing the latency, and thereby
affecting performance. At high load, more aggressive settings
are needed to obtain the greatest energy savings. This paper
quantifies these recommendations. Throughout our experimen-
tation using suggested settings from literature we feed network
equipment manufactures with insights and recommendations
for best settings of network cards deployed at the access and
aggregation level of data center networks.

The rest of the paper is organized as follows: Section II
compares our approach with related work. Section III
describes the experimental methodology. Section IV presents
the quantitative results and analysis, from which Section V
distils the most important recommendations. Finally,
Section VI concludes the paper.

II. RELATED WORK

In this section we present the related work of Energy
Efficient Ethernet, identify related problems in modern data
center networks that can be made worse by it and differentiate
the studies related with specific network traffic patterns using
Energy Efficient Ethernet.

A. Energy Efficient Ethernet

IEEE 802.3az Energy Efficient Ethernet (EEE) was ap-
proved by IEEE in September 2010 [18]. Since Ethernet is
the dominant technology for wire-line LANs, the power saving
mechanisms of EEE are expected to bring considerable energy
savings [10]. EEE has already been deployed, but many system
vendors advise their customers to disable it in production
use [12]–[14], since it has a poorly understood impact on
real world application performance, with no visibility of the
performance–energy tradeoff.

Cisco published a study of Energy Efficient Ethernet that
showed a 16% reduction in system power for synthetic Ether-
net traffic [12]. The same study recommends that EEE should
be used only for edge devices. Yamaha Audio advises their
customers to disable Energy Efficient Ethernet for audio and
video streaming [13]. Dell also presents a troubleshooting
section related to EEE [14].

The Energy Efficient Ethernet standard defines the low-level
mechanisms for entering and leaving sleep mode, known as
Low Power Idle (LPI). Figure 1 shows the timeline of a link,

TABLE I
EEE SINGLE-FRAME EFFICIENCY

1,500-byte frame 150-byte frame
Speed Min. Tw

(µs)
Min. Ts

(µs)
Tframe

(µs)
Efficiency

(%)
Tframe

(µs)
Efficiency

(%)

100Base-TX 30.5 200 120 34.2 12 4.9
1000Base-T 16.5 182 12 5.7 1.2 0.6
10GBase-T 4.48 2.88 1.2 14.0 0.12 1.6

which is initially active. Transitioning into LPI mode requires
time Ts. While the link remains in LPI mode, the transmitter
sends periodic refresh signals, each of duration Tr, to allow
the receiver to continue to adapt to channel characteristics
and to recognise if the link is physically disconnected. Before
transmitting a frame, the link must first be woken from LPI
mode, and doing so requires time Tw, which is approximately
4 µs for 10GbE and 16 µs for 1GbE, similar to the time to
transmit a small number of 1,500-byte Ethernet frames. Power
consumption is at full when the link is active and during wake
and sleep transitions, but in LPI mode, the average power
consumption, including refresh, is reduced to about 10%. The
EEE standard does not define the strategy for deciding when
to enter and leave low-power mode. This subject is an active
area of research.

The energy efficiency of EEE is therefore impacted by a) the
idle power consumption (about 10%) and b) the wake/sleep
overheads. The idle power consumption is a fixed cost, un-
affected by the strategy for entering and leaving low-power
mode, which affects only the wake/sleep overheads. When the
load is moderate to high, the energy overhead of transitioning
in and out of LPI mode can be amortised over a number
of packets. When the load is moderate to low, however, it
may be necessary to wake and sleep the link to transmit a
single frame, incurring high energy and latency penalties in
relative terms [19]. The extreme case is illustrated in Table I,
which summarises the energy efficiency, assuming that the link
wakes and sleeps to transmit a single frame. The numbers are
achieved by dividing the time spent to transmit a single frame
by the total time to leave LPI mode and return to this state.

To understand the context, Figure 2 (reproduced from Chris-
tensen et al. [8]) indicates the efficiency of EEE, for Poisson
arrivals. The ideal power consumption (assuming that the idle
power consumption cannot be avoided) is given by the line
from 0% link utilisation (for which the power consumption is
10%) to 100% utilisation and power. The figure also shows
how the baseline, which is legacy Ethernet, is always at full
power irrespective of link utilization. Standard EEE works
well at very low link utilisation because, although the relative
efficiency of each packet is poor, the low packet frequency
means that the total power overheads are also low. It is in
fact at moderate loads that Standard EEE has poor energy
efficiency. At 10% link utilization it already uses almost half
of the baseline power of legacy Ethernet and at 20% link
utilization it reaches 70% of the baseline power.

Previous studies show that the energy savings depend on

3

Fig. 2. Normalized link power consumption as a function of utilization,
assuming Poisson arrivals (redrawn from [8])

the traffic pattern (which often deviate significantly from
Poisson) and network load [8], [19]. Proposals include Power
Down Threshold [11], or stall timer, which initiates sleep
after a defined period of inactivity, typically about 50 µs.
Another technique, packet coalescing (also known as packet
aggregation), intentionally delays any packet that arrives while
the link is in LPI mode. If additional packets arrive within
a short time, then the link can be woken once to transmit
them back-to-back, amortising the wake and sleep energy over
multiple packets [8], [19].

Packet coalescing introduces a significant and variable la-
tency, and it is not clear which workloads can tolerate the
extra latency and burstiness. It is usually characterised using
two parameters: the trigger, which is the maximum number of
packets to hold (or alternatively, the buffer size in KB) and the
timer, or holding time, which is the maximum time to hold a
packet. The right configuration is critical for maximum energy
savings and low performance overhead [20]. Christensen et
al. [8] suggest using either a timer of 12 µs and a trigger of 10
packets or 120 µs and 100 packets. Their results, also included
in Figure 2, as before assume that the traffic is characterised as
Poisson arrivals. For Poisson network traffic, packet coalescing
was able to reach a power use much closer to ideal, specially
at the latter setting.

Although Figure 2 illustrates well the problem and the solu-
tion for it, the best setting always depends on the distribution
of the traffic on the network. For example, another publication
uses substantially different values [19], of 1ms and 10ms as
timers, in both cases with 1,000 packets as trigger. We show
the effect for MapReduce workloads in Section IV, where we
modify the parameters, including configuring different devices
to use different settings. Even if the application is not expected
to be latency sensitive, larger holding times and larger numbers
of packets lead to greater burstiness, which we found to
cause Ethernet packet loss. This is especially problematic for
commodity data centers, whose switches have relatively small
buffers. Spending more money on high-end switches could
reduce or eliminate this problem, but it is unlikely to lead to
a low cost or low energy solution.

B. Challenges of TCP in Modern Data Centers

The MapReduce programming model targets commodity
hardware and network equipment using the TCP/IP proto-
col [15] . More generally, recent studies show that 97% of the
traffic in current data centers is carried by IP packets, being
either TCP or UDP segments depending on the workload [21].
Microsoft Research published a study of 150 TB of network
traces, which showed that TCP segments make up more than
99% of the internal traffic of their data center [22].

TCP was initially designed for Wide Area Networks
(WANs) [23], and certain aspects, such as the minimum
Retransmition Timeout (RTO) of 200ms are better suited to
WANs than to LANs. Problems that arise in a low-latency
environment include (a) TCP Incast [23], a dramatic loss in
throughput for many-to-one communication patterns, where
congestion leads to packet loss, (b) TCP Outcast [24], where
(surprisingly) the throughput to a congested node may be much
lower from nearby nodes than from more distance ones, and
(c) Bufferbloat [25], where congestion causes excessive packet
buffering, leading to high latency and latency variability.

These phenomena are related to congestion, and they
can be alleviated using a congestion-free network such as
DCTCP [22], but such technology is not yet mainstream and
is still not trivial to deploy. On the performance perspective,
limiting buffer utilization may not be recommended once it
can degrade performance of batch workloads such as Hadoop.
TCP works well under congestion and burstiness scenarios as
long as there is enough buffer to accommodate them [26].

C. MapReduce and Hadoop

In 2004 Google introduced the MapReduce programming
model for reliable fault-tolerant processing of huge data sets on
large commodity clusters [15]. The programmer is given a data
abstraction in terms of map and reduce operations on key/value
pairs, and the framework takes care of the implementation de-
tails including automatic parallelization, task scheduling with
data locality, monitoring, redundant distributed data storage,
and re-executing failed tasks. The input and output data for the
MapReduce jobs are stored on a distributed filesystem known
as Apache HDFS (Hadoop Distributed File System), which
uses disks attached to the same nodes used for computation.
The job scheduler tries to schedule tasks to run on nodes where
data is already present, resulting in high data locality [16].

The MapReduce framework first splits the input data set
into independent chunks, which are processed in parallel by
the map tasks. It then sorts the combined outputs from the
maps, in the so-called shuffle stage, which involves all-to-all
communication among nodes, and passes the sorted data to
the reduce tasks. Several open-source MapReduce frameworks
have been developed over the years, with by far the most
popular one being Apache Hadoop [16].

D. EEE Under Specific Network Traffic Patterns

De la Oliva et al. conducted a study of the effect of Energy
Efficient Ethernet on a video streaming service using UDP
traffic [10]. Their simulation results showed that UDP video
streaming could achieve good energy savings without the

4

TABLE II
SIMULATED ENVIRONMENT

Category Parameter Value

Simulated hardware
System Number of nodes 24, 50 or 80

Number of racks 2
Node CPU Intel Xeon 2.5 GHz L5420

Number of cores 2
Number of processors 2

Network Each node 1GbE: 1 —
Each top-of-rack (ToR) switch 1GbE: 〈# Nodes〉/2 10GbE: 1
Aggregation switch — 10GbE: 2

Buffers Shallow buffers 128 KB per port
Deep buffers 10 MB per port

Link power 1GbE 0.5W
10GbE 2.5W

Simulated workload
MapReduce Configuration Number of job trackers 1

Number of workers 23, 49 or 79
Maps per node 2
Reduces per node 2

Jobs Maps per job Small jobs: 10 Batch jobs: 2×〈# Workers〉
Reduces per job Small jobs: 1 Batch jobs: 2×〈# Workers〉
Block size per job Small jobs: 64 MB Batch jobs: 2×128 MB

TCP buffer Default Max. 64 KB per connection
Optimized Max. 1 MB per connection

need for advanced techniques such as packet coalescing. They
mention, however, that using TCP rather than UDP would have
led to lower energy savings, due to TCP acknowledgements
and TCP congestion control mechanisms.

In the field of High-Performance Computing (HPC), Sar-
avanan et al. established that although scientific applications
have high peak communication demand and therefore need a
high-performance interconnect, the average traffic is usually
low [11]. This work led to an adaptive control mechanism
for Energy Efficient Ethernet that maximises energy savings
subject to a bound on the percentage increase in execution
time [27]. Dickov et al. presented an analysis of data com-
pression for InfiniBand network energy savings [28]. They
also introduced a novel power reduction software manager for
InfiniBand links [29], [30]. Both techniques of Dickov et al.
are implemented in the MPI software layer, so they are only
applicable to workloads written using MPI.

There are several differences between our approach and
the above related work in HPC. Firstly, HPC workloads have
complex dependencies and require low latency, leading to the
conclusion that packet coalescing would not be useful [11].
Both Dickov and Saravanan use high-level simulation models
that abstract away fine-grain details, whereas we use a detailed
packet-level simulator. We found that in our context, especially
with switches with shallow buffers, packet-level phenomena,
such as Ethernet packet loss and TCP/IP congestion avoidance,
have a critical effect on both performance and energy. Accurate
quantitative results could therefore only be obtained using a
packet-level simulator.

III. METHODOLOGY

This section describes the experimental methodology em-
ployed in this article.

A. Simulation Environment and Workloads

We evaluate the impact of Energy Efficient Ethernet as a
function of the network topology, workload, and control al-
gorithm, using the NS–2 packet-level network simulator [31].
This simulator has been extended with a model of Energy Ef-
ficient Ethernet [32], which has been previously validated [8]
and used extensively in previous work [33]. The network
simulator is driven by the MRPerf MapReduce simulator [34].
We could not use real hardware because the EEE control
algorithm is implemented in NIC and switch firmware, and
no hardware was available for which we were able to change
the packet coalescing settings. This methodology gives full
visibility of the fine-grain details of the TCP/IP protocol in
the data center environment. NS–2 and MRPerf are open
source and EEE module can be obtained contacting referenced
authors [32], so using the parameters described in the next
section, our simulation methodology has the advantage that it
can be reproduced and future work can be carried out on it.

1) Hardware configuration: The simulated hardware is
shown in Table II. We simulate a two-rack cluster with up
to 80 nodes, each node having the throughput of a two-
core Xeon at 2.5GHz and a single 1GbE link to the top-
of-rack (ToR) switch. Each top-of-rack switch is connected to
the aggregation switch using a single 10GbE link. The over-
subscription ratio on the 10GbE links is equal to 1.2:1, 2.5:1

5

TABLE III
SIMULATED BENCHMARKS

Benchmark % of jobs Aggregate size
Input (MB) Shuffle (MB) Output (MB)

Small jobs
TeraSort 33% 640 640 640
Search 33% 640 0.033 0.033
Index 33% 640 114 114
Batch (large) jobs
TeraSort (23 nodes) 100% 5888 5888 5888
TeraSort (49 nodes) 100% 12544 12544 12544
TeraSort (79 nodes) 100% 20224 20224 20224

or 4:1. This matches Cisco’s recommendation that MapReduce
clusters should be deployed with an over-subscription ratio of
4:1 or lower at the access layer [35]. Lower over-subscription
ratios improve network performance at higher cost [36], so we
explored multiple points along this performance–cost tradeoff.

We provide results for both commodity and more expensive
switches. Hadoop clusters often use inexpensive commodity
switches, which have small (shallow) buffers. Small buffers
can cause excessive packet loss, leading to the incast and
outcast problems described in Section II. These problems
can be alleviated using expensive switches with larger (deep)
buffers. Manufacturers rarely disclose the buffer sizes in the
product data sheet, so we followed the best public source we
could find [37], giving 128 KB per port for the shallow buffer
switches and 10 MB per port for switches with deep buffers.

An important question is the power consumption of the
1GbE and 10GbE links. 1GbE (1000BASE-T) cards were
originally expected to consume about 1W, but current NICs
using 110 nm silicon technology require just 0.5W [38]. On
the other hand, 10GbE (10GBASE-T) NICs are still considered
to be power hungry. The previous generation, at 40 nm,
consumed about 5W, while the current generation at 28 nm
is expected to consume between 2W and 4W [39]. Our main
contributions are related to energy savings in the 10GbE links,
so we conservatively chose relatively power efficient 10GbE
links. In summary, as shown in the table, we assume 0.5W
per port for 1GbE and 2.5W per port for 10GbE. On real
hardware, numbers can still vary depending on the vendors
to be considered. We restricted the power consumption to the
NICs as considering power consumption for the servers could
translate to a even wider range of values and great imprecision
since different architectures and solutions could be adopted
(going from low end and commodity servers to high end more
expensive ones). Therefore we reduced the scope of this work
to estimate the energy consumption of the links themselves,
which can be verified on the next section.

2) Workloads: Table II also shows the configuration of
the simulated workloads. We reserve one node for Hadoop
housekeeping, to serve as namenode and jobtracker, with
the remaining nodes used as worker nodes for processing
map and reduce tasks. We chose two workloads, small and
batch (large). The small workload consists of a sequence
of small jobs, each with ten map tasks and one reduce
task. The average CPU utilization is about 40%, except in

TABLE IV
EEE PACKET COALESCING SETTINGS

Label Holding time Trigger

nopa No Packet coalescing
12us10 12 µs 10 packets
120us100 120 µs 100 packets
1ms1000 1ms 1000 packets
10ms1000 10ms 1000 packets

Section IV-C4, where it is varied between 5% and 55%. The
default 40% load is consistent with a study of traces obtained
at Facebook, which shows that most of the jobs were small,
with few maps and one reduce tasks, and that the cluster as
a whole had a relatively low utilization of about 40% [40].
The large workload is closer to batch processing for big data
applications [41], and we engage the whole system using a
single large job, with the number of map and of reduce tasks
both equal to twice the number of worker nodes.

Table III lists the benchmarks that were used for the
evaluation. Each benchmark comprises a sequence of one or
more MapReduce jobs, each released at a particular time. The
small workload contained a mixture of TeraSort, Search and
Index jobs. The batch workload contained a single TeraSort
job. Batch processing normally involves large jobs of several
gigabytes or terabytes, but the communication, most of which
is in the shuffle stage, is close to proportional to the workload
size. Since the communication pattern is also repetitive, we
can obtain representative figures using a workload of 128 MB
per core, which is sufficient to maximise cluster utilization.

Since packet coalescing can increase latency, which
implies more buffering in software, we present results for
two different values for the maximum TCP buffer size per
connection: the default value of 64 KB and an optimized
setting of 1 MB. The optimized setting also enables the TCP
Window Scale option, which allows the congestion window
to grow above 64 KB. The default value of 64 KB is known
to be small, so in production use the global settings must be
changed and the application restarted [42].

3) EEE settings: We assume the sleep and wake timings
given in Table I, and evaluate several control algorithms. We
begin by evaluating Power Down Threshold [27], or stall timer,
without the use of packet coalescing. We use the best stall
timer value, with the packet coalescing settings in Table IV.

Finally, we include an ideal case, for which sleep and wake
transitions are both instantaneous and zero energy. In this
case, the link is optimally controlled by simply entering LPI
mode as soon as it becomes inactive, providing perfect energy
proportionality without affecting runtime. This result gives a
lower bound on energy consumption.

4) Summary: We have the following configurations:
Number of nodes 24, 50 or 80
Switches Shallow or deep buffers
Workload Small jobs or batch job
TCP window size Default or optimized
Packet coalescing See previous subsection

6

B. Total runtime vs. Average runtime

The performance can be measured using either the total
execution time for all jobs (total runtime) or the average
execution time per job (average runtime). Each benchmark
contains multiple MapReduce jobs, and the total runtime is
the wallclock time from the start of the first job to the end
of the last job. A single job’s runtime is the wallclock time
from the time the job is ready to be scheduled until it finishes
executing, and the average runtime is the average of these
single job runtimes.

The MapReduce scheduler plays an important role in both
total runtime and average runtime, and extensive research
has been carried on this topic [43]. The MrPerf MapReduce
simulator provides multiple scheduler implementations, but the
recommended scheduler is Quincy [44], which provides fair
scheduling with data locality [45].

Total runtime and average runtime both grow with cluster
utilization, but the relationship between them depends on the
scheduler. Figure 3 shows the behavior using the Quincy
scheduler. A detailed analysis of the effect of the scheduler
is outside the scope of this work, which focusses on the
performance–energy tradeoff of Energy Efficiency Ethernet.

C. Variability

Each point in Figures 4, 5, 6, and 7 is the result from
a single run. During our analysis and experimentation we
saw small levels of variability (when we adjusted various
parameters - the simulator itself is deterministic). The greatest
variability among our results was about 1%, and mainly
caused by dynamic scheduling and the TCP congestion control
algorithm.

IV. RESULTS

This section presents the quantitative results, giving the
energy savings and performance overheads for MapReduce
workloads using Energy Efficient Ethernet.

A. Fixed link latency

Since EEE primarily affects execution time via its effect
on latency, we begin by evaluating the effect of link latency

Fig. 3. Average and total runtime vs. load (Quincy scheduler)

Fig. 4. Runtime vs. fixed link latency per link

on MapReduce performance. We added a fixed latency on
each link, without using EEE, for both workloads: small tasks
and batch processing. This experiment used the default TCP
settings for the receive and send buffers and the scale window.

As shown in Figure 4, for small tasks the runtime begins to
increase only when the latency per link exceeds about 100 µs.
Batch processing is less sensitive to latency: the performance
starts to degrade only when the latency exceeds about 5ms per
link. The difference between the two is that batch processing
has most of its communication concentrated during a single
shuffle phase, whereas small tasks have the communication
more distributed over time. Since small tasks experience less
congestion, the baseline bandwidth is higher, and a smaller
latency is sufficient to exceed the buffers.

We conclude that, for both workloads, and even with the
default TCP settings, the impact of the 1GbE wakeup latency
of 16.5 µs on MapReduce performance should be negligible.
Since the latency is added per link, these results already
include the effect of consecutive wakeups on multiple hops.

B. Standard EEE and stall timer

The simplest EEE control algorithm puts the link into Low
Power Idle (LPI) mode as soon as it becomes inactive [18]. A
more advanced method, known as Power Down Threshold or
stall timer, enters LPI mode after a defined period of inactivity,
which is typically about 50 µs (see Section II-A). If the stall

Fig. 5. Runtime vs. stall time without packet coalescing (small tasks)

7

Fig. 6. Average energy per port vs. stall time without packet coalescing (small
tasks)

timer is small, then the link may frequently enter and leave
LPI mode, incurring a large performance penalty. On the other
hand, if the stall timer is large, the links will seldom enter
LPI mode, yielding poor energy savings. We would therefore
expect to reproduce previous findings that the stall timer
provides a trade-off between performance and energy [11].

We evaluated the effect of the stall timer setting, as shown
in Figure 5 (runtime) and Figure 6 (energy consumption per
port). Figure 6 shows the average energy consumption of the
1GbE and 10GbE ports, as well as all ports of the data center
(DC). These results show that, for MapReduce, the stall timer
offers little advantage over the simple algorithm, since, even
for our worst-case results, a stall timer of zero gives a small
performance overhead of about 1% that is hard to distinguish
from scheduling and other noise. We therefore use the simple
control algorithm without packet aggregation (nopa), which
we refer to as Standard EEE.

Figure 7 compares the energy consumption of legacy
Ethernet (without EEE) and Standard EEE. It also shows the
ideal case, which has instantaneous zero energy sleep and
wake transitions. In this figure and in the next subsection,
energy consumption is always normalized to the current state
of the art, which is Standard EEE (without packet coalescing).
In Figure 7, standard EEE reduces the energy consumption by
a factor between five and eight, depending on the workload
and network over-subscription ratio. The ideal results, which
are closely matched using packet coalescing, show a further
factor of two improvement.

C. Optimum Energy Savings on MapReduce Cluster

This section investigates the optimum settings for EEE
across the whole network. The results show that, in contrast
to previous recommendations for the deployment of EEE [8],
[19], packet coalescing should be enabled for the 10GbE links,
but it is necessary to carefully choose the packet coalescing
parameters and TCP settings. All results in this section were
normalized to the standard Energy Efficient Ethernet (without
packet coalescing).

1) Uniform EEE settings: The broad results in more detail
are shown in Figure 8. Results are given for the five packet
aggregation settings from Table IV, with default or optimised

Fig. 7. Average energy consumption (comparison with legacy Ethernet)

TCP buffers, and shallow or deep switch buffers. The main
conclusion is that, with shallow buffer switches, with 64 KB
per connection, the 1ms1000 and 10ms1000 settings have
unacceptably large overheads.

The same results are summarized in Figure 9, which shows
the performance and energy results averaged across all six
scenarios (workloads and over-subscription ratios).

Regarding performance first, the 12us10 and 120us100 set-
tings have overheads of less than 5%, for all six scenarios, with
little variation among the scenarios. With deep buffer switches,
of 1 MB per connection, the 1ms1000 setting is also acceptable
for batch workloads, with or without tuned TCP settings. Batch
workloads fully utilise the network during the shuffle phase,
and the resulting congestion means that full throughput can
be achieved using a relatively small TCP congestion window.
This traffic is, in fact, sufficient to usually trigger the 1000-
packet threshold without waiting for the timeout, giving lower
additional latency and also a similar runtime for 1ms1000 and
10ms1000. In contrast, with small tasks, the shuffle phases of
different jobs happen at different times, so network utilization
is spread out in time and there is less network congestion. For
small tasks, the additional latency introduced by aggressive
packet coalescing therefore requires a tuned TCP congestion
window.

The average runtime follows the same pattern as total
runtime, except for deep buffer switches and default TCP using
10ms1000 setting. Surprisingly, we see that scenarios with
more servers show a slightly lower performance degradation
than scenarios with fewer servers. In other words, lower over-
subscription ratios lead to greater performance degradation,
contrary to what would be naively expected and also to what is
seen on the rest of the results. On such situation switch buffers
are not the bottleneck of the system, and having more servers
offers the scheduler the possibility to achieve better average
runtime, even if the same is not verified on total runtime.

Turning to the energy results in Figure 9, it is clear that the
best packet aggregation settings depend on the context. With
deep buffers and tuned TCP settings, the best energy savings
are obtained using 1ms1000: the energy consumption was
reduced to 55% at an overhead of less than 2%. With shallow
buffers, the same settings would increase the total runtime by
an unacceptable 25%. The best settings for shallow buffers are
12us10 and 120us100, which increase runtime by less than

8

Fig. 8. All runtimes and energy consumption of workloads using different settings

Fig. 9. Average Runtime and Energy Consumption of MapReduce jobs

Fig. 10. Energy consumption (optimized configuration) [runtime remains
about the same]

1% but reduce energy to 75% and 60% of Standard EEE,
respectively. The next experiment consists in using 1ms1000
for the 10GbE NICs, and 12us10 or 120us100 for 1GbE links.
We expect to save additional energy and get closer to the ideal
model.

2) Non-uniform EEE settings: In Section IV-C1, the packet
aggregation settings were uniform across all switches in
the network. This section investigates the benefit of non-
uniform packet aggregation settings. Specifically, the new
settings, 12us10+ and 120us100+ are the same as 12us10
and 120us1000, respectively, for the 1GbE links, but they use
1ms1000 on the 10GbE links.

9

(a) 10GbE

(b) 1GbE

Fig. 11. Detailed energy consumption by NICs

As shown in Figure 10, using different settings of packet
aggregation for different NICs improved the energy sav-
ings. The aggregation switch has better energy savings using
1ms1000, since 12us10 and 120us100 present good savings
for a moderate load but not for high load. Under high load,
1ms1000 gets closer to ideal savings for 10GbE links.

3) Analysis by link type: Whereas Figure 10 showed the
average energy consumption across all the network links,
Figure 11 shows separate energy consumption results for (a)
the 10GbE links and (b) the 1GbE links. As before, values are
normalized in comparison with Standard EEE.

The greatest savings are obtained for the 10GbE links,
which benefit most from packet coalescing, as shown in
Figure 11a. In contrast, Figure 11b shows little benefit from
packet coalescing for the 1GbE links in comparison with
Standard EEE. Considering the complexity and the cost for
new 1GbE interfaces that would deploy packet coalescing for
almost negligible benefits, the adoption of packet coalescing

Fig. 12. Total runtime as CPU load is varied (Terasort)

Fig. 13. Energy consumption as CPU load is varied (Terasort)

technique on edge interfaces is not necessary. For this reason,
our last experiment (see the following results) focus on using
packet coalescing technique only on 10GbE link (aggregation
layer). 1 GbE links remain with Standard EEE, which means
no packet aggregation on edge links.

4) Load impact on coalescing settings: Packet coalescing
settings were previously evaluated for a fixed typical cluster
utilization of 40%, measured by the CPU load. This section ex-
tends the evaluation to consider to what extent the conclusions
depend on the CPU load. It complements previous work [8]
discussed in Section II, which explored the relationship be-
tween network utilization and power for Poisson arrivals. For
workloads like MapReduce, the connection between cluster
utilization and energy is more complicated, due to the non-
linear relationships between cluster utilization, measured using
the CPU load, and both network utilization and runtime.

We concentrated on Terasort jobs on switches with shal-
low buffers, and varied the CPU load between 5% to 55%.
Figure 12 shows the runtime results. The differences between
ideal, standard EEE, 12us10 and 120us100 are small, whereas
1ms1000 has a large overhead below 40% utilization, rising to
a performance degradation of 20% at 5% utilization. The extra
delays of up to 1ms, caused by packet coalescing, require a
larger Bandwidth–Delay Product (BDP), and more in-flight
packets to compensate for the extra latency. Switches with
shallow buffers cannot accommodate the Incast congestion

Fig. 14. Energy–delay product as CPU load is varied (Terasort)

10

that happens on the link connecting the Top-of-Rack switch to
the reduce node (see Section II). It is therefore impossible to
increase the BDP, even using optimized TCP settings, because
congestion limits the number of packets in flight. Note that this
problem does not happen with deep buffer switches.

Turning to the energy consumption, shown in Figure 13,
the lowest energy consumption is always achieved using
1ms1000. As previously mentioned, however, below about
40% utilization, the increase in runtime, visible in Figure 12,
becomes too large, so the best option, with small difference
in energy, would be 120us100.

Finally, Figure 14 combines performance and power into
a single metric, which shows the normalized energy–delay
product. When cluster utilization is higher than 10%, the
energy–delay metric in fact indicates a better trade-off for
the 1ms1000 setting. On the other hand, when the cluster
utilization is lower than 10%, the 120us100 setting has a
better trade-off. Back to 1ms1000, it is important to notice that
even with better results from the energy–delay metric, from
10% to 40% of cluster utilization, the better energy savings
are achieved at the cost of a performance penalty previously
mentioned. This therefore has to be taken into account when
choosing the proper packet coalescing setting.

V. DISCUSSION AND RECOMMENDATIONS

As mentioned in the introduction, a typical data center
network accounts for 12% or more of the total system en-
ergy consumption. Recent switches that implement Energy
Efficient Ethernet (EEE) already have support for energy pro-
portionality, but until a good understanding of the impact on
real application performance has been reached, these features
are likely to remain switched off in practice, unnecessarily
increasing the energy consumption. This paper contributes to
the necessary understanding by analysing this tradeoff in detail
for MapReduce workloads, which are representative of modern
applications dominated by east–west traffic.

The recommendations in this section have been divided
into a) recommendations for system administrators, and b)
recommendations for equipment vendors.

a) Recommendations for system administrators: The first
finding of this paper is that the “standard” Energy Efficient
Ethernet algorithm, which turns the link off immediately
when it becomes idle, and that doesn’t use packet coalescing,
obtains significant energy savings with negligible performance
overhead. This is in contrast to previous work in the context
of HPC, which found that a Power Down Threshold timer
was needed to limit the performance overhead of repeated link
wakeups [11]. The result is that system administrators should
not be afraid to enable EEE, even when the general guidelines
from the system integrator are to disable it.

b) Recommendations for equipment vendors: The limited
configurability of existing switches mean that the remaining
recommendations are currently targeted at equipment vendors.
We show that the standard algorithm is, in fact, sufficient for
1GbE edge links. An ideal model, that sets EEE overheads to
zero, gives an upper bound energy consumption of 20% below
that of EEE. Our investigation of packet coalescing settings,
however, found a maximum benefit of just 5%.

For 10GbE, however, packet coalescing delivers further
energy savings, reducing the energy consumption to half or
less. For this reason, equipment vendors should certainly
implement packet coalescing, especially for 10GbE links. We
were able to find packet coalescing settings, for all evaluated
loads and workloads, that save between 35% to 75% more
energy, in comparison with standard EEE, and that reach close
to the ideal case (Figure 13).

We found, however, that the energy–performance tradeoff is
strongly affected by the packet coalescing settings. Coalescing
packets does not simply introduce a delay on links. It also
increases the burstiness, which, especially on shallow buffers,
leads to packet loss, ultimately impacting performance. This
is especially true for workloads like MapReduce that have a
many-to-one communication pattern. We extended our previ-
ous analysis [1] by investigating the effect of cluster utiliza-
tion. When utilization is low, the best setting was 120us100,
which provided good energy savings without hurting perfor-
mance. When utilization is high, a more aggressive setting
of 1ms1000 obtained better energy savings with little perfor-
mance loss.

Some server NIC vendors implement a technique known
as interrupt coalescing, which amortises the overhead of
interrupting the CPU, by generating a single interrupt to
process multiple received or transmitted packets [46]. Interrupt
coalescing is most commonly deployed on the receiver side,
in which case it has no effect on how packets are presented
on the network links, and it is therefore not directly relevant
to this study of EEE energy efficiency. When deployed on
the transmitting side, interrupt coalescing may be an effective
means of implementing packet coalescing on the outgoing
edge links. Higher-bandwidth network links would still need
packet coalescing to be implemented in the switches. We did
not model interrupt coalescing in this study, but our results
indicate that relatively aggressive interrupt coalescing, on both
transmit and receive, whould not be expected to significantly
impact Hadoop performance.

We investigated the effect of over-subscription on these
findings, as shown in Figure 10. Generally speaking, the larger
over-subscription ratios use a smaller number of 10GbE links,
so the energy savings in these links have lower effect on the
total network energy consumption. Nevertheless, even with
the largest over-subscription factor of 4:1, packet coalescing
reduced the energy consumption by 20%. The benchmarks
with small tasks distributed network utilization over longer
periods of time, during which the utilization was lower, leading
to a greater benefit from packet coalescing.

c) How buffering and burstiness really affect Hadoop:
The results presented here are aligned with a new study
investigating the impact of using DCTCP and also AQM
queues combined with ECN to reduce buffer occupancy on
Data Centers. The best performance on batch workloads is
achieved using deep buffers switches without Active Queue
Management on the network buffers. Contrary to the naive
assumption, TCP works well under congestion and burstiness
scenarios as long as there is enough buffer to accommodate
the bursty traffic. Limiting buffer utilization can also degrade
performance of batch workloads such as Hadoop [26].

11

VI. CONCLUSIONS

An important challenge of modern data centers is to reduce
energy consumption, of which a substantial proportion is due
to the network. The Energy Efficient Ethernet (EEE) standard,
approved by IEEE in 2010, implements low-level mecha-
nisms to improve Ethernet energy efficiency. Such standards,
however, will not adopted in practice until their effects on
workload performance are well understood.

This paper extended our previous work investigating Energy
Efficient Ethernet for MapReduce workloads. Our last findings
widen our previous study by demonstrating how cluster uti-
lization plays an important role when choosing the settings for
packet coalescing. We evaluated the performance impact and
energy savings, and found that the MapReduce programming
model is not sensitive to the overheads of EEE, even with
packet coalescing, contradicting the general guidelines from
vendors to disable EEE. For 1GbE links, it is sufficient to
switch links off as soon as they become idle, but optimum
energy savings in the 10GbE links are only possible with
packet aggregation. We therefore suggest to adopt a simple
management algorithm for edge devices (1GbE), and to enable
the system administrator to modify the packet coalescing
parameters for core devices (10GbE). This approach improves
the energy savings between 20% and 60% in comparison with
standard EEE, depending on the workload and the network
over-subscription ratio. As future work, we plan to extend
our study to use a protocol that reacts faster to congestion,
reducing the occupancy of network buffers and improving the
ability to absorb burstiness introduced by packet coalescing.

VII. ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
(FP7/2007–2013) under grant agreement number 610456 (Eu-
roserver). The research was also supported by the Ministry of
Economy and Competitiveness of Spain under the contract
TIN2012-34557, HiPEAC-3 Network of Excellence (ICT-
287759), and the Severo Ochoa Program (SEV-2011-00067)
of the Spanish Government.

REFERENCES

[1] R. Fischer e Silva and P. M. Carpenter, “Exploring interconnect energy
savings under East-West traffic pattern of MapReduce clusters,” in 40th
Annual IEEE Conference on Local Computer Networks (LCN 2015),
Clearwater Beach, USA, Oct. 2015, pp. 10–18.

[2] W. Si, J. Taheri, and A. Zomaya, “A distributed energy saving approach
for ethernet switches in data centers,” in Proceedings of the 2012 37th
Conference on Local Computer Networks (LCN 2012), ser. LCN ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 505–512.
[Online]. Available: http://dx.doi.org/10.1109/LCN.2012.6423667

[3] R. Brown et al., “Report to congress on server and data center energy ef-
ficiency: Public law 109-431,” Lawrence Berkeley National Laboratory,
2008.

[4] C. L. Belady, “In the data center, power and cooling costs more than the
it equipment it supports,” http://www.electronics-cooling.com, 2007.

[5] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, “Energy
proportional datacenter networks,” in Proceedings of the 37th Annual
International Symposium on Computer Architecture, ser. ISCA ’10.
New York, NY, USA: ACM, 2010, pp. 338–347. [Online]. Available:
http://doi.acm.org/10.1145/1815961.1816004

[6] D. Kliazovich, P. Bouvry, and S. U. Khan, “Greencloud: a packet-level
simulator of energy-aware cloud computing data centers,” The Journal
of Supercomputing, vol. 62, no. 3, pp. 1263–1283, 2012.

[7] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, “Energy
aware network operations,” in INFOCOM Workshops 2009. IEEE,
April 2009, pp. 1–6.

[8] K. Christensen, P. Reviriego, B. Nordman, M. Bennett, M. Mostowfi,
and J. Maestro, “IEEE 802.3az: the road to energy efficient ethernet,”
Communications Magazine, IEEE, vol. 48, no. 11, pp. 50–56, November
2010.

[9] “Broadcom at interop: Energy efficient ethernet is good for the
planet,” http://www.broadcom.com/blog/network-infrastructure/
broadcom-at-interop-energy-efficient-ethernet-is-good-for-the-planet/,
accessed: 2017-05-22.

[10] A. De La Oliva, T. R. V. Hernández, J. C. Guerri, J. A. Hernández,
and P. Reviriego, “Performance analysis of energy efficient ethernet on
video streaming servers,” Computer Networks, vol. 57, no. 3, pp. 599–
608, 2013.

[11] K. Saravanan, P. Carpenter, and A. Ramirez, “Power/performance evalu-
ation of energy efficient ethernet (eee) for high performance computing,”
in 2013 International Symposium on Performance Analysis of Systems
and Software (ISPASS). IEEE, April 2013, pp. 205–214.

[12] Cisco Systems, Inc, “IEEE 802.3az energy efficient ethernet: Build
greener networks,” Tech. Rep., 2011.

[13] Yamaha, “Disabling energy efficient ethernet (eee),” http:
//www.yamahaproaudio.com/global/en/training support/selftraining/
dante guide/chapter2/02 eee/, accessed: 2017-05-22.

[14] Dell, “Resolving issues with energy efficient ethernet (eee) or green
ethernet,” http://www.dell.com/support/Article/us/en/19/421774/EN, ac-
cessed: 2017-05-22.

[15] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation, ser. OSDI’04. Berkeley,
CA, USA: USENIX Association, 2004, pp. 10–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251254.1251264

[16] The Apache Software Foundation, “Apache Hadoop Project,” http:
//hadoop.apache.org, accessed: 2017-05-22.

[17] Cisco Systems, Inc, “Cisco global cloud index: Forecast and methodol-
ogy, 20132018,” Tech. Rep., 2014.

[18] The Institute of Electrical and Electronics Engineers, Inc, “IEEE Stan-
dard for Information technology– Local and metropolitan area networks–
Specific requirements– Part 3: CSMA/CD Access Method and Physical
Layer Specifications Amendment 5: Media Access Control Parameters,
Physical Layers, and Management Parameters for Energy-Efficient Eth-
ernet,” IEEE Std 802.3az-2010 (Amendment to IEEE Std 802.3-2008),
pp. 1–302, Oct 2010.

[19] P. Reviriego, J. Maestro, D. Larrabeiti, and D. Larrabeiti, “Burst
transmission for energy-efficient ethernet,” Internet Computing, IEEE,
vol. 14, no. 4, pp. 50–57, July 2010.

[20] S. Herrerá-Alonso, M. Rodrı́guez-Pérez, M. Fernández-Veiga, and
C. López-Garcá, “Optimal configuration of energy-efficient ethernet,”
Computer Networks, vol. 56, no. 10, pp. 2456 – 2467, 2012, green
communication networks. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1389128612000990

[21] P. Rygielski, S. Kounev, and S. Zschaler, “Model-based throughput
prediction in data center networks,” in 2013 International Workshop
on Measurements and Networking Proceedings. IEEE, Oct 2013, pp.
167–172.

[22] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center TCP
(DCTCP),” in Proceedings of the SIGCOMM 2010 Conference, ser.
SIGCOMM ’10. New York, NY, USA: ACM, 2010, pp. 63–74.
[Online]. Available: http://doi.acm.org/10.1145/1851182.1851192

[23] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph,
“Understanding TCP incast throughput collapse in datacenter networks,”
in Proceedings of the 1st Workshop on Research on Enterprise
Networking, ser. WREN ’09. New York, NY, USA: ACM, 2009, pp. 73–
82. [Online]. Available: http://doi.acm.org/10.1145/1592681.1592693

[24] P. Prakash, A. Dixit, Y. C. Hu, and R. Kompella, “The TCP
outcast problem: Exposing unfairness in data center networks,”
in Proceedings of the 9th Conference on Networked Systems
Design and Implementation, ser. NSDI’12. Berkeley, CA, USA:
USENIX Association, 2012, pp. 30–30. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2228298.2228339

[25] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the internet,”
Queue, vol. 9, no. 11, pp. 40:40–40:54, Nov. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2063166.2071893

12

[26] R. F. E. Silva and P. M. Carpenter, “Controlling network latency in mixed
hadoop clusters: Do we need active queue management?” in 2016 IEEE
41st Conference on Local Computer Networks (LCN), Nov 2016, pp.
415–423.

[27] K. P. Saravanan, P. M. Carpenter, and A. Ramirez, “A performance
perspective on energy efficient hpc links,” in Proceedings of the
28th International Conference on Supercomputing, ser. ICS ’14. New
York, NY, USA: ACM, 2014, pp. 313–322. [Online]. Available:
http://doi.acm.org/10.1145/2597652.2597671

[28] B. Dickov, M. Pericas, P. Carpenter, N. Navarro, and E. Ayguade,
“Analyzing performance improvements and energy savings in infiniband
architecture using network compression,” in 2014 26th International
Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD). IEEE, Oct 2014, pp. 73–80.

[29] ——, “Software-managed power reduction in infiniband links,” in 2014
43rd International Conference on Parallel Processing (ICPP). IEEE,
Sept 2014, pp. 311–320.

[30] B. Dickov, P. Carpenter, M. Pericas, and E. Ayguade, “Self-tuned
software-managed energy reduction in infiniband links,” in ICPADS
2015, December 2015.

[31] “Network simulator ns-2,” http://www.isi.edu/nsnam/ns, accessed: 2017-
05-22.

[32] P. Reviriego, K. Christensen, A. Snchez-Macin, and J. Maestro,
“Using coordinated transmission with energy efficient ethernet,” in
NETWORKING 2011, ser. Lecture Notes in Computer Science,
J. Domingo-Pascual, P. Manzoni, S. Palazzo, A. Pont, and C. Scoglio,
Eds. Springer Berlin Heidelberg, 2011, vol. 6640, pp. 160–171.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-20757-0 13

[33] S. Herrerı́a-Alonso, M. Rodriguez-Perez, M. Fernández-Veiga, and
C. Lopez-Garcia, “How efficient is energy-efficient ethernet?” in 2011
3rd International Congress on Ultra Modern Telecommunications and
Control Systems and Workshops (ICUMT). IEEE, 2011, pp. 1–7.

[34] G. Wang, A. R. Butt, P. Pandey, and K. Gupta, “Using realistic
simulation for performance analysis of Mapreduce setups,” in
Proceedings of the 1st Workshop on Large-Scale System and Application
Performance, ser. LSAP ’09. New York, NY, USA: ACM, 2009, pp. 19–
26. [Online]. Available: http://doi.acm.org/10.1145/1552272.1552278

[35] Cisco Systems, Inc, “Big data in the enterprise - network design
considerations white paper,” Tech. Rep., 2011.

[36] Hortonworks, “Cluster planning guide,” http://docs.hortonworks.com/
HDPDocuments/HDP1/HDP-1.3.7/bk cluster-planning-guide/content/
typical-hadoop-cluster-hardware.html, accessed: 2017-05-22.

[37] “USCS: Packet Buffers,” http://people.ucsc.edu/∼warner/buffer.html, ac-
cessed: 2017-05-22.

[38] P. Reviriego, K. Christensen, J. Rabanillo, and J. Maestro, “An initial
evaluation of energy efficient ethernet,” Communications Letters, IEEE,
vol. 15, no. 5, pp. 578–580, May 2011.

[39] D. Dove, “A scalable base-t approach,” http://www.ieee802.org/3/
NGBASET/public/sep12/dove 01b 0912.pdf, accessed: 2017-05-22.

[40] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for evaluating
MapReduce performance using workload suites,” in 2011 19th Interna-

tional Symposium on Modeling, Analysis Simulation of Computer and
Telecommunication Systems. IEEE, July 2011, pp. 390–399.

[41] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing
in big data systems: A cross-industry study of MapReduce workloads,”
Proc. VLDB Endow., vol. 5, no. 12, pp. 1802–1813, Aug. 2012.
[Online]. Available: http://dx.doi.org/10.14778/2367502.2367519

[42] Pittsburgh Supercomputing Center, “Pittsburgh supercomputing center:
Enabling high performance data transfers,” https://www.psc.edu/index.
php/networking/641-tcp-tune#options, accessed: 2017-05-22.

[43] N. Tiwari, S. Sarkar, U. Bellur, and M. Indrawan, “Classification
framework of mapreduce scheduling algorithms,” ACM Comput. Surv.,
vol. 47, no. 3, pp. 49:1–49:38, Apr. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2693315

[44] G. Wang, A. Butt, H. Monti, and K. Gupta, “Towards synthesizing real-
istic workload traces for studying the hadoop ecosystem,” in Modeling,
Analysis Simulation of Computer and Telecommunication Systems, 2011
IEEE 19th International Symposium on, July 2011, pp. 400–408.

[45] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: fair scheduling for distributed computing clusters,” in
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles. ACM, 2009, pp. 261–276.

[46] “Ibm knowledge center: Interrupt coalescing,” http://www.ibm.
com/support/knowledgecenter/ssw aix 61/com.ibm.aix.performance/
interrupt coal.htm, accessed: 2017-05-22.

Renan Fischer e Silva is a Ph.D researcher at
the Barcelona Supercomputing Center (BSC). He
received both his B.Sc. and M.Sc. in computer sci-
ence from the Federal University of Paraná, Brazil,
and is currently on the path of his Ph.D. in com-
puter architecture from the Universitat Politècnica de
Catalunya (UPC), started in 2014. Prior to starting
his Ph.D., he worked in industry for 7 years. His
research interests are data center infrastructure, local
area networks and big data workloads.

Paul Carpenter is a senior researcher at the
Barcelona Supercomputing Center (BSC). He grad-
uated from the University of Cambridge in 1997,
and he received his Ph.D. in computer architecture
from the Universitat Politècnica de Catalunya (UPC)
in 2011. Prior to starting his Ph.D., he was Senior
Software Engineer at ARM in Cambridge, UK.
His research interests include system architecture,
energy proportional interconnects, and programming
models.

